第12卷第5期 2014年10月

皇甫川流域 51 年降雨侵蚀力的时空变化

张鹏¹,郑粉莉^{2†},付金霞¹

(1. 西北农林科技大学资源环境学院,712100 陕西杨凌; 2. 中国科学院 水利部 水土保持研究所,712100 陕西杨凌)

摘要:为了详尽研究皇甫川流域降雨侵蚀力变化规律,基于皇甫川流域及周边 15 个雨量站 1954—2004 年日降雨 资料估算降雨侵蚀力 *R* 值,并借助 Mann-Kendall 非参数检验法和 Kriging 空间插值法对流域 *R* 值时空变化特征进行分析。结果表明:1)皇甫川流域降雨侵蚀力 *R* 值与总降雨量和侵蚀性降雨量的时空变化特征大体一致,自西北 向东南逐渐增大,同时 *R* 值等值线自西北向东南逐渐稀疏;2) *R* 值年内分布十分集中,7、8 月 *R* 值之和占到全年的 72.4% 5—9 月 *R* 值占到全年的 96% 以上;3) 15 个站点的 *R* 值变化趋势不同 9 个站点 *R* 值呈增大趋势,其中仅 2 个站点增大趋势显著,而其余 6 个站点的 *R* 值呈减小趋势,其中也仅有 2 个站点减小趋势显著,对整个流域而言,51 年间流域降雨侵蚀力 *R* 值与降雨量和侵蚀性降雨量变化一致,呈现不显著的减小趋势。

关键词: 日降雨量; 降雨侵蚀力; 时空变化; 皇甫川

中图分类号: S157.1; TP79 文献标志码: A 文章编号: 1672-3007(2014) 05-0001-08

Spatial and temporal variation characteristics of rainfall erosivity in Huangfuchuan Watershed over 51 years

Zhang Peng¹, Zheng Fenli², Fu Jinxia¹

(1. College of Resources and Environment Northwest A&F University 712100 , Yangling Shaanxi , China; 2. Institute of Soil and Water Conservation , Chinese Academy of Sciences and Ministry of Water Resources 712100 , Yangling Shaanxi , China)

Abstract: In order to elucidate the variation rule of rainfall erosivity (R) in Huangfuchuan Watershed , R value was estimated from 1954 to 2004 based on the daily rainfall data of 15 precipitation stations in Huangfuchuan Watershed , and the spatial and temporal variation of R was analyzed by Mann Kendall nonparametric tests and Kriging space interpolation method. The results are shown as follows. 1) The characteristics of spatial and temporal variation of R value were generally consistent with those of total rainfall and erosive rainfall; spatially , R value decreased and the contour lines of R value thinned from southeast to northwest. 2) From the temporal point of view , R value was concentrated from May to September , R value during this period accounted for more than 96% of the total annual R value; especially from July and August , R value amounted to 72.4% of the total annual R value. 3) Annual R value at nine stations had an increasing trend , but only at two stations such trend was significant over 51 years. For the whole Huangfuchuan Watershed , the change of R value was consistent with the variation of rainfall and erosive rainfall , and showed an insignificant trend of decreasing over 51 years.

Keywords: daily rainfall; rainfall erosive agent; spatio-temporal variation; Huangfuchuan Watershed

†通信作者简介:郑粉莉(1960—),女,博士,研究员。主要研究方向:土壤侵蚀与水土保持。E-mail:flzh@ms.iswc.ac.cn

收稿日期: 2014-02-09 修回日期: 2014-07-16

项目名称: 水利部公益专项"坡沟系统侵蚀耦合机制之泥沙输移比研究"(201201083-01)

第一作者简介:张鹏(1986—),男,硕士研究生。主要研究方向:气候变化与土壤侵蚀。E-mail:877132432@qq.com

IPCC(International Panel on Climate Change) 第 4 次评估报告指出,过去 50 年(1957—2007 年) 中, 强降水事件持续增多增强,预计随着气温升高,强降 水事件将变得更加普遍^[1]。IPCC 第 5 次评估报告 第一工作组进一步指出 21 世纪末期及以后时期将 全球继续变暖,强降雨事件开始增加^[2]。黄土高原 地区土壤侵蚀异常强烈,且这些侵蚀都由少数几次 强降雨引起^[3]。强降水的变化势必引起降雨侵蚀 力的变化,进而对该地区水土流失等环境问题带来 复杂的影响。

降雨侵蚀力是指降雨引起土壤侵蚀的潜在能 力,它是经典土壤流失方程 USLE^[4](Universal Soil Loss Equation)及改进的通用土壤流失方程 RU-SLE^[5](Revised Universal Soil Loss Equation)的基本 因子。美国农业部颁发的 USLE 或 RUSLE 各期农 业手册都编绘了降雨侵蚀力等值线图,并以图表形 式给出各地理气候区的降雨侵蚀力年内分布特征, 用于指导农业生产实践^[6]。我国 20 世纪 80 年代以 来也开展了很多相关研究,并取得了很多有意义的 成果^[79]。

皇甫川流域位于黄河中游河口镇至龙门区间的 右岸上段,是我国乃至世界罕见的多沙、粗沙和水土 流失强烈区之一,多年(1956—2005 年) 平均输沙量 4 609 万 t^[10]。目前已有学者对皇甫川流域降水、径 流、泥沙变化及降水-径流和水沙关系做了大量研 究,但对流域降雨侵蚀力的系统分析至今尚鲜见报 道。为此,笔者基于皇甫川流域及其周边 15 个雨量 站点 1954—2004 年日降雨资料,采用章文波等修正 的 Richardson 日降雨侵蚀力估算方法^[11] 计算降雨 侵蚀力,按照 Kriging 内插方法^[12] 进行插值并绘制 流域降雨侵蚀力等值线图,并进一步应用 Mann-Kendall 非参数检验方法^[13] 对流域降雨侵蚀力的时 间变化趋势进行分析。以期为皇甫川流域水土流失 预测提供参考,为流域的水土流失治理和水土保持 规划提供科学依据。

1 研究区概况

皇甫川流域位于 E 110.3°~111.2°, N 39.2°~ 39.9°, 是黄河中游右岸的一级支流,发源于内蒙古 自治区达拉特旗南部敖包梁和准格尔旗西北部的点 畔沟一带,在陕西省府谷县巴兔坪汇入黄河,干流长 137 km,流域面积3246 km²。流域处于东南季风影 响范围内,大陆性气候特点突出,位于暖温带与中温 带过渡带、半干旱偏湿地带^[14]。截至2003 年底,流 域植被以天然草地为主,占流域总面积的39%;其 次为农田和人工灌木林,其面积分别占到流域总面 积的22%和19%;流域内也有一定面积无植被和少 植被的裸地分布,其面积达3万3842 hm²,占流域 总面积的10%^[15]。

2 数据与方法

2.1 数据搜集

根据黄河流域水文年鉴和近年来的黄河泥沙公 报搜集了皇甫川流域及其周边 16 个雨量站 1954— 2004 年日降雨资料 ,其中乌拉苏雨量站数据缺测严 重 ,不予选择 ,最终选取了 15 个雨量站 ,从北向南依 次为乌兰沟、后山神庙、刘家塔、德胜西、海子塔、纳 林、奎洞不拉、沙圪堵、西营子、长滩、大路峁、古城、 哈镇、二道河湾、皇甫。对 15 个有效测站中存在数 据缺测的站点,以距离倒数为权重、利用距离最近 3 个测站的数据进行空间插补 ,得到完整降雨数据,如 表 1 所示。

2.2 研究方法

2.2.1 降雨侵蚀力计算 W. H. Wischmeier 等^[16] 提出以降雨动能和最大 30 min 降雨强度的乘积作 为降雨侵蚀力指标。该指标能较全面地表征降雨 量、降雨历时、降雨强度、降雨动能等各项降雨侵蚀 特征,因此得到广泛认同; 然而,其计算公式中要求 的详细次降雨资料不易获得,对此,国内外学者提出 了降雨侵蚀力的各种简易算法^[11,17-8]。这些简易 算法主要是基于日降雨、月降雨和年降雨 3 类资料 建立的。3 类算法中以基于日降雨资料的简易算法 精度最高,众多基于日降雨的侵蚀力模型中又以章 文波等^[6]修正的 Richardson 日降雨侵蚀力估算模型 使用最为普遍。其模型如下:

$$R_{\#\exists} = \alpha \sum_{k=1}^{m} P_k^{\beta}; \qquad (1)$$

$$\alpha = 21.586\beta^{-7.1891}; \tag{2}$$

$$\beta = 0.8363 + \frac{18.144}{P_{d12}} + \frac{24.455}{P_{y12}}$$
(3)

式中: k = 1, 2, 3, …, m, 为某半月内侵蚀性降雨时 间, d; P_k 为半月内第 k 天的日雨量, mm。本研究中 侵蚀性降雨量标准是 12 mm, < 12 mm 以 0 计算。 $R_{*\beta}$ 为第 i 个半月时段的降雨侵蚀力, MJ•mm/ ($hm^2 \cdot h \cdot a$); α 和 β 是模型参数; P_{d12} 为日雨量 ≥ 12 mm 的日平均雨量(即1 a 中≥12 mm 日雨量的总和 与相应时间的比值), mm; P_{y12} 为日雨量 ≥ 12 mm 的 年平均雨量(即1 a 中≥12 mm 日雨量年累加值的

140.1 Situation of daily rainfan data of 15 precipitation stations									
站点	经度	纬度	年限	时间	数据缺失年份				
Stations	Longitude /($^{\circ}$)	Latitude /(°)	Time range	Time/a	Years of data missing				
乌兰沟 Wulangou	110. 68	39.95	1973—2004	32	1990				
后山神庙 Houshanshenmiao	110. 93	39.93	1982—2004	23	1990				
刘家塔 Liujiata	111.07	39.88	1976—2004	29	1990				
德胜西 Deshengxi	110. 58	39.85	1976—2004	29	1990				
海子塔 Haizita	111.12	39.78	1954—2004	51	无缺失 No missing data				
纳林 Nalin	110. 77	39.77	1954—1989	35	无缺失 No missing data				
沙圪堵 Shagedu	110. 90	39.63	1954—2004	51	1990				
奎洞不拉 Kuidongbula	110. 80	39.72	1978—2004	27	1990				
西营子 Xiyingzi	110.72	39.62	1976—2004	29	1990				
长滩 Changtan	111.17	39.60	1954—2004	51	1977、1981、1990				
大路峁 Dalumao	110. 49	39. 53	1966—2004	39	1970				
古城 Gucheng	110. 98	39.53	1976—2004	29	无缺失 No missing data				
哈镇 Hazhen	110. 84	39.44	1966—2004	39	1970				
二道河湾 Erdaohewan	111.03	39. 38	1954—1989	36	无缺失 No missing data				
皇甫 Huangfu	111.08	39.28	1959—2004	46	1975				

表1 15个有效雨量站资料情况

 Tab. 1
 Situation of daily rainfall data of 15 precipitation stations

多年平均) ,mm。利用式(1)~(3) 计算逐年各半月 的降雨侵蚀力 经汇总可得到月降雨侵蚀力、年降雨 侵蚀力、多年平均降雨侵蚀力。

2.2.2 时空变化分析 基于 Arcgis 9.3 采用 Kriging 空间插值法分析流域降雨侵蚀力 *R* 值空间分布 特征;应用 Mann-Kendall 非参数检验法研究流域各 站点降雨侵蚀力 *R* 值变化趋势,并进行显著性检 验;利用 3 年滑动平均方法和线性拟合方法研究整 个流域 *R* 值的变化情况。

3 结果与分析

3.1 皇甫川流域降雨侵蚀力的时间变化

3.1.1 年内变化 1954—2004 年间,皇甫川流域 降雨侵蚀力 R 值年内分布曲线与降雨量和侵蚀性 降雨量的年内分布曲线大体一致均呈单峰型,三者 年内分布主要都集中在 5—9 月,且在 8 月达到最 大,7 月次之(图1)。

图1 皇甫川流域降雨侵蚀力年内分布

Fig. 1 Annual distribution of rainfall erosivity in Huangfuchuan Watershed

8 月、7─8 月以及 5─9 月 3 个时段的降雨量、 侵蚀性降雨量及降雨侵蚀力的具体数值及其占全年 的比例见表 2 ,可以看出 3 个时段降雨侵蚀力占全 年的比例均最高,侵蚀性降雨所占比例略小,总降雨 量所占比例最小。可见,51年内皇甫川流域降雨侵 蚀力年内集中程度高于侵蚀性降雨量,更高于降雨

量;因此,应把皇甫川流域土壤侵蚀预防工作的重点 放在 5—9 月,并把 7—8 月作为重中之重。

表 2	皇甫川流域不同时段的降雨侵蚀力及其所占比例

Tab. 2 Rainfall erosivity and its percentage in different periods

因子			3月 Aug.	7—8	月 Aug. —Jul.	5—9月 May.—Sep.		
Factor	Total value	数值 Value	比例 Percentage/%	数值 Value	比例 Percentage/%	数值 Value	比例 Percentage/%	
降雨量 Rainfall/mm	362.2	99. 9	28.0	195.0	54.6	309.1	86.5	
侵蚀性降雨量 Erosive rainfall/mm	212. 2	69.0	32.5	136.9	64.5	200. 1	94. 2	
降雨侵蚀力 Rainfall erosiv- ity/(MJ•mm/(hm ² •h•a))	1 027. 4	418.0	37.7	802.3	72.4	1 068. 5	96. 5	

3.1.2 年际变化 1954—2004 年,皇甫川流域降 雨量与侵蚀性降雨量年际变化曲线的峰值和谷值出 现年份均吻合,且曲线变化一致,均存在3~5年的 波动周期(图2)。51 年内,全流域降雨量均值为 362.4 mm;1959年出现最大值833.9 mm,为均值的 2.3 倍;1955年出现最小值,仅为95.0 mm,为均值 的0.26 倍。全流域侵蚀性降雨量均值为215.4 mm;同样1959年出现最大值704.6 mm,为均值的 3.3 倍 最小值出现在1965年仅为36.2 mm,为均值 的0.17 倍。这是由于1959年降雨较多且降雨多以 ≥12 mm的形式出现,而1965年降雨较少且多为非 侵蚀性降雨。以纳林站为例,1959年降雨总量 1 275.0 mm,其中侵蚀性降雨量 1 146.3 mm,侵蚀性 降雨次数 33 次,最大降雨量达到 110.0 mm;而 1965 年纳林总降雨量 91.3 mm 仅出现一场侵蚀性降雨, 降雨量仅为 12.4 mm。流域侵蚀性降雨量占年降雨 量的多年平均值为 57%,1959 年所占比例最大,为 85% 左右,1965 年最小,仅为 27%。51 年内,流域 平均 R 值 1 136.1 MJ•mm/(hm²•h•a),1959 年达到 最大值 4 876.3 MJ•mm/(hm²•h•a),为多年均值的 4.3 倍;最小值出现在 1965 年,仅为 97.5 MJ•mm/ (hm²•h•a),是多年均值的 0.086 倍。以上数据表 明,流域降雨侵蚀力 R 值年际变化较降雨量和侵蚀 性降雨量年际变化更加剧烈。

图 2 皇甫川流域降雨侵蚀力年际变化

Fig. 2 Interannual change of rainfall erosivity in Huangfuchuan Watershed

除 1957 年、1971 年及 1972 年外,皇甫川流域 降雨侵蚀力年际变化曲线与降雨量和侵蚀性降雨量 曲线大体一致且均呈波浪形,存在 3~5 年的波动周 期。1957 年和 1972 年总降雨量和侵蚀性降雨量均 达到谷值,而降雨侵蚀力处于上升期。这是由于尽 管这 2 个年份降雨和侵蚀性降雨较少,但出现了次 降雨量较大的降雨。以 1972 年为例,这一年沙圪堵 站侵蚀性降雨量为 149.0 mm,侵蚀性降雨 5 次,次 降雨量 > 20 mm 的降雨 2 次,最大次降雨量高达 86.5 mm; 二道河湾侵蚀性降雨总量 95.8 mm, 侵蚀 性降雨 5 次, 次降雨量 > 20 mm 的降雨 1 次, 最大次 降雨量达 42.0 mm; 长滩侵蚀性降雨总量 74.1 mm, 侵蚀性降雨 4 次, 次降雨量 > 20 mm 的降雨 1 次, 最 大次降雨量达 32.7 mm; 1971 年流域总雨量和侵蚀 性降雨处于下降阶段, 而降雨侵蚀力处于低谷, 是由 于这一年侵蚀性降雨分布较均匀, 很少出现次降雨 较大降雨。1971 年, 沙圪堵站侵蚀性降雨量 184.8 mm, 侵蚀性降雨 10 次, 次降雨量 > 20 mm 的降雨 2 次,最大次降雨量为43.1 mm; 二道河湾侵蚀性降雨 总量191.1 mm,侵蚀性降雨9次,次降雨量>20 mm 的降雨4次,最大次降雨量为37.0 mm; 长滩侵蚀性 降雨总量182.6 mm,侵蚀性降雨9次,次降雨量> 20 mm的降雨达到6次,最大次降雨量仅为26.0 mm。之所以有些年份降雨侵蚀力年际变化曲线与 降雨量和侵蚀性降雨量曲线不同,是因为降雨侵蚀 力不仅与降雨量有关,很大程度上也受到降雨强度 的影响。

降雨侵蚀力以及降雨量和侵蚀性降雨量年际变 化曲线均存在3~5年波动周期,因此,选取3年周 期对三者作滑动处理(图 3)。可以看出:降雨侵蚀 力 3 年滑动平均曲线与降雨量和侵蚀性降雨量 3 年 滑动平均曲线一致,在 1962 年、1970 年及 1980 年 附近取得高值点。在 1965 年、1988 年及 2000 年附 近取得低值点,据此可以将 51 年研究期分为 5 个阶 段:1954—1962 年为快速上升期,1962—1965 年为 快速下降期,1965—1980 年为缓慢上升期,1980— 2000 年为缓慢下降期 2000—2004 年又是一个上升 期。长期来看,降雨量、侵蚀性降雨量以及降雨侵蚀 力 R 值三者趋均表现为不明显下降趋势。

3.1.3 年代变化 以1954—1959年数据为基准计 算不同年代降雨量、侵蚀性降雨量以及降雨侵蚀力 *R*值的变化率。从表3可以看出,1960—2004年间 各年代降雨量、侵蚀性降雨量以及*R*值的变化率均 为负值相对于基准期均减小,其中20世纪90年代 三者变化率的绝对值均为最大,三者都取得最小值。 就降雨量而言,1954—1959年(基准期)的数值最 大60年代到90年代数值呈减小趋势,到21世纪 2000—2004 年有所回升,而且高于前面4个年代, 但未超越1954—1959 年(基准期)。侵蚀性降雨年 代分布特征与降雨量分布特征一致,但 R 值年代分 布特征与二者略有不同。虽然其最大值、最小值也 分别出现在1954—1959 年(基准期)和20世纪90 年代,但2000—2004 年 R 值小于70年代 R 值。这是 由于70年代出现强降雨较多 在侵蚀性降雨量相同的 情况下 降雨越集中 R 值越大。

表3	1954—2004 年皇甫川流域降雨侵蚀刀年代变化	

Tab. 3	Decadal	variation	of rainfall	erosivity	from	1954	to 2004	in	Huangfuchuan W	atershed
--------	---------	-----------	-------------	-----------	------	------	---------	----	----------------	----------

因子 Factor	1954—1959	1960—1969	1970—1979	1980—1989	1990—1999	2000—2004
降雨量 Rainfall/mm	401.5	361.1	376. 2	354.1	323.3	382.4
变化率 Change rate/%	0	- 10. 1	-6.3	-11.8	- 19. 5	-4.8
 侵蚀性降雨量 Erosive rainfall/mm	282.3	205.6	217.8	204.0	186. 1	218.4
变化率 Change rate/%	0	-27.2	- 22. 8	-27.7	- 34. 1	-22.6
 降雨侵蚀力 Rainfall erosivity/(MJ•mm•hm ⁻² •h ⁻¹ •a ⁻¹)	1 448. 3	1 018. 5	1 272. 3	1 037. 5	907.0	1 193. 3
变化率 Change rate/%	0	- 29. 7	- 12. 2	-28.4	- 37. 4	- 17. 6

3.2 皇甫川流域降雨侵蚀力的空间变化

3.2.1 空间分布 在皇甫川流域 降雨量自西北向 东南逐渐增大(图4),这与张荣刚等^[19]的研究结果 一致。降雨低值中心出现在后山神庙,其多年平均 降雨量为330 mm 左右;高值中心出现在皇甫站和 沙圪堵站,多年降雨量均值分别达到410和385 mm。流域中部降雨量等值线稀疏相邻区域降雨量 差异较小 较大范围内降雨量分布在365~385 mm 之间; 流域北部和南部等值线相对密集 相邻区域间 降雨量差异较大。根据流域降雨特征,将流域划分 为3个雨量区: 海子塔和大路峁西北部的西北雨量 区,降雨量在330~365 mm 之间; 海子塔、大路峁以 及二道河湾之间的中部雨量区,降雨量在365~385 mm 之间; 二道河湾东南部的东南雨量区,降雨量在 385~415 mm 之间。

图4 皇甫川流域降雨量等值线

Fig. 4 Rainfall contour lines of Huangfuchuan Watershed

皇甫川流域降雨侵蚀力 *R* 值空间分布特征与 流域降雨量分布相似,同样自西北向东南逐渐增大 (图5),其低值中心出现在乌兰沟站,*R* 值仅为 731.6 MJ•mm/(hm^2 •h•a), 2 个高值中心分别出现 在长滩站和沙圪堵站,*R* 值分别为1 274.4 和 1 298.8MJ•mm/(hm^2 •h•a)。*R* 值等值线自西北向 东南逐渐变得稀疏,越到东南部*R* 值差异越小,占 整个流域面积一半的东南地区*R* 值差异不到 100 MJ•mm/(hm^2 •h•a)。据此将流域划分为2 个侵蚀 区: 刘家塔和西营子西北部的西北侵蚀区,*R* 值分布 在 820~1140 MJ•mm/(hm^2 •h•a)之间; 刘家塔和西 营子东南部的东南侵蚀区,*R* 值分布在1140~1240 MJ•mm/(hm^2 •h•a)之间。

3.2.2 空间变化 1954—2004 年,流域各站点降 雨侵蚀力 *R* 均值分布范围为 731.6~1 298.8 MJ• mm/(hm²•h•a) 在沙圪堵站取得最大值,乌兰沟站 取得最小值; 各站点多年降雨侵蚀力 *R* 的最大值分 布在 2 539.1~9 535.7 MJ·mm/(hm²·h·a) 之间(表 4) ,最大值于 1965 年在纳林站取得; 各站多年降雨 侵蚀力最小值分布在 14.9~91.8 MJ·mm/(hm²·h· a) 之间 ,最小值于 1999 年在后山神庙站取得。各站 点 *R* 值变异系数在 0.57~1.23 之间 ,最大变异系数 出现在纳林站 ,属强变异 ,其余 14 个站点 *R* 值变异 系数均在 0.57~1 之间 ,属中等程度变异。

整个流域降雨侵蚀力 R 值变异系数为 0.65 ,呈 中等强度变异,降雨侵蚀力 R 的 Mann-Kendall 检验 值 Z 为 -0.19 ,呈不明显的减小趋势。流域内各站 点 R 值变化不一致,后山神庙、德西胜、纳林、古城、 哈镇、皇甫 6 个站点降雨侵蚀力 Z 值为负,其 R 值 呈减小趋势,其中仅后山神庙、德胜西 2 个站点 Z值通过了 95% 置信度检验,其减小趋势显著,其余 9 个 站点Z值均为正,其R值呈增大趋势,但仅海子

图 5 皇甫川流域降雨侵蚀力等值线图

Tab. 4 Yearly rainfall erosivity variation tendency of each station in Huangfuchuan Watershed

 站点	降雨侵蚀力 Rai	nfall erosivity/(MJ•mm•h	变异系数	7		
Stations	平均 Average	最大 Maximum	最小 Minimum	Coefficient of variation	L	
乌兰沟 Wulangou	731.6	3 474. 9	91.8	0. 91	2. 16*	
后山神庙 Houshansenmiao	953.2	5 643.3	14.9	0. 92	-3.67*	
刘家塔 Liujiata	1 235. 1	6 525. 7	64.4	0. 78	0.08	
德胜西 Deshengxi	1 027.0	4 861. 5	76.6	0.91	-2.49*	
海子塔 Haizita	1 042.6	2 539. 1	15.0	0. 57	1.98^{*}	
纳林 Nalin	1 148.2	9 535.7	16.7	1.23	-0.90	
奎洞不拉 Kuidongbula	1 109.9	3 935. 4	77.8	0. 64	0.10	
沙圪堵 Shagedu	1 298.8	8 369. 1	39.2	0. 92	0.37	
西营子 Xiyingzi	1 114. 7	4 329.1	75.7	0.65	0.18	
长滩 Changtan	1 274. 5	7 657.5	49.6	0. 89	0.57	
大路峁 DaLumao	1 245.5	4 771.9	75.5	0.75	1.41	
古城 Gucheng	1 174.2	5 629. 5	67.9	0. 79	-0.11	
哈镇 Hazhen	1 061.0	5 059. 8	72.8	0. 83	-0.31	
二道河湾 Erdaohewan	1 150. 1	4 746. 2	51.7	0.72	0.01	
皇甫 Huangfu	1 276. 2	4 109.1	73.8	0.75	-0.67	
全流域 Entire Watershed	1 136. 1	4 876. 3	97.6	0. 65	-0.19	

注: Z 为降雨侵蚀力 R 的 Mann-Kendall 检验值 ,* 代表通过 95% 置信度检验。Note: Z is the test value of rainfall erosivity in Mann-Kendall , and * shows the Z passes the confidence test with 95% level of significance.

塔、乌兰沟 2 个站点 Z 值通过了 95% 置信度检验, 其增大趋势显著。R 值变化由降雨量和降雨强度共同作用引起,引起皇甫川流域各站点 R 值变化的主 导因素各有不同,下面以变化趋势明显的 4 个站点 为例予以说明。 51 年间,后山神庙、德胜西两站降雨侵蚀力 *R* 值显著减小主要由降雨量变化引起,期间后山神庙 降雨量以4.52 mm/a 的幅度减小,其侵蚀性降雨也 以3.97 mm/a 的幅度减小;德胜西站降雨量以2.94 mm/a 的幅度减小,其侵蚀性降雨以2.92 mm/a 的 幅度减小。海子塔站 *R* 值显著性增大主要是由降雨量及侵蚀性降雨量增大引起,期间海子塔站降雨量以 3.20 mm/a 的幅度增加,其侵蚀性降雨量也以 1.78 mm/a 的幅度增加; 乌兰沟站降雨侵蚀力的增大则主要由降雨强度的变化引起,该站降雨量和侵蚀性降雨量都呈减小趋势,但 > 20 mm 和 > 50 mm的降雨场次明显增加,侵蚀性降雨趋于集中,降雨强度不断增大。

4 结论

1) 1954—2004 年,皇甫川流域降雨侵蚀力 *R* 值 与降雨量和侵蚀性降雨量的年内、年际和年代变化 特征大体一致。流域 *R* 值年内分布十分集中,其集 中程度高于降雨量和侵蚀性降雨量,7 月 *R* 值占到 全年的 37% 以上,7—8 月 *R* 值之和占到全年的 72.4% 5—9 月 *R* 值之和占到全年的96% 以上。流 域 *R* 值多年均值为 1 136.1 MJ•mm/(hm²•h•a), 1965 年 *R* 值最小仅为 97.5 MJ•mm/(hm²•h•a), 1959 年最大达到 4 876.3 MJ•mm/(hm²•h•a), *R* 值 年际变化曲线呈波浪形,存在 3 ~5 年的波动周期, 在整个研究期内呈不明显下降趋势。

2) 皇甫川流域降雨侵蚀力 R 值空间分布与降雨量空间分布相似 R 值自西北向东南逐渐增大,低值中心出现在乌兰沟,仅为 731.6 MJ•mm/(hm²•h•a)。高值中心出现在长滩和沙圪堵,分别为 1 274.4 和 1 298.8 MJ•mm/(hm²•h•a)。R 值等值线自西北向东南逐渐稀疏,越到东南部 R 值差异越小。

3) 1954—2004 年,皇甫川流域及附近 15 个站 点中:后山神庙、德西胜、纳林、古城、哈镇和皇甫 6 个站点降雨侵蚀力呈减小趋势,其中后山神庙和德 胜西 2 个站点 *R* 值减小趋势显著; 乌兰沟、刘家塔、 海子塔、奎洞不拉、沙圪堵、西营子、长滩、大路峁和 二道河湾 9 个站点 *R* 值均呈增大趋势,其中仅海子 塔、乌兰沟 2 个站点增大趋势显著。

5 参考文献

- IPCC. Climate change 2007: impacts, adaptation, and vulnerability [M]. Cambridge, UK and New York, USA: Cambridge University Press, 2007: 84
- [2] IPCC. Climate change 2013: The Natural Science Basis
 [M]. Cambridge, UK and New York, USA: Cambridge University Press, 2014: 105
- [3] 周佩华,王占礼,黄土高原土壤侵蚀暴雨的研究[J].
 水土保持学报,1992 6(3):1-5
- [4] Wischmeier W H , Smith D D. Predicting rainfall erosion

losses: A guide to conservation planning [M]. Washing-ton, DC: USDA-ARS, 1978: 34-38

- [5] Renard K G , Foster G R , Weesies G A , et al. Predicting soil Erosion By Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE)
 [M]. Washington , DC: USDA-AR , 1997: 25-31
- [6] 章文波,谢云,刘宝元.中国降雨侵蚀力空间变化特征 [J].山地学报 2003 21(1):33-40
- [7] 章文波.北方农牧交错带降雨侵蚀力的时空分布[J].自然科学进展 2003 ,13(6):651-654
- [8] 穆兴民,戴海伦,高鹏,等.陕北黄土高原降雨侵蚀力 时空变化研究[J].干旱区资源与环境,2010,24(3): 37-43
- [9] 刘建祥 李智广 张晓萍 等. 最近 30 年河龙区间降雨 侵蚀力的时空演变特征 [J]. 中国水土保持科学, 2013,11(2):6-13
- [10] 王小军 蔡焕杰,张鑫,等.皇甫川流域水沙变化特点 及其趋势分析[J].水土保持研究,2009,16(1):222-226
- [11] Richardson C W. Estimation of erosion index from daily rainfall amount [J]. Trans ASAE, 1983, 26(1): 153– 157
- [12] 万龙,马芹,张建军,等.黄土高原降雨量空间插值精度比较: KRIGIN 与 TPS 法 [J].中国水土保持科学, 2011,9(3):79-87
- [13] 康淑媛,张勃,柳景峰,等.基于 Mann-Kendall 法的张 掖市降水量时空分布规律分析[J].资源科学,2009, 31(3):501-508
- [14] 王随继,闫云霞,颜明,等.皇甫川流域降水和人类活动对径流量变化的贡献率分析:累积量斜率变化率比较方法的提出及应用[J].地理学报,2012,67(3): 388-397
- [15] 包铁军. 皇甫川流域植被生态用水分析 [D]. 呼和浩 特: 内蒙古大学 2005: 1-78
- [16] Wischmeier W H, Smith D D. Rainfall energy and its relationship to soil loss [J]. Transactions of American Geophysical Union, 1958, 39(3): 285-291
- [17] ト兆宏,董勤瑞,周伏建,等.降雨侵蚀力因子算法的 初步研究[J].土壤学报,1992,29(4):408-417
- [18] Lo A , EI-Swaify S A , Dangler E W , et al. Effectiveness of EI30 as erosivity index in Hawaii Soil Erosion and Conservation [M]. Ankeny , USA: Soil Conservation society of America , 1985: 384-392
- [19] 张荣刚 焦敏辉 张勇. 皇甫川流域降水量时空变化特 征分析[J]. 人民黄河 2011 33(2):41-42

(责任编辑:程 云)