ISWC OpenIR  > 水保所科研产出(EI)  > 2015年EI
工程堆积体坡面径流水动力学参数及其相互关系
其他题名Hydrodynamic parameters and their relationships of runoff over engineering accumulation slope
李永红1,2; 牛耀彬1,3; 王正中2; 高照良1; 张少佳1,3; 刘子壮4
文章类型article
2015-11-01
发表期刊Transactions of the Chinese Society of Agricultural Engineering(农业工程学报)
通讯作者邮箱wangzz0910@163.com
卷号31期号:22页码:83-88
其他摘要工程堆积体具有独特的土壤组成及复杂的下垫面条件,其土壤抗冲性极差,径流条件下堆积体陡坡坡面关键的水动力学参数及其相互关系亦表现出不同的特点,为探明工程堆积体坡面径流水动力学参数及其相互关系,该文采用 30405060 L/min 4 个流量,对 24°28°32° 3 个坡度的堆积体边坡( 20 m×5 m 标准监测小区)进行模拟放水冲刷试验,选取径流流速、水深、雷诺数、弗汝德数、径流阻力系数、水流剪切应力、径流功率等参数进行分析。结果表明:工程堆积体坡面侵蚀位置主要集中在坡面上部( 010 m),侵蚀时段主要集中在产流后期( 1230 min);流速随坡度和流量的增大而增大,坡度对流速的影响大于流量;随着坡面流由层流向紊流、急流向缓流的过渡,坡面径流阻力系数随之增大;基于水流剪切应力和径流功率分别计算获得的工程堆积体坡面细沟侵蚀土壤可蚀性参数分别为 2.63×10-2 s/m 0.1 s2/m2,对应的临界侵蚀径流功率为 0.8 N/(m·s)。研究结果可为坡面措施的配置提供一定的理论支撑,也能为工程堆积体土壤侵蚀预报模型的建立提供部分基础参数。
; Engineering accumulation generated during the process of engineering construction has a unique soil composition
and complex underlying surface. This sort of deposit is characterized by weaken anti-scourabilty attributed to loose texture,which may result in the runoff conditions easily causing severe soil erosion. Hydrodynamic parameters and their relationships of runoff from steep engineering slope show different characteristics in response to hydrodynamic conditions. A detail study of the hydrodynamic characteristics is a premise and foundation to understand erosion processes on engineering accumulation. For this reason, a field study was conducted for the simulation of erosion process by runoff in order to reveal the mechanisms of erosion by runoff on engineering accumulation slope. Flow patterns and the characteristics of hydrodynamic parameters were investigated by studying runoff velocity, depth, Reynolds number, Froude number, resistance coefficient, flow shear stress, stream power and other relevant parameters and analyzing the spatiotemporal variations of the main hydrodynamic
parameters and their relationships. The study area is located in the Changwu Agricultural Ecological Experimental Station on the Loess Plateau (35°1424.5N, 107°4121.24E). The established plot was 20 m long and 5 m wide, with 0.5 m thickness of soil generated from slope excavation. Weeds and organic residues were cleaned away at beginning. Three slope degrees of 24
°,28° and 32° and 4 flow rates of 30, 40, 50 and 60 L/min, a total of 12 field trials, were designed in this study. Results showed that in the processes of erosion by runoff on the engineering accumulation, dramatic changes of the Reynolds number and resistance coefficient were observed in the upper slope (0-10 m) in 12-30 min after runoff generation. For the Froude number,the dramatic change was found in the lower slope (6-18 m) in 0-18 min after runoff generation. Flow shear stress and stream power abruptly increased in the upper slope (0-10 m) in 12-30 min after runoff generation. In the slope range from 24°to 32°,velocity increased with slope degree and flow rate and their relationship can be expressed by a binary linear equation. The Reynolds number was positively correlated with the resistance coefficient. The Froude number had an exponentially negative correlation with resistance coefficient. Under the experimental conditions of slope degrees and flow rates, the rill erodibility of engineering accumulation was calculated to be 2.63×10-2 s/m for shear stress and 0.1 s2/m2 for stream power. The critical
stream power for rill erosion occurring was 0.8 N/(m·s). A large number of production projects will inevitably lead to a large amount of dregs and thus, a key measure to prevent engineering accumulation should impound runoff timely and effectively. In this paper, we obtained primary location and main periods of slope erosion by the field simulation of erosion on engineering accumulation slope. Meanwhile, fitting the relations of hydrodynamic parameters to soil erosion rate, rill erodibility and critical runoff power can also provide basic parameters for the construction of soil erosion model in engineering accumulation.Limited by the field conditions, the experiment had some shortcomings. For example, selected section was less intensive, time interval for measuring was not precise enough, and the determined values for the spatiotemporal variation of erosion were only
a rough range.

关键词水动力学(Hydrodynamics) 径流(Runof) 侵蚀(Erosion) 时空变化(Spatial And Temporal Variation) 侵蚀预报模型(Erosion Forecasting Model) 工程堆积体(Engineering Accumulation)
DOI10.11975/j.issn.1002-6819.2015.22.012
收录类别EI
语种中文
资助项目“十二五”国家科技支撑计划课题
所属项目编号2011BAD31B01
分类号TU41; S157.1(中图分类号)
引用统计
文献类型期刊论文
条目标识符sbir.nwafu.edu.cn/handle/361005/7745
专题水保所科研产出(EI)_2015年EI
通讯作者王正中
作者单位1.中国科学院水利部西北农林科技大学水土保持研究所,杨凌 712100
2.西北农林科技大学水利与建筑工程学院,杨凌 712100
3.中国科学院大学,北京 100049
4.西北农林科技大学资源环境学院,杨凌 712100
推荐引用方式
GB/T 7714
李永红,牛耀彬,王正中,等. 工程堆积体坡面径流水动力学参数及其相互关系[J]. Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2015,31(22):83-88.
APA 李永红,牛耀彬,王正中,高照良,张少佳,&刘子壮.(2015).工程堆积体坡面径流水动力学参数及其相互关系.Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),31(22),83-88.
MLA 李永红,et al."工程堆积体坡面径流水动力学参数及其相互关系".Transactions of the Chinese Society of Agricultural Engineering(农业工程学报) 31.22(2015):83-88.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
56-----工程堆积体坡面径流水动力学(1249KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李永红]的文章
[牛耀彬]的文章
[王正中]的文章
百度学术
百度学术中相似的文章
[李永红]的文章
[牛耀彬]的文章
[王正中]的文章
必应学术
必应学术中相似的文章
[李永红]的文章
[牛耀彬]的文章
[王正中]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 56-----工程堆积体坡面径流水动力学参数及其相互关系_李永红.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。