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A B S T R A C T

As indicators of soil degradation vulnerability, soil aggregate stability indices play important roles in re-
presenting soil resistance to water erosion, and their spatial variability provides both agriculturally and en-
vironmentally important information. The spatial variability of aggregate stability indices is synergistically af-
fected by the soil, topography, vegetation, and human factors. To understand the formation processes of
aggregates by a spatial analysis, a prediction model combining soil properties with natural and human factors
should be developed to improve the accuracy of the spatial interpolation of soil aggregate stability indices. In
this study, the mean weight-diameter (MWD, mm), water-stable aggregates greater than 0.25mm (WSA>0.25,
%) and soil erodibility factor (K factor) were satisfactorily predicted by multiple stepwise regression (MSR) and
regression kriging (RK) based on soil properties and natural and human factors (0.436≤ R2 ≤0.578). In ad-
dition, spatial variability and prediction modeling of aggregate stability indices were highly dependent on the
quantification of land use type and landscape structure (the spatial structure of landscape elements and the
connections between the different ecosystem types or landscape elements). It has received little attention in
previous studies. The exclusion of all soil variables did not affect the predictions of K factor, and for MWD and
WSA>0.25, even though the performance of the models may appear relatively low, but also significant (0.183≤
R2 ≤0.312), indicating that the prediction of the spatial distributions of aggregate stability indices with easily
available auxiliary data is practicable and effective. Residual maps showed that high residuals are distributed
around built-up land (transportation land and residential land) or farmland, indicating that anthropogenic
factors increase the uncertainty of the models. The spatial distribution maps of MWD, WSA>0.25 and K factor
can be useful in landscape planning and decision making to minimize water erosion risks.

1. Introduction

Soil aggregate stability indices are indicators of soil structure and
play a key role in assessing soil vulnerability to degradation. The mean
weight-diameter (MWD, mm), water-stable aggregates greater than
0.25mm (WSA>0.25, %) and soil erodibility factor (K factor) are often
used to represent the soil aggregate stability (Veihe, 2002). Their spa-
tial variability depends on the interactions of natural ecological pro-
cesses and intensive human activities, including soil properties, land
use type and landscape structure, topography, hydrothermal condi-
tions, and vegetation cover. Landscape structure represents the spatial
structure of landscape elements and the connections between the

different ecosystem types or landscape elements. Data on land use type
and landscape structure, topography, hydrothermal conditions, and
vegetation cover can be obtained in a more economical way from re-
mote sensing data or existing databases. Hence, they are widely used as
auxiliary data to accurately predict the spatial distribution of soil
properties (Ou et al., 2017). It is of great interest to know the spatial
distribution of MWD, WSA>0.25 and K factor for various purposes such
as the evaluation of soil degradation vulnerability. Analysis of the re-
lationship between the spatial heterogeneity of these aggregate stability
indices and natural and human factors may facilitate a better under-
standing of the reasons for the spatial variability of these indices. Our
previous research revealed that spatial analysis showed great potential
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to be applied in the analysis of the influencing factors of soil aggregate
stability indices. Moreover, the strong spatial variability of soil ag-
gregate stability parameters were confirmed (Ye et al., 2018). Hence, it
is necessary to further explore the impacts of potential influencing
factors (including soil properties, natural factors, and human factors)
on MWD, WSA>0.25 and K factor.

Prediction methods have been used to interpolate aggregate stabi-
lity indices from sampling sites to continuous distributions. These
methods include a variety of statistical regression methods (Besalatpour
et al., 2013; Jaksik et al., 2015) and geostatistical methods (Annabi
et al., 2017; Mummey et al., 2010). Multiple linear regression (MLR),
regression kriging (RK), and co-kriging (CK) are typical soil-landscape
modeling methods and widely used to map soil properties by combining
soil property data with auxiliary environmental variables (Mummey
et al., 2010; Ou et al., 2017). A number of researchers used MLR for
mapping soil properties due to its simplicity and efficiency (Grunwald,
2009; Zhao et al., 2017). Regression kriging, one of the most ex-
tensively accepted and used interpolation methods that combines the
auxiliary variables, has received increasing attention in the mapping of
soil properties (Hengl et al., 2004). Regression kriging includes a
multivariate linear model between a soil variable and environmental
variables and the residual kriging of the soil variable. Co-kriging is
developed to improve the interpolation of a variable by using the in-
formation of other spatially correlated variables in spatial interpolation
process. A number of studies have confirmed the superiority of RK and
CK in comparison with many other mapping methods (Hengl et al.,
2004; Li et al., 2013; Mulder et al., 2011). Besalatpour et al. (2013)
used different mathematical methods to predict the MWD based only on
six specific variables, which may directly or indirectly affect the ag-
gregate stability. Jaksik et al. (2015) employed multiple linear regres-
sions (MLR) to predict aggregate stability indices based on the topo-
graphical and soil data, and Annabi et al. (2017) only used soil property
data for predicting aggregate stability indices. Although their results
provided satisfactory predictions, they ignored the effects of other im-
portant environmental factors, such as landscape structure, tempera-
ture difference between seasons, aridity, and vegetation information,
which are the key factors in the formation and stabilization of ag-
gregates (Amezketa, 1999).

Soil aggregate stability is largely determined by the land use type
and landscape structure, temperature and humidity (Amezketa, 1999).
In previous studies, land use has often been regarded as a categorical
variable and has been rarely taken into consideration. In the process of
modeling, temperature and humidity are also rarely taken into account
even though these two variables are quantitative indicators. From the
landscape ecology perspective, the landscape metrics can be used as an
indicator of landscape structure. Remote sensing data can provide the
information of temperature and humidity in a relatively efficient way.
The commonly used indices are land surface temperature (LST) and
temperature-vegetation dryness index (TVDI) (Ma et al., 2017; Sandholt
et al., 2002). Therefore, it is expected that the introduction of landscape
metrics, LST and TVDI into the prediction will facilitate a better un-
derstanding of the relationships of landscape structure and hydro-
thermal conditions with soil aggregate stability.

We previously explored the spatial structures of aggregate stability
indices by semivariograms, local indicators of spatial association, or-
dinary kriging, and inverse distance weighted in Zhifanggou catchment,
a typical hilly gullied loess landscape of LPC, and manifested the strong
spatial variability structure of soil aggregate stability (Ye et al., 2018).
To understand the formation processes of aggregates clearly, a predic-
tion methodology that integrates the soil properties and natural and
human factors should be developed to explore the spatial correlations
between soil aggregate stability and the potential influencing factors.
Pearson's correlation analysis and canonical correspondence analysis
(CCA) method were employed to explore the relationships between soil
aggregate stability indices and soil properties, landscape character-
istics, topography, vegetation cover, and hydrothermal conditions.

Spatial cross-correlation was further used to analyze their spatial cor-
relations, which can enable us to understand the major controls on the
formation processes of aggregates within ecosystems deeply (Jia et al.,
2011). Multiple linear regression and RK were used to interpolate the
spatial distribution of these indices in detail. This study aims to (i) in-
vestigate the correlations of the composition and spatial configurations
(landscape metrics) of land cover with the MWD, WSA>0.25, and K
factor; (ii) examine the relationships of MWD, WSA>0.25 and K factor
with terrain, vegetation, temperature and aridity indices; and (iii) de-
velop an optimum combination of the auxiliary variables to optimize
the spatial prediction of MWD, WSA>0.25, and K factor.

2. Materials and methods

2.1. Study area and soil sampling

The representativeness, geographical location, natural conditions,
and soil of Zhifanggou catchment were described in detail in the first
paper in this study (Ye et al., 2018). Before the implementation of the
“Grain-for-Green” policy, Zhifanggou catchment had been suffering
from severe soil erosion. After the implementation of afforestation, the
soil erosion obviously decreased. As shown in Figure S1a, the dis-
tribution of 5, 100 t/(km2·a) is the most extensive. The erosion is mainly
of moderate grade, followed by strong, very strong and acute erosion
(Figure S1b). The data of the erosion modulus and erosion grades were
developed by the Loess Plateau Data Center, National Earth System
Science Data Sharing Infrastructure, National Science & Technology
Infrastructure of China (http://loess.geodata.cn).

A stratified random sampling irregular grid was designed based on
the information of terrain condition, land-use type, and accessibility. Its
detail refers to our previous study (Ye et al., 2018). Then, total of 70
sampling sites were selected to represent the major landscape units. The
soil samples were collected with aluminum containers and cutting rings
(undisturbed soil) and with ziplock bags (disturbed soil) from 0 to
10 cm and 10–20 cm soil layers, respectively. Three disturbed soil
samples within a radius of 5m were collected and mixed. Then, ap-
proximately 1 kg of soil was stored in ziplock bags by the quartering
method for physical and chemical analyses. In a similar procedure,
another set of undisturbed samples were also taken. A total of 140
disturbed soil samples were collected from two soil layers in 70 sam-
pling sites (70 sites × 2 layers= 140 samples). Additionally, 700 un-
disturbed soil samples were taken (70 sites × 2 layers × 5 sam-
ples= 700 samples). The soil samples were subsequently air dried at
room temperature under well-ventilated conditions.

2.2. Laboratory analysis and calculations

The undisturbed soil samples in the cutting ring (5 cm in diameter;
100 cm3 in volume) were used to measure the soil bulk density (BD, g/
cm3) by the oven-drying method (Chen et al., 2014). Total porosity (TP,
%) was calculated based on the BD and particle density values (Barik
et al., 2014). The undisturbed soil samples in the aluminum containers
were used to measure the aggregate stability by the wet sieving method
(Kemper and Rosenau, 1986). Then, MWD, WSA>0.25, geometric mean
diameter (GMD), and K factor were calculated as follows (Li et al.,
2016; Ye et al., 2018):
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where x̄i is the mean diameter of size class i (mm), and wi is the per-
centage of aggregates in size class i.

The disturbed soil samples were collected for physical and chemical
analyses. Our primary goal was to study the aggregate stability of

surface and subsurface soils. Therefore, the soil properties significantly
related to the soil aggregate stability in the Loess Plateau were selected
for the study, mainly including soil organic carbon (SOC), calcium
carbonate (CaCO3), dithionite-extractable iron (Fed), oxalate-ex-
tractable iron (Feo), pH, and soil textural measures (Algayer et al.,
2014; An et al., 2013; Regelink et al., 2015; Wei et al., 2014). The
disturbed soil samples were air-dried and passed through 2-mm, 0.25-
mm, and 0.15-mm plastic sieves. SOC was determined by the Walkley-

Table 1
Descriptive statistics of soil properties and auxiliary data.

Parameters Min Max Mean SD CV (%)

0–10
cm

10–20
cm

0–10
cm

10–20
cm

0–10
cm

10–20
cm

0–10
cm

10–20
cm

0–10
cm

10–20
cm

TP (%) 46.82 46.33 62.59 61.30 56.74 54.32 3.64 3.14 6.42 5.77
pH (H2O) 8.12 8.02 8.52 8.63 8.36 8.40 0.11 0.10 1.26 1.16
SOC (g/kg) 2.58 1.88 22.32 16.32 5.76 4.22 3.46 2.16 60.12 51.27
CaCO3 (g/kg) 5.33 5.83 13.83 15.60 10.26 11.17 1.48 1.51 14.38 13.49
Fed (g/kg) 6.14 6.53 10.46 10.32 8.61 8.70 0.83 0.78 9.66 8.94
Feo (g/kg) 0.20 0.21 0.98 0.98 0.38 0.37 0.12 0.12 31.67 33.31
Clay (%) 9.64 9.58 24.91 26.52 14.45 16.40 2.79 3.67 19.34 22.36
Silt (%) 55.35 56.98 69.20 72.86 61.97 62.52 3.13 3.30 5.06 5.28
Sand (%) 5.90 6.32 34.37 33.43 23.58 21.08 5.45 5.92 23.13 28.07
MWD (mm) 0.21 0.26 2.82 3.23 1.35 1.38 0.63 0.69 46.72 50.32
WSA>0.25 (%) 16.41 14.96 76.61 83.92 44.59 43.15 13.64 14.51 30.59 33.64
K factor 0.0159 0.0156 0.0425 0.0484 0.0223 0.0220 0.0062 0.0072 27.71 32.85
LST (℃) 16.21 25.49 20.32 2.37 11.65
ΔLST (℃) 27.40 43.40 35.35 3.46 9.79
NDVI −0.02 0.17 0.10 0.04 37.42
TVDI 0.19 0.99 0.54 0.22 40.53
H (m) 1043.10 1407.50 1235.11 94.18 7.62
Slope (°) 0 30 14.35 9.20 64.09
Aspect (°) 9 352 162.13 109.07 67.27
TWI 1.55 9.00 3.89 1.19 30.74

Min: minimum; Max: maximum; Std. dev: standard deviation; CV: coefficient of variation.
TP: total porosity; SOC: soil organic carbon; CaCO3: calcium carbonate; Fed: dithionite-extractable iron: poorly ordered and crystalline forms of iron; Feo: oxalate-
extractable iron: poorly ordered forms of iron; Clay: clay content; Silt: silt content; Sand: sand content; MWD: mean weight-diameter; WSA>0.25: percentage of water-
stable aggregates greater than 0.25 mm; K factor: soil erodibility factor. LST: land surface temperature; ΔLST: the land surface temperature difference between
seasons; NDVI: normalized difference vegetation index; TVDI: temperature vegetation dryness index; H: elevation; TWI: topographic wetness index.

Fig. 1. Heat map of the correlation matrix for soil physicochemical properties in soil samples (n= 70) based on Pearson's correlation coefficients: (a) 0–10 cm; (b)
10–20 cm. *, significant correlations at P < 0.05, **, significant correlations at P < 0.01. TP: total porosity; SOC: soil organic carbon; CaCO3: calcium carbonate;
Fed: dithionite-extractable iron; Feo: oxalate-extractable iron; Clay: clay content; Silt: silt content; Sand: sand content; MWD: mean weight-diameter; WSA>0.25:
percentage of water-stable aggregates greater than 0.25mm; K factor: soil erodibility factor.
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Black method (Nelson and Sommers, 1996). The HCl method was used
to determine the calcium carbonate content (Horváth et al., 2005). Fed
and Feo were extracted using dithionite-citrate-bicarbonate (DCB) so-
lution (Mehra and Jackson, 1958) and oxalic acid/ammonium oxalate
at pH 3.0 (McKeague and Day, 1966), respectively. Soil pH was mea-
sured in a soil-distilled water (1:2.5 soil: H2O) suspension with a pH
meter. The soil particle-size distribution was measured using a Mas-
tersizer 2000 (Malvern Instruments, Malvern, England).

2.3. Acquisition of auxiliary data

2.3.1. Landscape analysis
It has been demonstrated that soil erosion and soil structure are

related to the land use type and landscape structure (Shi et al., 2013). In
the past few decades, a large number of landscape metrics have been
developed and widely used in characterizing landscape patterns and
correlating landscape structures with ecological processes (Liu et al.,
2016; McGarigal and Marks, 1995; Turner, 2005). The landscape me-
trics of cropland in each subplot were applied to quantify the intensity
of human activities (Liu et al., 2013). Therefore, we selected thirteen
commonly used landscape metrics to associate the soil structure with
landscape patterns first (Huang et al., 2013; Ouyang et al., 2010). Then,
according to the results of Shi et al. (2013), six landscape metrics clo-
sely related to soil erosion were finally selected. These landscape me-
trics describe the landscape structure and the complexity of this
structure, such as size, shape, distance, connectivity, and diversity of
land patches (Botequilha Leitão and Ahern, 2002). They can help us to

calculate the landscape composition and configuration, which are
characteristics of landscape structure. Landscape metrics could also
provide important information about the effects of ecological processes
and human activities on the landscape (McGarigal et al., 2002). The
landscape metrics are presented in Table S1, and the detailed calcula-
tion and description were presented by McGarigal et al. (2002).

An aerial photo with 40 cm resolution was used in the landscape
analysis (Figure S2). It provided detailed information of the impervious
surface area (ISA, including roads and residential areas), grassland,
woodland, and farmland. The data were provided by the Loess Plateau
Data Center, National Earth System Science Data Sharing
Infrastructure, National Science & Technology Infrastructure of China
(http://loess.geodata.cn). The landscape metrics were computed at
both the class-level and landscape-level to represent the landscape
composition and spatial configuration (McGarigal and Marks, 1995). By
combining the semivariogram results of Ye et al. (2018), we ad-
ditionally generated a 250×250m sample plot around the sampling
sites (Hou et al., 2015). The landscape metrics of each plot were
computed by the software FRAGSTATS 4.1 (McGarigal et al., 2012).
Pearson's correlation analysis was used to explore the relation between
landscape metrics and the aggregate stability. The significance of each
correlation coefficient was confirmed using a two-tailed Student's t-test.

2.3.2. Remote sensing data and applications
Bands and indices derived from remote sensing data have been

widely used in the prediction of soil properties (Boettinger et al., 2008;
Mirzaee et al., 2016). Given that the soil properties are relatively

Table 2
Pearson's correlation coefficients between MWD, WSA>0.25 and K factor and landscape metrics and environmental factor.

Category Factors MWD (mm) WSA>0.25 (%) K factor

0–10 cm 10–20 cm 0–10 cm 10–20 cm 0–10 cm 10–20 cm

Class level (Residential) PLAND −.027 .111 .115 .168 .157 −.017
LPI −.138 .062 −.035 .087 .223 −.030
ED .072 .091 .202 .162 .030 −.003
AI −.206 −.030 −.104 −.014 .308* .113

Class level (Farmland) PLAND −.384* −.282 −.319* −.187 .598** .533**

LPI −.455** −.355* −.380* −.251 .655** .590**

ED −.091 −.089 −.131 −.090 .188 .207
AI −.209 −.236 −.203 −.204 .243 .229

Class level (Woodland) PLAND .139 −.001 .082 −.099 −.330** −.252*

LPI .045 −.058 .017 −.141 −.195 −.213
ED .285* .120 .280* .136 −.343** −.225
AI −.074 −.116 −.109 −.187 −.049 −.083

Class level (Grassland) PLAND .228 .248* .161 .232 −.370** −.315**

LPI .244* .286* .190 .281* −.328** −.287*

ED .227 .188 .183 .198 −.398** −.272*

AI .055 .195 .087 .200 −.191 −.245*

Landscape level LPI −.133 −.176 −.128 −.214 .162 .126
ED .241* .151 .272* .198 −.234 −.151
CONTAG −.084 −.148 −.126 −.199 .083 .110
SHDI −.019 .097 .105 .180 .190 .025
AI −.227 −.124 −.251* −.168 .217 .121

Environmental factors LST .008 −.066 −.105 −.144 −.131 −.039
ΔLST −.007 .031 .105 .141 .322** .346**

NDVI .311** .182 .285* .182 −.319** −.281*

TVDI .037 −.013 −.074 −.094 −.193 −.099
B4/B3 −.315** −.245* −.268* −.207 .285* .308**

B6/B7 .293* .215 .279* .203 −.293* −.319**

TWI −.112 −.136 −.065 −.157 .219 .250*

Elevation −.200 −.090 −.363** −.287* −.097 −.171
Slope .323** .364** .249* .262* −.482** −.465**

Aspect −.173 −.023 −.155 .134 .054 .117

PLAND: percentage of landscape area; LPI: largest patch index; ED: edge density; AI: aggregation index; CONTAG: contagion; SHDI: shannon’s diversity index. LST:
land surface temperature; ΔLST: the land surface temperature difference between seasons; NDVI: normalized difference vegetation index; TVDI: temperature ve-
getation dryness index; Bi is the reflectance of Band i; TWI: topographic wetness index. MWD: mean weight-diameter; WSA>0.25: percentage of water-stable
aggregates greater than 0.25mm; K factor: soil erodibility factor.
* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).
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constant in a short period of time (Shi et al., 2013) and the effects of the
environmental factors on soil cannot be represented by one image (Yan,
2015), nearly one year of remote sensing data were selected to better
explore the effects of environmental variables on soil. They were ex-
tracted from thirteen cloud-free Landsat 8 images (Figure S3). The
normalized difference vegetation index (NDVI) was used to represent
the vegetation cover (Wang et al., 2017). NDVI was derived by the
reflectance ratio from the near-infrared band (NIR) and red band (R) as:

= −
+

NIR R
NIR R

NDVI ( )
( ) (5)

The areas with NDVI larger than 0.1 were defined as vegetated areas
(Wang et al., 2017) (Figure S4).

The land surface temperature reflects the temperature conditions of
the interface between the atmosphere and soil surface and plays an
important role in soil processes (Dimoyiannis, 2009; Oztas and
Fayetorbay, 2003). Hence, the LST of Zhifanggou (Figures S5 and S6)

was derived from one-year Landsat 8 data by a practical split-window
algorithm (Du et al., 2015). Then, TVDI, which is related to the soil
moisture, was calculated based on an empirical parameterization of the
correlation between NDVI and LST by Sandholt et al. (2002) (Figure
S7). The carbonate index (the ratio of bands 3 and 4) and clay index
(the ratio of bands 6 and 7) are introduced into the analysis (Boettinger
et al., 2008; Mirzaee et al., 2016; Taghizadeh-Mehrjardi et al., 2016).
Their abbreviations and descriptions are listed in Table S1. Image data
processing was performed in ENVI 5.1 software.

2.3.3. Terrain analysis
The terrain analysis was performed with a 5m×5m digital ele-

vation model (DEM). The topographic derivatives were calculated in
ArcGIS 10.2, including elevation (H, m, above mean sea level), slope (S,
°), aspect (A, °; 0° and 360° represent the East, 90° the North, 180° the
West, and 270° the South), and topographic wetness index (TWI, a
spatial estimation of soil hydrological and physical properties) (Figure

Fig. 2. Canonical correspondence analysis ordination diagram illustrating the relationships of auxiliary data with MWD, WSA>0.25, and K factor: (a) 0–10 cm; (b)
10–20 cm. Arrows indicate auxiliary data; triangles represent MWD, WSA>0.25 and K factor. MWD: mean weight-diameter; WSA>0.25: percentage of water-stable
aggregates greater than 0.25mm; K factor: soil erodibility factor; TP: total porosity; SOC: soil organic carbon; Fed: dithionite-extractable iron: poorly ordered and
crystalline forms of iron; Feo: oxalate-extractable iron: poorly ordered forms of iron; Clay: clay content; Silt: silt content; Sand: sand content; CaCO3: calcium
carbonate; PLAND_F, PLAND_G, and PLAND_W: the proportion of the landscape occupied by farmland, grassland and woodland, respectively. ΔLST: the land surface
temperature difference between seasons; NDVI: normalized difference vegetation index; TVDI: temperature vegetation dryness index; H: elevation; TWI: topographic
wetness index.

Table 3
Multiple linear regression models for predicting MWD, WSA>0.25 and K factor using soil data, environmental data, landscape metrics, and the coefficient of
determination (R2).

Parameters Layer (cm) Model R2 P-value

MWD (mm) 0–10 MWD=0.347*** + 0.81 SOC*** – 0.358 PLAND_F** – 0.343 TP** + 0.264 Silt** + 0.166 Slope* (SSPFs) 0.471 0.000
MWD=0.538*** – 0.215 B4/B3

* – 0.22 H** + 0.255 Slope** (ESPFs) 0.312 0.001
10–20 MWD=0.01* + 0.819 SOC*** + 0.206 Slope** + 0.239 PLAND_G** (SSPFs) 0.436 0.000

MWD=0.21*** + 0.279 Slope** (ESPFs) 0.183 0.001
WSA>0.25 (%) 0–10 WSA>0.25= 0.73*** + 0.898 SOC*** – 0.465 Sand*** – 0.254 PLAND_F** – 0.325 TP*** + 0.151 Slope** (SSPFs) 0.571 0.000

WSA>0.25= 0.56*** – 0.396 H *** + 0.26 Slope** (ESPFs) 0.288 0.000
10–20 WSA>0.25= 0.109* + 0.587 SOC*** + 0.326 Fed*** + 0.21 PLAND_G** + 0.148 Slope* – 0.272 pH* (SSPFs) 0.578 0.000

WSA>0.25= 0.472*** – 0.307 H ** + 0.247 Slope** (ESPFs) 0.258 0.000
K factor 0–10 K=0.337*** + 0.398 PLAND_F***- 0.229 Slope** – 0.261 NDVI* + 0.276 TWI* (SSPFs & ESPFs) 0.536 0.000

10–20 K=0.295*** – 0.259 Slope*** + 0.264 PLAND_F** + 0.326 TWI* – 0.189 B6/B7
* (SSPFs & ESPFs) 0.506 0.000

SOC: soil organic carbon; PLAND_F and PLAND_G: the proportion of the landscape occupied by farmland and grassland, respectively; TP: total porosity; Bi is the
reflectance of Band i; H: elevation; Fed: dithionite-extractable iron; NDVI: Normalized difference vegetation index; TWI: topographic wetness index; MWD: mean
weight-diameter; WSA>0.25: percentage of water-stable aggregates greater than 0.25mm; K factor: soil erodibility factor. SSPFs: soil spatial prediction functions;
ESPFs: environmental spatial prediction functions. *** P < 0.001; ** P < 0.01; ⁎ P < 0.05.
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S8) (Moore et al., 1991). The abbreviations and descriptions of these
topographic attributes are listed in Table S1.

2.4. Statistical analysis

The descriptive statistics of the data including minimum (Min),
maximum (Max), mean, standard deviation (SD), and coefficient of
variation (CV) were obtained by using the statistical software SPSS
18.0. The CV is considered as a criterion to represent the variability in
the factors: least (< 15%), moderate (15–35%), and most variable
(> 35%) (Wilding, 1985). Initially, the Kolmogorov-Smirnov test was
used to examine the normality of all data. Pearson's correlation analysis
was performed using RStudio3.2.2 (http://www.r-project.org/) to ex-
plore the relationships of MWD, WSA>0.25 and K factor with the aux-
iliary data. The cross-variograms were further calculated to analyze
their spatial correlations by using GS+ 9.0 (Gamma Design Software)
(Rosemary et al., 2017).

The canonical correspondence analysis method, which combines
correspondence analysis with multiple regression analysis, can be used
to extract the best synthetic gradients from the field data of species and
environmental features. Then, a linear combination of environmental
variables is formed to isolate the niches of the species to the greatest
extent (Klami et al., 2013). The correlations of soil aggregate stability
indices (MWD, WSA>0.25 and K factor) with soil properties and natural
and human factors were determined via CCA by CANOCO 5 (Micro-
computer Power, Ithaca, USA). CCA was also used to explore the re-
lationships between soil structure indices (MWD, WSA>0.25, K factor,
and aggregate size distribution) and binding agents (SOC, Fed, Feo,
Clay, and CaCO3).

2.5. Prediction methods

Multiple stepwise regression (MSR) in SPSS 18.0 was performed to
predict MWD, WSA>0.25, and K factor. Environmental spatial

prediction functions (ESPFs) and soil spatial prediction functions
(SSPFs) are two prediction methods based on the data sets of input
variables. They were used to predict aggregate stability indices from
readily available data by including environmental data, such as topo-
graphic attributes, NDVI, LST, TVDI, and landscape metrics (in the case
of ESPFs), and by combination of soil properties, environmental vari-
ables and landscape metrics (in the case of SSPFs) (Zolfaghari et al.,
2016). The input variables (x) were used as independent variables in
the MSR analyses. All input data were rescaled using the following
equation (Besalatpour et al., 2013):

= + ⎡
⎣⎢

−
−

⎤
⎦⎥

< <x x x
x x

x x x0.1 0.8i
min

max min
min max

(6)

where xi is the rescaled data, and xmin and xmax are the minimum and
maximum observed values, respectively. The training data set was
randomly chosen from 70% of the total data set and the remaining 30%
of the samples were used as the validation set.

Regression kriging combines the MSR and residual kriging (Hengl
et al., 2007):

= +Z Z ε* (7)

where Z is the predicted value of RK, Z* is the regression prediction
value, and ε is the residual from the regression model at each site.

First, the regression model is built to fit the available data. Then, ε is
computed. The residual kriging is used to fit the residual of the MSR.
The influence factors with significant correlation coefficients were
chosen as co-variables for co-kriging interpolation. All auxiliary data
were resampled to 5m resolution for mapping the spatial distributions
of MWD, WSA>0.25, and K factor in ArcGIS 10.2 based on the best-fit
model from MSR by RK.

2.6. Evaluation of prediction accuracy

The accuracy of the derived SSPFs and ESPFs was evaluated by the
coefficient of determination (R2), the normalized root mean squared
error (NRMSE) and the Akaike information criterion (AIC). The NRMSE
is a measure of the scatter between the observed and predicted values
(Gérard et al., 2008). The AIC, a measure of the relative goodness of fit
for statistical models (Arnold, 2010), was also used to evaluate the ef-
ficacy of SSPFs and ESPFs. Lower NRMSE and AIC values and greater R2

values indicate a better performance of the model.
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where ŷi is the predicted value of observation i, yi is the measured
value, ȳ is the mean of yi, k is the number of regression coefficients, and
n is the number of observations.

3. Results and discussion

3.1. Descriptive statistics

Table 1 shows the least (CV < 15%) or moderate variabilities
(15%<CV < 35%) of the soil physical and chemical properties that
can be used to develop the prediction models. SOC shows a high
variability over the study area (CV > 35%). Most of the soils are a silt
loam texture with an alkaline pH and a relatively low SOC content (Ye
et al., 2018). The soil particle size distribution exhibits a relatively low
variability, especially for the silt fraction (CV=5.06% in 0–10 cm and
5.28% in 10–20 cm soil layers). The different forms of iron show sig-
nificant differences in variability. Moreover, relatively higher vari-
abilities were observed for SOC (CV=60.12% in 0–10 cm and 51.27%

Table 4
Cross-validation indices of multiple stepwise regression (MSR) and regression
kriging (RK) for MWD (mm), WSA>0.25 (%) and K factor in different soil layers.

Parameters Layer (cm) Methods R2 NRMSE AIC

MWD (mm) 0–10 MSR (SSPFs) 0.440 0.325 −24.326
MSR (ESPFs) 0.365 0.360 −25.716
RK (ESPFs) 0.584 0.266 −38.457
CK (ESPFs) 0.618 0.273 −37.346

10–20 MSR (SSPFs) 0.514 0.322 −28.163
MSR (ESPFs) 0.201 0.471 −23.356
RK (ESPFs) 0.379 0.448 −20.871
CK (ESPFs) 0.389 0.403 −19.701

WSA>0.25 (%) 0–10 MSR (SSPFs) 0.459 0.191 −92.374
MSR (ESPFs) 0.265 0.119 −93.698
RK (ESPFs) 0.616 0.155 −106.626
CK (ESPFs) 0.547 0.194 −94.959

10–20 MSR (SSPFs) 0.714 0.142 −105.869
MSR (ESPFs) 0.285 0.226 −92.344
RK (ESPFs) 0.782 0.162 −106.380
CK (ESPFs) 0.532 0.204 −94.508

K factor 0–10 MSR (SSPFs &
ESPFs)

0.456 0.193 −221.522

RK (ESPFs) 0.492 0.184 −223.434
CK (ESPFs) 0.747 0.165 −230.179

10–20 MSR (SSPFs &
ESPFs)

0.522 0.229 −213.967

RK (ESPFs) 0.568 0.210 −217.637
CK (ESPFs) 0.593 0.261 −210.587

MWD: mean weight-diameter; WSA>0.25: percentage of water-stable ag-
gregates greater than 0.25mm; K factor: soil erodibility factor. R2: the coeffi-
cient of determination; NRMSE: the normalized root mean squared error; AIC:
the Akaike information criterion. MSR: multiple stepwise regression; RK: re-
gression kriging. SSPFs: soil spatial prediction functions; ESPFs: environmental
spatial prediction functions.
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in 10–20 cm soil layers), presumably due to the variability in pedogenic
processes, land use types and management practices. In contrast, CaCO3

shows a relatively stable variation. The three aggregate stability indices
(MWD, WSA>0.25 and K factor) also show moderate to high vari-
abilities over Zhifanggou catchment, which can be attributed to the
combined effects of soil properties, natural factors and land use type
and landscape structure. The descriptive statistics for environmental
factors and land use type and landscape structure as the auxiliary
variables are also presented in Table 1. Overall, there are high vari-
abilities in topographic conditions, annual vegetation cover and soil
aridity.

3.2. Factors influencing soil aggregate stability

3.2.1. Influence of soil intrinsic properties on soil aggregate stability
The correlation matrix of soil physicochemical properties in soil

samples based on Pearson's correlation coefficients is shown in Fig. 1.
Under all land use types, there are significant correlations among MWD,
WSA>0.25, and K factor. For both MWD and WSA>0.25, significantly
positive correlations are found with SOC in the 0–10 cm soil layer,
while they show significantly positive correlations with SOC and Feo
and negative correlations with pH in the 10–20 cm soil layer. Moreover,
WSA>0.25 has significantly negative correlations with CaCO3 and po-
sitive correlations with Fed and Feo in the 0–10 cm soil layer, while it
only has a positive correlation with Fed in the 10–20 cm soil layer. For
K factor, significantly negative correlations are found with TP and SOC

in the 10–20 cm soil layer. Spatial cross-correlation indicates that ag-
gregate stability indices vary closely with the influence factors de-
pending on the distances between samples (Figure S9). Their signs of
spatial correlation coefficients can shift from positive to negative as the
separation distance increases. There are no or weak spatial correlations
between aggregate stability indices and almost all influence factors for
distances more than 465m, which means that the calculated correlation
coefficients from regression analysis can be true within the distance less
than 465m. At zero distance, their correlations are equal to their
Pearson’s correlation coefficients. Soil organic carbon is the major ce-
ment for soil aggregation, and its content is closely related to soil ag-
gregation (Wei et al., 2014). In addition, Ca2+, which is mainly from
the dissolution of CaCO3, acts as an important aggregate-binding agent.
When microaggregates are formed by the binding of Ca2+, the soil
CaCO3 content exhibits a corresponding decrease. Apart from CaCO3,
soil pH is also strongly and negatively correlated with soil aggregate
stability because increasing pH leads to clay dispersion resulting from
the increased repulsion of negatively charged clay particles.

The canonical correspondence analysis ordination diagram illus-
trates the relationships of binding agents (SOC, Fed, Feo, Clay, and
CaCO3) with MWD, WSA>0.25, K factor and aggregate size distribution
(Figure S10). In general, SOC and CaCO3 mainly affect MWD,
WSA>0.25, K factor, and macro aggregates (> 5mm and 5–2mm),
while Fed, Feo and Clay have significant effects on aggregates with
diameters smaller than 2mm. Clay content is not significantly corre-
lated with MWD, WSA>0.25, and K factor, but significantly and

Fig. 3. Spatial distributions of MWD, WSA>0.25, and K factor in both 0–10 cm (a1-i1) and 10–20 cm (a2-i2) soil layers. They are predicted by multiple stepwise
regression (a1-c1, a2-c2), regression kriging (d1-f1, d2-f2), and co-kriging (g1-i1, g2-i2). MWD: mean weight-diameter; WSA>0.25: percentage of water-stable
aggregates greater than 0.25mm; K factor: soil erodibility factor.
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positively related to aggregates with diameters smaller than 2mm
(Fig. 1 and Figure S10). Hence, these five binding agents were taken
into account when performing MSR. The results show that Clay and
CaCO3 are the dominant binding agents in farmland, which is char-
acterized by aggregates with diameters smaller than 2mm, while for
other land use types, all the binding agents contribute to soil aggrega-
tion (Figure S10).

3.2.2. Influence of land use type and landscape structure on soil aggregate
stability

The correlation coefficients between aggregate stability indices and
landscape metrics at the class and landscape levels are presented in
Table 2. The mean weight-diameter, WSA>0.25, and K factor are highly
correlated with the landscape metrics for farmland, woodland and

grassland. For farmland, MWD and WSA>0.25 are negatively correlated
to the percent of land use (PLAND) and largest patch index (LPI) in the
0–10 cm soil layer and are only negatively correlated with LPI in the
10–20 cm soil layer. However, K factor is positively correlated with
PLAND and LPI in the different soil layers. For woodland, MWD and
WSA>0.25 are only positively correlated with edge density (ED) in the
0–10 cm soil layer. The K factor of woodland is negatively correlated
with PLAND and ED. For grassland, MWD and WSA>0.25 are sig-
nificantly and negatively correlated with LPI. The K factor is sig-
nificantly and negatively correlated with PLAND, LPI, ED, and the ag-
gregation index (AI). Their correlations are much more significant in
farmland and grassland than in woodland and residential land (the land
where the villagers live). Moreover, the correlations between MWD,
WSA>0.25 and K factor and landscape metrics are stronger in the

Fig. 4. Prediction residuals of MWD, WSA>0.25 and K factor estimated by multiple stepwise regression (a1-c1, a2-c2), regression kriging (d1-f1, d2-f2), and co-
kriging (g1-i1, g2-i2) in 0–10 cm (a1-i1) and 10–20 cm (a2-i2) soil layers. MWD: mean weight-diameter; WSA>0.25: percentage of water-stable aggregates greater
than 0.25mm; K factor: soil erodibility factor.
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0–10 cm soil layer than in the 10–20 cm soil layer.
At the landscape level, ED and AI are significantly correlated with

aggregate stability in the 0–10 cm soil layer, but not in the 10–20 cm
soil layer. The K factor is insignificantly correlated with landscape
metrics in both soil layers. In most cases, the correlation coefficient
signs of MWD and WSA>0.25 with landscape metrics are opposite to
those of K factor, though these correlation coefficients do not reach
significant levels.

The relationships between MWD, WSA>0.25 and K factor and
landscape metrics can provide important implications for revegetation
and agricultural land use management to mitigate the negative effects
of human activity on soil structure. Although previous studies (Ozgoz
et al., 2013; Zhao et al., 2017) have suggested that farming negatively
affects soil structure, our research reveals that this negative effect can
be mitigated by programming the land use composition and spatial
configuration at the class and landscape levels, respectively. At the class
level, the landscape metrics for residential land have no significant
correlation with MWD, WSA>0.25 and K factor, possibly due to the long
distance between the residential land and the sampling sites. However,
the signs of the correlation coefficients reveal a decrease in soil stability
and increase in soil erodibility when residential land is dominant or
well-connected. Farmland has similar but stronger effects on the soil
structure than residential land, with stronger correlations in the
0–10 cm soil layer than in the 10–20 cm soil layer. Therefore, special
attention should be given to these two land use types. Even though the
areas of farmland and residential land cannot be further reduced con-
sidering the need to ensure local and regional food supply, soil erosion
still can be mitigated by increasing the patch number and limiting the
patch area and connectivity. Our results indicate that woodland and
grassland, particularly the latter, are always beneficial to increasing soil
aggregate stability. The size and connectivity of vegetation are im-
portant factors to influence the positive effects of these two types of
land use. At the landscape level, MWD and WSA>0.25 are positively
correlated with ED, while negatively correlated with AI, indicating that
a blending of different land use types helps to mitigate the negative
effects of human activity on the soil structure. These results indicate
that interspersing revegetation into farmland or residential land patches
can effectively alleviate the negative effects of human activity.

3.2.3. Influence of environmental factors on soil aggregate stability
The Pearson's correlation coefficients between topography, hydro-

thermal conditions, and vegetation cover and soil aggregate stability
are presented in Table 2. In general, MWD, WSA>0.25 and K factor are
significantly related to ΔLST, NDVI, B4/B3, B6/B7, TWI, Elevation, and
Slope. The mean weight-diameter and WSA>0.25 are positively corre-
lated with NDVI, B6/B7, and Slope but negatively correlated with B4/B3

and weakly correlated with the other covariates (not significant). These
results are not in agreement with the findings presented by Ayoubi et al.
(2012), who reported a good soil structure in the lower slope. Our re-
sults indicate the importance of revegetation in areas with a steep slope
for soil protection in natural environments. The topographic factors
affect soil properties by influencing the vegetation activity, soil mi-
crobes, microclimate, hydrothermal conditions and land use (Teng
et al., 2017). Moreover, significant temperature variations among the
four seasons promote soil erosion (Table 2). The band reflectance ratios
have significant correlations with MWD, WSA>0.25 and K factor. The
signs of the correlation coefficients between K factor and environmental
factors are opposite to those between MWD or WSA>0.25 and en-
vironmental factors. The results of the correlation analysis for MWD,
WSA>0.25, K factor and environmental factors are also supported by
the results of CCA (Fig. 2). The three parameters are arranged close to
the first axis on the CCA ordination biplot. The NDVI, Slope and land-
scape structure (PLAND_farmland, PLAND_grassland and PLAND_-
woodland) are the dominant factors associated with this axis. The first
paper in this series speculated that the spatial variability of soil ag-
gregate stability was mainly controlled by intrinsic factors (such as

parent materials, terrain attributes and soil types) and the effects of
extrinsic factors (land use and farming practice) could not be ignored,
especially for K factor (Ye et al., 2018). This work further indicates that
soil intrinsic properties play important roles in affecting MWD and
WSA>0.25 in both 0–10 and 10–20 cm soil layers, especially for
WSA>0.25. The topography, hydrothermal conditions, vegetation
cover, and land use pattern play more important roles than soil prop-
erties in affecting K factor, especially in the 0–10 cm soil layer (Tables 2
and 3).

3.3. The comparison of SSPFs and ESPFs

The prediction functions for MWD, WSA>0.25 and K factor are
presented in Table 3. The MSR analysis shows moderate to high cor-
relations between MWD, WSA>0.25 and K factor and the covariates
(0.183 ≤ R2 ≤ 0.578); the NRMSE and AIC results suggest a better
performance of the model for WSA>0.25 and K factor (Table 4). Among
the independent variables, the most relevant variables for predicting
MWD and WSA>0.25 by the stepwise models are SOC, TP, Slope,
PLAND, Fed, Silt, Sand and H. However, NDVI is excluded from the
stepwise models despite having significant correlations with MWD and
WSA>0.25 (Tables 2 and 3), which may be attributed to the interrela-
tion between these covariates. For K factor, the most relevant variables
are PLAND of farmland, TWI and Slope, and NDVI. The MSR models
including soil data as predictors (SSPFs) explain 47.1% and 57.1% of
the variability in MWD and WSA>0.25 in the 0–10 cm soil layer, re-
spectively. Exclusion of auxiliary soil variables reduces the performance
of the SSPFs for the prediction of MWD and WSA>0.25 but does not
affect the prediction for K factor in different soil layers. Therefore, the
prediction models based on the combination of soil properties and
natural and human factors would improve their performance in the
prediction for MWD and WSA>0.25 but not for K factor. The application
of easily available auxiliary variables such as derivatives from DEM (H,
Slope, Aspect, and TWI) and remote sensing (LST, NDVI, TVDI, and
landscape pattern) can improve the performance of the models in
predicting the MWD, WSA>0.25 and K factor at the landscape level
(Table 3). The topography, hydrothermal conditions, and vegetation
cover have a direct or indirect influence on the soil properties (Ayoubi
et al., 2012; Oztas and Fayetorbay, 2003; Soinne et al., 2016). Overall,
the models based on the data of soil properties and environmental
variables can produce satisfactory results in predicting MWD,
WSA>0.25 and K factor, particularly for the 0–10 cm soil layer.

3.4. Spatial predictions of MWD, WSA>0.25 and K factor based on ESPFs

The spatial distribution maps of MWD, WSA>0.25 and K factor by
using RK, CK and MSR approaches are shown in Fig. 3. The maps
produced by MSR, RK, and CK reveal the details of the spatial variations
of these three parameters. Fig. 3 displays the detailed trends of MWD,
WSA>0.25 and K factor in the study area. The maps show lower values
of MWD and WSA>0.25 and higher values of K factor in farmland,
which is consistent with the findings of the first paper in this series (Ye
et al., 2018). The maximum NRMSE and AIC values generated by these
two approaches are both for the predictions of MWD. However, RK and
CK generated lower values of NRMSE and AIC and higher values of R2

(Table 4) than MSR, indicating that they can provide more satisfactory
predictions. The comparison of RK and CK demonstrates that CK did not
improve predictions for MWD and WSA>0.25 compared to RK. Hence,
RK and CK are considered to be an accurate and adequate for spatial
interpolation of soil properties when multiple covariables are taken into
account and for different indices, it is necessary to choose appropriate
methods to accurately interpolate their spatial distribution. In the re-
sidual distribution maps (Fig. 4), the sites with high residual values
have similar conditions, mostly near the built-up land (transportation
land and residential land), farmland and the edge of this catchment. In
the built-up land and farmland, there are frequent and intensive human
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activities, which will cause soil erosion. The estimation uncertainty of
MWD, WSA>0.25 and K factor is high in these sites, which is a prevalent
situation in the prediction of soil properties (Wang et al., 2013). This
may explain the fact that it is difficult to accurately estimate the values
of soil properties in these places.

Dematte et al. (2007) reported that the quantitative evaluation of
soil properties from remote sensing data is a difficult task due to the
complexity of soils. The prediction models in this study based on the
combination of soil properties and natural and human factors for MWD,
WSA>0.25 and K factor using MSR, RK and CK can be considered as
satisfactory. Our results show advantages over those of Besalatpour
et al. (2013), because MSR was used to extract the most important
factors and the land use types were taken into account. The perfor-
mance of the models for aggregate stability predictions is equivalent to
that of Jaksik et al. (2015) and Annabi et al. (2017), who used multiple
linear regressions to predict soil aggregate stability based on the data of
soil properties and terrain attributes. Jaksik et al. (2015) used topo-
graphical and soil data and Annabi et al. (2017) only used soil prop-
erties for the prediction. Although their results provided satisfactory
predictions, they ignored the impact of many important factors, such as
landscape structure and vegetation information. The high dependence
on soil data means that the modeling must involve soil sampling.
However, we found that K factor do not depend on soil properties,
making it possible to predict the soil structure based on more easily
available data. In addition, the inclusion of landscape structure, tem-
perature difference between seasons, aridity, and vegetation activity
improves the model performance.

4. Conclusions

Our study aims to select appropriate and accessible environmental
factors for predicting the spatial distributions of soil aggregate stability
indices. These factors can serve as auxiliary variables to improve the
accuracy of the interpolation of MWD, WSA>0.25 and K factor. The
satisfactory predictions of soil aggregate stability based on the data of
soil properties and environmental factors confirm the superiority of
incorporating landscape metrics, topography, temperature difference
between seasons, aridity, and vegetation cover along with the soil
properties as predictors. The basic statistical results indicate that these
three aggregate stability indices are synergetically affected by the soil
properties, natural factors and land use type and landscape structure.
The relationships between MWD, WSA>0.25 and K factor and various
readily available environmental factors reveal that variations in the
spatial distribution of aggregate stability indices are affected by the
joint effects of soil properties, land use type and landscape structure,
terrain conditions, vegetation activity and hydrothermal conditions.
Although the exclusion of soil variables (ESPFs) reduces the perfor-
mance of the SSPFs for MWD and WSA>0.25, the predictions are still
satisfactory. The predictions for K factor in different soil layers do not
depend on soil variables. Residual analysis shows that the sites with
high residual values are located close to built-up land or agricultural
land, indicating that the high uncertainty of the models based on en-
vironmental factors is usually due to the impact of anthropogenic fac-
tors. These results reveal that the choice of auxiliary variables plays a
vital role in the model building, especially the quantification of land use
type and landscape structure that significantly influence the spatial
variation of soil properties. The spatial distribution maps of MWD,
WSA>0.25 and K factor adequately reveal the heterogeneity of local
environmental variables and landscape structure. Our findings are of
practical value to land managers and policy makers for landscape
planning, management and decision making.
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