DOI: 10.13930/j.cnki.cjea.170298

罗晓琦, 冯浩, 刘晶晶, 张阿凤. 生物炭施用下中国农田土壤 N₂O 排放的 Meta 分析[J]. 中国生态农业学报, 2017, 25(9): 1254–1265

Luo X Q, Feng H, Liu J J, Zhang A F. Meta-analysis on farmland soil N₂O emissions under biochar application in China[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1254–1265

生物炭施用下中国农田土壤 N₂O 排放的 Meta 分析^{*}

罗晓琦^{1,2},冯浩^{2,3**},刘晶晶^{1,2},张阿凤^{2,4}

(1. 西北农林科技大学水利与建筑工程学院 杨凌 712100; 2. 西北农林科技大学中国旱区节水农业研究院 杨凌 712100;
 3. 中国科学院水利部水土保持研究所 杨凌 712100; 4. 西北农林科技大学资源环境学院 杨凌 712100)

摘 要:为明确施加生物炭对中国农田土壤 N₂O 排放的影响和主要控制因素,以公开发表的试验数据为研究 对象,采用 Meta-analysis 法定量分析了施加生物炭条件下,气候、土壤性质、田间管理方式、生物炭性质与施 加量对土壤 N₂O 排放的影响,并对各影响因素进行通径分析。结果表明,当年降雨量 600 mm 时,生物炭显 著降低土壤 N₂O 排放量(P<0.05),且随年降雨量的增加而增强;当年日照时数大于 1 000 h 时,生物炭对土壤 N₂O 的减排效果随年日照时数的增加而减弱。当土壤 pH 6.5 时,生物炭对土壤 N₂O 的减排效果随土壤 pH 的增加呈先增后减趋势;在壤土中施加生物炭对 N₂O 的减排效果显著(P<0.05),而砂土和黏土不显著 (P>0.05)。生物炭对覆膜土壤 N₂O 的减排效果优于不覆膜土壤;生物炭对土壤 N₂O 的减排效果随施氮肥量增 加而减弱,而随生物炭比表面积的增加而增强。当生物炭 C/N 处于 30~500 时,生物炭施用下土壤 N₂O 排放量 显著降低(P<0.05);当生物炭施加量处于 20~160 t·hm⁻² 时,生物炭对土壤 N₂O 的减排效果随施加量增加而增 强。生物炭对土壤 N₂O 减排的影响存在显著的区域性特征,对华南、华东、华中和东北地区影响显著(P<0.05), 而对西北地区不显著(P>0.05);施氮肥量、生物炭施加量、年均温和年降雨量是影响生物炭减排效果的最主要 因素,这些因素的相互作用共同影响生物炭对土壤 N₂O 的减排效果。该研究可为生物炭在我国农区的推广应 用和农田 N₂O 减排提供参考。

关键词: 生物炭; 氧化亚氮; 减排效果; 气象因素; 土壤性质; 田间措施 中图分类号: S131+.3 文献标识码: A 文章编号: 1671-3990(2017)09-1254-12

Meta-analysis on farmland soil N₂O emissions under biochar application in China^{*}

LUO Xiaoqi^{1,2}, FENG Hao^{2,3**}, LIU Jingjing^{1,2}, ZHANG Afeng^{2,4}

(1. College of Water Conservancy and Architectural Engineering, Northwest A & F University, Yangling 712100, China; 2. Institute of Water-saving Agriculture in Arid Region of China, Northwest A & F University, Yangling 712100, China; 3. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; 4. College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China;

Abstract: In this study, a Meta-analysis was conducted to make clear the effects of biochar application on soil N_2O emissions and the main controlling factors in China. Based on observation data from published papers in the public domain, the effects of

- ** 通讯作者: 冯浩, 主要研究方向为农业水土资源高效利用研究。E-mail: nercwsi@vip.sina.com 罗晓琦, 主要研究方向为水土资源高效利用研究。E-mail: luoxq0903@163.com
- 收稿日期: 2017-04-07 接受日期: 2017-05-23 * This study was supported by the National High Technology Research and Development Program of China (2013AA102904), the National Natural Science Foundation of China (41301305).
- ** Corresponding author, E-mail: nercwsi@vip.sina.com Received Apr. 7, 2017; accepted May 23, 2017

^{*} 国家高技术研究发展计划(863 计划)项目(2013AA102904)和国家自然科学基金项目(41301305)资助

biochar application on soil N₂O emissions were quantitatively analyzed under different climatic conditions, soil properties, field management practices and biochar properties. Then path analysis was used to determine the dominant factors influencing soil N₂O emissions. The results showed that biochar application significantly decreased soil N₂O emissions (P < 0.05) under annual mean precipitation more than 600 mm, and the reduction effect was strengthened with increasing annual mean precipitation. Also when annual mean sunshine hours was greater than 1 000 h, the N₂O emission-reduction effect of biochar application decreased in trend following an initial increase with increasing annual mean sunshine hours. With increasing soil pH above 6.5, soil N₂O emission reduction first increased and then decreased under biochar application. Biochar application significantly decreased soil N₂O emissions in loam soils (P < 0.05), whereas the effects in sandy and clay soils were not significant (P > 0.05). Moreover, the reduction in soil N₂O emissions under film mulching was higher than that without film mulching. The effect of biochar on soil emission decreased with increasing nitrogen application rate, but increased with increasing specific surface area of biochar. When C N ratio of biochar was 30-500, the effects of biochar application on soil N₂O emissions was significant at P < 0.05. When the amount of biochar was 20–160 t·hm⁻², soil N₂O emissions significantly decreased with increasing biochar application rate. Furthermore, significant differences in N2O emissions were observed for different regions under biochar application. For example, there was a significant reduction in N₂O in South, East, Central and Northeast regions of China (P < 0.05), except Northwest China (P > 0.05). Generally, N fertilizer input, biochar application amount, annual mean temperature and annual mean precipitation were the dominant factors affecting the N₂O emission-mitigation effects of biochar, which was controlled by the interactions among these factors. The study provided a reference base for the promotion of biochar technology in farming in China and emission reduction of soil N₂O.

Keywords: Biochar; Nitrous oxide; N₂O emission-mitigation effect; Meteorological factor; Soil property; Field management practice

温室气体(CO₂、CH₄和 N₂O)大量排放是全球气 候变暖及其引起的一系列环境问题的主要原因。 2013 年联合国环境规划署发布的《碳排放评估报告》 指出,农业源温室气体排放量占全球温室气体排放 总量的 11%,已超过 2020 年的排放目标^[1-2]。N₂O 作 为三大主要温室气体之一,其增温潜势是 CO₂ 的 298 倍^[3];农田生态系统 N₂O 排放量占全球排放总量 的 60%~75%,是 N₂O 最主要的排放源^[4]。因此,农 田 N₂O 减排对减缓温室效应具有重要意义。

施加生物炭是目前控制土壤 N₂O 排放的重要措施, 生物炭是生物质在厌氧或无氧的密闭环境中高 温热解(<700)生成的孔隙丰富、性质稳定、富含 碳素并具有不同程度芳香化的固态物质^[5-6]。生物炭的 孔隙结构发达、比表面积大、吸附 NH⁴4的能力较强, 并可调节硝化菌和反硝化菌的能源底物, 影响土壤 N₂O 的排放, 其减排效果与生物炭的施用量有 关^[9-12]。硝化与反硝化过程是农田土壤 N₂O 的两大 主要来源, 但施加生物炭对土壤 N₂O 排放的影响机 制尚不清楚, 需定量总结生物炭对农田土壤 N₂O 排 放的影响规律, 并分析其影响因素, 以揭示施加生 物炭对土壤 N₂O 的减排效果。

Meta 分析是一种在同一主题下从现有的研究中 整理、合并研究数据的统计分析方法^[13]。该方法已 被应用于定量分析某种农业措施对农田生态效应的 影响^[14],为农耕制度的优化提供参考依据。目前关 于生物炭对土壤 N₂O 排放的影响研究众多, 但各研 究的试验区气候、土壤性质、种植制度和生物炭种 类等因素的不同使研究结果不一致, 不利于生物炭 技术的推广应用。在农田生态系统中,各因素相互 作用,影响土壤 N₂O 的排放过程。因此,分析各因 素与土壤 N₂O 排放量的复杂关系, 揭示各因素对土 壤 N₂O 排放的直接作用和间接作用, 找出主要影响 因素, 对土壤 N₂O 减排措施的制定具有重要意义。 本文基于 2016 年 12 月前中国农田施加生物炭的研 究数据, 通过 Meta 分析方法定量分析了施加生物炭 对土壤 N₂O 排放的影响, 并揭示气候条件、土壤性 质、氮肥使用量、生物炭性质与施加量等因素对农 田土壤 N₂O 排放的影响机制;采用通径分析法对影 响土壤 N₂O 排放的因素进行分析, 探明施加生物炭 条件下影响土壤 N₂O 排放的主要因素, 为生物炭在 我国农区的推广应用和减缓温室效应提供参考。

- 1 材料与方法
- 1.1 数据来源

基于中国知网、维普、万方、Web of Science、 Google Scholar 等中英文数据库,以"生物炭"、"生物 碳"、"氧化亚氮"、"N₂O"、"biochar"、"black carbon"、 "charcoal"和"nitrous oxide"为关键词检索 2016 年 12 月前发表的关于施加生物炭对中国农田土壤 N₂O 排 放的影响文献,并对文献进行筛选。文献筛选标准 为: 1)研究对象为中国农田土壤; 2)试验方法为大田

试验、小区试验或盆栽试验; 3)试验处理至少包括 1 对施加生物炭和不施加生物炭的处理,且其他田间 条件一致; 4)试验地点、时间、土壤和生物炭的基本 性质均明确; 5)文中提供了土壤 N₂O 排放量和 N₂O-N 等数据; 6)试验中各处理的重复次数至少 3 次; 7)试验 地点、试验年份、试验数据和种植作物种类一致的文 献,选取研究年限最长的文献。基于以上筛选标准, 获得 41 篇有效文献,采集了 132 组数据。

1.2 数据分类

根据土壤 N₂O 排放的影响因素分组, 主要指标

包括:试验地区、气候因素(年降雨量、年均温、年 日照时数)、土壤性质(土壤 pH 和土壤质地)、田间管 理措施(施氮肥量和覆膜)、生物炭性质(制造温度、 比表面积和 C/N)、生物炭施加量等,划分标准参考 文献[15]。根据中国区域划分方法^[16],本文将试验地 区划分为华东地区(江苏、浙江、江西、安徽)、华中 地区(湖南、河南)、华南地区(广东)、西北地区(新疆、 陕西、宁夏)和东北地区(辽宁)5 个主要区域。年降 雨量以 400 mm、600 mm 为分界线^[17],年均温度以 10 划分^[18]。数据分类情况见表 1。

	表 1 数据分类及依据
Table 1	Data groups used in the Meta-analysis

	气候因素		F	_壤性质	田间	管理措施				
Climatic factors			Soil properties		Field manag	ement measures	Biochar characters and application amount			
年降雨量	年均温	年日照时数	pН	性质	施氮肥量	覆膜与否	比表面积	C/N	施加量	
Annual	Annual	Annual		texture	N fertilizer	Mulching film	Surface area C	N ratio of	Biochar	
mean	temperature	sunshine hours			$(\log hm^{-2})$	or not	of blochar $(m^2 a^{-1})$	biochar	application $(t hm^{-2})$	
(mm)		(11)			(kg·nm)		(m ·g)		amount (t•nm)	
(1111)	()	1 000 2 000		The Local and Local	(0.100	TE 0 +++	-100	10.20	-20	
<400	<10	1 000~2 000	<6.5	砂土 Sandy soil	60~120	蕧膜	<100	10~30	<20	
						Plastic film				
						mulch				
400~600	10	2 000	6.5~7.5	壤土 Loam	120~180		100	30~100	20~40	
>600			7.5	黏土 Clay	180~240	不覆膜		100~500	40~80	
					240~300	No mulch			80~160	

1.3 Meta 分析

由于部分文献提供的土壤 N_2O 排放量数据是以 CO_2 排放当量或 N_2O-N 排放量的形式表示,需进行 数据换算。以 CO_2 排放当量表示土壤 N_2O 排放量的, 需除以 298 得到土壤 N_2O 排放量的换算值^[19]; 以 N_2O-N 排放量表示土壤 N_2O 排放量的,需以分子质 量为换算因子即除以 28/44 得到土壤 N_2O 排放量的 换算值^[15]。

标准差是 Meta 分析中一个重要参数, 是各研究 结果的权重指标, 反映其重要性的大小^[20]。若文献 中提供的土壤 N₂O 排放量数据和标准误差是以图形 式表示, 通过 Origin 9.0 软件中的 digitizer 功能进行 图形数值化, 将获得的标准误差换算为标准差; 若 原文献未提供标准差、标准误差和样本个数, 通过 常规方法不能获得标准差, 采用 MetaWin 2.1 软件 的再取样(resampling tests)功能得到非加权方差^[21-22], 获得所需的标准差。

Meta 分析通过 MetaWin 2.1 软件实现, 需分别 输入施加生物炭和不施加生物炭土壤 N₂O 排放量的 均值、对应的标准差和样本数。Meta 分析需引入效 应值指标, 对试验数据进行量化, 通过加权整合施 加生物炭对土壤 N₂O 排放量的影响规律。为提高效 应值的准确性,通过随机效应模型计算得到效应值 (ln*R*)^[23]:

$$\ln R = \ln(X_e/X_c)$$
 (1)
先响应比 具体加生物岩土填入了的排放量

式中: *R* 为响应比, 是施加生物炭土壤 N₂O 的排放量 (*X*_e)与不施加生物炭土壤 N₂O 的排放量(*X*_e)的比值。

为直观地表达生物炭对土壤 N₂O 排放的促进 或减弱,式(1)经变换得到土壤 N₂O 排放量的变化 率 *I*:

$$I = (R-1) \times 100\%$$
 (2)

土壤 N₂O 排放量变化率的 95%置信区间上、下 限值的计算方法参考文献[24]。若 95%置信区间包 含 0,表示施加生物炭对土壤 N₂O 排放无显著影响 (P>0.05);若 95%置信区间都大于 0,表示施加生物 炭对土壤 N₂O 排放具有显著的促进作用(P<0.05); 若 95%置信区间都小于 0,表示施加生物炭对土壤 N₂O 排放具有显著的减弱作用(P<0.05)^[25]。

1.4 通径分析

通径分析是研究变量间相互关系、自变量对因 变量作用程度的多元统计分析方法,通过直接通 径、间接通径和总通径系数分别表示某一因素对土 壤 N₂O 排放的直接影响、间接影响和综合影响,揭 示各因素对土壤 N₂O 排放量的影响程度大小^[26]。通

径分析的主要计算过程参照文献[27]。

1.5 数据处理

利用 Microsoft Excel 2010 软件建立数据库, Origin 9.0 软件绘制图表和数值化, Metawin 2.1 软件 实现 Meta 分析, SPSS 19.0 软件进行通径分析。

2 结果与讨论

2.1 气候因素对土壤 N₂O 排放的影响

通过对 41 篇参考文献中的数据进行分析,发现 生物炭对土壤 N₂O 的减排效果与试验区的气候因素 密切相关,结果见图 1。

2.1.1 年降雨量对土壤 N₂O 排放的影响

整合分析结果表明,年降雨量对中国农田土壤 N₂O 排放起到削弱作用。由图 1a 可知, 当年降雨量 <600 mm时,施加生物炭对土壤 N₂O 的减排效果不 显著(P>0.05); 而年降雨量 600 mm 时, 施加生物 炭显著降低土壤 N₂O 的排放(P<0.05)。当年降雨量 <400 mm、400~600 mm 和 600 mm 时, 土壤 N₂O 排放量的降低率分别为 10.7%(95%置信区间= 1.1%~-22.5%)、19.2%(95%置信区间=2.4%~-40.8%) 和 25.3%(95%置信区间=-6.6%~-43.4%), 施加生物 炭对土壤 N₂O 排放的削弱作用随年降雨量的增加而 增强。这是因为随年降雨量的增加,土壤水分逐渐 填充土壤大中孔隙, 土壤含水率逐渐增大, 土壤的 通透性减弱,使土壤中的微生物处于低氧还原状态, 导致 N₂O 还原酶的形成滞后于 NO₃还原酶, 使 N₂O 大部分还原为 $N_2^{[28]}$ 。此外, 土壤深层的 N_2O 向大气 中扩散的速率随土壤含水率增加而降低、并且土壤 硝化菌的活性也呈降低趋势,使反硝化过程因反应 基质供应不足而逐渐减弱。因此, 土壤 N₂O 的排放 量随年降雨量的增加而减少。生物炭吸附土壤中大 量的铵态氮,减少硝化菌的能源底物;且生物炭具 有芳香碳结构、可吸附反硝化菌所需的能源底物、 从而抑制土壤硝化菌和反硝化菌的活性、增强生物 炭对土壤 N₂O 的减排效果^[29]。

2.1.2 年均温和年日照时数对土壤 N₂O 排放的影响

10 是喜温性植物有机物开始积累和适宜生 长的起始温度^[30],年均温以 10 划分,充分考虑了 温度对作物生长发育的影响。由图 1b 可知,年均温 <10 和 10 时,施加生物炭显著降低土壤 N₂O 的排放量(P<0.05),其降低率分别为 27.3%和 17.9%, 生物炭对土壤 N₂O 的减排作用随年均温的升高而降 低。由图 1c 可知,年日照时数为 1 000~2 000 h 时, 土壤 N₂O 排放量的降低率为 21.3%。年日照时数 $2\ 000\ h$ 时, 土壤 N_2O 排放量的降低率为 16.7%。 因此,当日照时数大于 $1\ 000\ h$ 时,日照时数越短, 施加生物炭越有利于土壤 N_2O 的减排。

Fig. 1 Change rates of soil N₂O emission caused by biochar application under different climatic conditions

各散点的误差线表示 95%置信区间, X 轴线表示 Y=0。若误差 线与 X 轴线相交, 表示处理和对照之间差异不显著(P>0.05)。误差线 上的数字代表样本数。Error bars represent 95% confidence intervals, horizontal axis denotes Y=0 line. If 95% confidence intervals go across the horizontal axis, difference between biochar application and control is significant (P > 0.05). Number above the error bars is sample size.

综上可知, 施加生物炭对土壤 N₂O 的减排作 用随年均温和年日照时数的升高而降低。因年均 温和年日照时数均可控制土壤有机质的分解、土

壤微生物代谢活动中酶的活性和作物生长状况来 影响土壤 N₂O 的排放^[31]。年均温和年均日照时数 增大时土壤温度也随之升高、微生物和酶活性增 强、硝化菌和反硝化菌对能源底物的吸收作用加 强,促进了土壤有机质的分解^[32]。年均日照时数 不仅影响土壤温度,还影响作物的生长状况,进 而影响土壤 N₂O 的排放。随着日照时数的延长、作 物根系吸收水分养分能力增强、植物根系消耗土 壤中的大量氧气、改变土壤结构、分泌有机物、进 而促进土壤微生物的反硝化作用,促进土壤 N₂O 的排放^[33]。同时, 植物根系还可吸收溶解在土壤 水分中无法扩散至大气中的 N₂O, 通过蒸腾作用 释放到大气中^[34], 增加了土壤 N₂O 的排放量。施 加一定量的生物炭显著减少土壤 N₂O 的排放量, 但其固存 N₂O 的量是有限的。因此, 随年均温和 年均日照时数的增加, 施加生物炭对土壤 N₂O 的 减排效果逐渐减弱。

2.2 土壤性质对土壤 N₂O 排放的影响

²⁰Га

0

-20

-40

-60

-80

 -100^{l}

土壤N₂O排放量变化率 Change rate of soil N₂O emissions (%)

2.2.1 土壤 pH 对土壤 N₂O 排放的影响

土壤 pH 会影响硝化菌和反硝化菌的活性,改 变硝化速率和反硝化速率及最终产物的形态,从而 影响土壤 N₂O 的排放^[35]。由图 2a 可知,土壤 pH<6.5 时,施加生物炭使土壤 N₂O 排放量降低 31.5%,未

7.5 时, 施加生物炭显著降低土壤 N₂O 的排放量 (P<0.05)、降低率分别为 52.3%和 49.3%。施加生物 炭条件下, 土壤 N₂O 排放量的降低率随土壤 pH 增 加呈先增后减的趋势, 表明施加生物炭对土壤 N₂O 的减排作用随土壤 pH 的增加而先增强后减弱。在施 加生物炭的条件下, 土壤 pH 主要通过改变硝化细 菌和反硝化细菌的活性,影响土壤 N₂O 的形成。首 先, 土壤 pH 处于 6.5~7.5 时, 促进了氮相关微生物 活性的提高、且生物炭对土壤有机物和水肥的吸附 能力也达到最强,调节土壤中微生物的群落结构, 并增强生物炭的稳固性, 抑制土壤 N_2O 的排 $hotal_{36}$; 其次、在酸性土壤中、硝化和反硝化微生物的代谢 过程和活性均减弱,且生物炭的惰性增强,不利于 生物炭固存土壤中的 N₂O^[37];最后,土壤 pH 还会影 响反硝化酶 Nos 酶(氧化亚氮还原酶)的活性及铁氨 氧化作用的速率, 当土壤 pH 7.5 时, 生物炭表面 含氧官能团对土壤中重金属的吸附能力减弱、不利 于硝化菌和反硝化菌的生存,且生物炭的共轭芳香 结构之间的键能减弱、不利于生物炭吸收土壤排放 的 N₂O^[31,38]。因此, 生物炭对 pH 处于 6.5~7.5 的土 壤 N₂O 的减排效果最佳。

图 2 生物炭在不同土壤性质条件下对土壤 N₂O 排放的影响(土壤 N₂O 排放量变化率) Fig. 2 Change rates of soil N₂O emission caused by biochar application under different soil properties

各散点的误差线表示 95%置信区间, X 轴线表示 Y=0。若误差线与 X 轴线相交, 表示处理和对照之间差异不显著(P>0.05)。误差线上的 数字代表样本数。Error bars represent 95% confidence intervals, horizontal axis denotes Y=0 line. If 95% confidence intervals go across the horizontal axis, difference between biochar application and control is significant (P > 0.05). Number above the error bars is sample size.

2.2.2 土壤质地对土壤 N₂O 排放的影响

由图 2b 可知, 施加生物炭对壤土 N_2O 排放的影响显著(P < 0.05), 而对砂土和黏土的影响不显著 (P > 0.05)。施加生物炭条件下,砂土、壤土和黏土 N_2O 排放量的降低率分别为 2.8%、22.6%和 13.7%, 生物炭对壤土 N_2O 的减排效果最好, 而砂土的减排 效果最差。因土壤质地会影响硝化作用和反硝化作 用的强度和 N_2O 的扩散速率,并降低土壤有机质的 分解速率,进而影响土壤 N_2O 的排放^[39-40]。土壤的 气体扩散系数随土壤质地的改变而不同,壤土具有 较好的非毛管孔隙和毛管孔隙结构,且 N_2O 的排放通 道较畅通,使壤土的 N_2O 排放量高于砂土和黏土^[41]。

2.3 田间管理措施对土壤 N₂O 排放的影响

2.3.1 施氮肥量对土壤 N₂O 排放的影响

施加氮肥会增加土壤氮素含量,增加硝化和反 硝化过程所需的底物 NO_3^- 和 NO_4^+ ;同时刺激作物根系 生长和分泌物的增长,进而影响土壤 N_2O 的排放^[42]。 由图 3a 可知,当施氮肥量 60 kg·hm⁻²时,生物炭可 减弱土壤 N_2O 的排放,但影响效果不显著(P>0.05)。 施加生物炭条件下,土壤 N_2O 排放量的降低率随施 氮肥量的增加而降低,表明施加生物炭对土壤 N_2O 的减排效果呈减弱趋势。这是因为农田施氮肥改变 了土壤 C/N, 显著增加了土壤中铵态氮和硝态氮的 含量, 增强了硝化作用和反硝化作用强度, 促进了 土壤 N₂O 的产生和排放^[43]。且土壤中 Nos 酶的还原 性随施氮肥量的增加而增强, 增大了反硝化过程气 体产物中 N₂O 的比例^[30]。而施加的生物炭改善了土 壤微环境,调控土壤微生物群落组成和多样性, 退 化土壤中氮相关的微生物菌群丰度, 抑制土壤 N₂O 的产生^[44], 生物炭对土壤排放的 N₂O 的吸附能力有 限。因此, 生物炭减排土壤 N₂O 的效果随施氮肥量 的增加而衰退。

图 3 生物炭在不同田间管理措施下对土壤 N₂O 排放的影响(土壤 N₂O 排放量变化率)

Fig. 3 Change rates of soil N₂O emission caused by biochar application under different field manager measures 各散点的误差线表示 95%置信区间, X 轴线表示 Y=0。若误差线与 X 轴线相交, 表示处理和对照之间差异不显著(P>0.05)。误差线上的 数字代表样本数。Error bars represent 95% confidence intervals, horizontal axis denotes Y=0 line. If 95% confidence intervals go across the horizontal axis, difference between biochar application and control is significant (P > 0.05). Number above the error bars is sample size.

2.3.2 覆膜对土壤 N₂O 排放的影响

覆膜通过改变土壤温度和湿度影响土壤生态环 境,进而影响土壤 N₂O 的产生、传输和排放。由图 3b 可知, 施加生物炭对覆膜和不覆膜土壤 N₂O 排放 的减弱作用显著(P<0.05)。覆膜条件下, 土壤 N₂O 排 放量的降低率为 25.3%, 较不覆膜增大 6.2%, 表明 生物炭对覆膜土壤 N₂O 的减排效果优于不覆膜土 壤。因为地膜具有物理阻隔作用,隔绝了土壤蒸发 水分向外散发的通道,增加了土壤含水量^[45],促进 土壤有机质的矿化过程、增强土壤反硝化作用、从 而促进土壤 N₂O 的排放; 且地膜吸收大量的太阳辐 射、减少土壤与大气之间的水热交换、提高土壤温 度,提升土壤硝化菌和反硝化菌的活性和有机质分 解速率^[46],促进土壤 N₂O 的排放。覆膜使土壤排放 的 N₂O 积聚在狭小的湿热空间内, 提高 N₂O 浓度, 进而提高生物炭对 N₂O 的吸收效率, 使生物炭对覆 膜土壤 N₂O 的减排效果优于不覆膜土壤。

2.4 不同生物炭性质与添加量对土壤 N₂O 排放的影响2.4.1 生物炭制造温度、比表面积和 C/N 对土壤

N₂O 排放的影响

生物炭制造温度、比表面积和 C/N 均影响土壤 N_2O 的排放。由图 4a 可知, 施加生物炭条件下, 生 物炭制造温度显著降低土壤 N₂O 排放量(P<0.05)。 当 生 物 炭 制 造 温 度 <400 、 400~500 500~600 和 600 时, 土壤 N₂O 排放量的降低 率分别为 32.6%、43.9%、35.6%和 51.3%。不同生 物炭制造温度条件下, 生物炭对土壤 N₂O 的减弱作 用显著(P < 0.05), 这与 Cayuela 等^[47]的研究结果一致, 这是因为生物炭表面官能团随制造温度的变化而改 变;随着制造温度的增大,生物炭的芳香性结构增 加,极性减弱,稳定性增强^[48],从而影响土壤 N₂O 的排放。研究发现,低温制造的生物炭微孔分布较 均匀,孔道规则,温度升高后,微孔分布相对不规 则;温度升至阈值时,生物炭微孔孔壁坍塌,表面 粗糙度增加^[49],这与土壤 N₂O 排放量随生物炭制造 温度的变化规律一致。

由图 4b 可知, 生物炭比表面积对土壤 N₂O 的排 放无显著影响(*P*>0.05)。当生物炭比表面积<100 和

100 m²·g⁻¹ 时, 土壤 N₂O 排放量的降低率分别为 15.5%和 35.1%, 施加生物炭对土壤 N₂O 的减排效果 随生物炭比表面积的增加而增强。因为生物炭比表 面积影响土壤持水性能和吸附有机物的能力; 随着 生物炭比表面积的增加, 生物炭孔隙度增大, 连续 片结构越明显, 并使生物炭内共轭芳香族化合物晶 体结构发生旋转或偏移, 增强了生物炭吸附 N₂O 的 能力^[50]。

由图 4c 可知, 当生物炭 C/N 处于 10~30 时, 生

物炭 C/N 对土壤 N₂O 排放的影响不显著(P>0.05), 而生物炭 C/N 处于 30~500 时, 生物炭 C/N 的影响达 到显著水平(P<0.05)。生物炭对土壤 N₂O 的减排作 用随生物炭 C/N 的增加呈先增大后趋于稳定的变化 趋势, 这是因为施加生物炭的 C/N 越高, 土壤微生物 活动加剧, 但硝化作用和反硝化作用所需的氮素供应 不足, 促进了微生物对土壤原有矿质氮素的生物固 定, 加剧了微生物种间竞争, 从而使土壤 N₂O 排放量 降低^[51], 增强了生物炭对土壤 N₂O 排放的吸附作用。

图 4 生物炭性质和施加量对土壤 N₂O 排放的影响(土壤 N₂O 排放量变化率)

Fig. 4 Change rates of soil N₂O caused emission by biochar application under different biochar properties and quantities 各散点的误差线表示 95%置信区间, X 轴线表示 Y=0。若误差线与 X 轴线相交, 表示处理和对照之间差异不显著(P>0.05)。误差线上的 数字代表样本数。Error bars represent 95% confidence intervals, horizontal axis denotes Y=0 line. If 95% confidence intervals go across the horizontal axis, difference between biochar application and control is significant (P > 0.05). Number above the error bars is sample size.

2.4.2 生物炭施加量对土壤 N₂O 排放的影响

随着生物炭施加量的增加, 生物炭对土壤铵态 氮的吸附面积增大, 并改变了土壤电子受体和氧化 还原电位^[52], 从而影响土壤 N₂O 的排放量。由图 4d 可知, 当生物炭施加量处于 20~160 t·hm⁻² 时, 生物 炭显著降低土壤 N₂O 排放量(P<0.05), 生物炭对土 壤 N₂O 的减排效果随施加量的增加而增强。生物炭 施加量<20 t·hm⁻²时, 生物炭对土壤 N₂O 的减排效果 不显著(P>0.05)。这是因为生物炭对硝化和反硝化作 用所需底物的吸附作用随生物炭添加量的增加而增 强,从而减弱了土壤微生物产生 N₂O 的能力^[53]; 生 物炭在土壤中形成的新孔隙度也随生物炭施加量的 增加而增大,改善了厌氧微生物菌落的功能性和多 样性,减少反硝化菌的数量,降低了土壤的反硝化 潜力,使土壤 N₂O 的排放量减少^[54]。该结论与李松 等^[55]和贾俊香等^[56]的研究结果一致。

2.5 施加生物炭土壤 N₂O 排放的区域性特征 生物炭对中国不同地区农田土壤 N₂O 排放的影

响程度不同(图 5)。由图 5 可知,对于华南、华东、 华中和东北地区,施加生物炭显著降低农田土壤 N₂O 的排放量(*P*<0.05)。施加生物炭使华南、华东、 华中和东北地区土壤 N₂O 排放量分别减小 31.4%、

图 5 中国不同地区施加生物炭对土壤 N₂O 排放量变化 率的影响

Fig. 5 Effect of biochar application on change rate of soil N₂O emission in different regions of China

各散点的误差线表示 95%置信区间, X 轴线表示 Y=0。若误差 线与 X 轴线相交, 表示处理和对照之间差异不显著(P>0.05)。误差线 上的数字代表样本数。Error bars represent 95% confidence intervals, horizontal axis denotes Y=0 line. If 95% confidence intervals go across the horizontal axis, difference between biochar application and control is significant (P > 0.05). Number above the error bars is sample size.

27.2%、26.7%和 21.5%。而在西北地区,施加生物 炭使土壤 N₂O 排放降低 17.2%,未达到显著水平 (*P*>0.5)。综上可知,施加生物炭对华南地区土壤 N₂O 的减排效果最好,西北地区最差。这与当地的 气候条件、土壤性质和田间管理方式等因素密切相 关。我国各地区气候特征具有明显的区域性,年降 水量从东南向西北内陆递减,长江以北地区的降水

量较少,而以南地区降雨丰富,华南地区的降雨量 最多^[57]; 而生物炭对土壤 N₂O 的减排作用随年降雨 量的增加而增强、因此、生物炭对华南地区土壤 N_2O 的减排效果最好。年均温由南向北逐渐递减、而 地区季节温度差异逐渐增大[56],华南、华东、华中、 西北和东北地区年均温的空间变化趋势不明显,使 生物炭对各地区土壤 N₂O 排放的影响规律不明显。 年日照时数呈北多南少、西多东少的空间格局,高 纬度地区高于低纬度地区, 使生物炭对土壤 N₂O 排 放的影响程度随之改变^[58]。此外,土壤性质存在空 间变异性,不同性质的土壤在空间分布上具有一定 的相关性和随机性^[59],使生物炭对土壤 N₂O 排放影 响的区域性特征更显著。不同的种植方式导致作物 根系对土壤理化环境的影响和根系分泌物均不同、 进而影响土壤形成 N₂O 的硝化和反硝化等微生物过 程^[60]。不同的田间管理措施通过改变土壤水热状况、 孔隙度和微生物群落结构等,直接或间接影响土壤 N₂O 的排放^[61]。这些因素在空间分布上均存在区域 性, 各因素相互作用使生物炭对土壤 N₂O 的减排效 果也存在区域性特征。

2.6 施加生物炭对土壤 N₂O 排放影响的通径分析

生物炭对土壤 N₂O 的减排效果受年降雨量、年 均温、年日照时数、土壤 pH、土壤质地、施氮肥量、 覆膜、生物炭性质及添加量等因素相关。为分析引 起土壤 N₂O 减排效果差异的主导因素,选取年降雨 量(X_1)、年均温(X_2)、年日照时数(X_3)、土壤 pH(X_4)、 土壤质地(X_5)、施氮肥量(X_6)、生物炭制造温度(X_7)、 生物炭比表面积(X_8)、生物炭 C/N(X_9)、生物炭施加 量(X_{10})和土壤 N₂O 排放量降低率(I)等定量参数进行 通径分析,以探求主导影响因素,结果见表 2。

影响因素	直接通径系数 Direct path coefficient		间接通径系数 Indirect path coefficient									总通径系数
Factor		$X_1 \rightarrow I$	$X_2 \rightarrow I$	$X_3 \rightarrow I$	$X_4 \rightarrow I$	$X_5 \rightarrow I$	$X_6 \rightarrow I$	$X_7 \rightarrow I$	$X_8 \rightarrow I$	$X_9 \rightarrow I$	$X_{10} \rightarrow I$	coefficient
X_1	0.382		-0.167	0.232	0.352	0.137	-0.112	0.033	-0.108	-0.273	-0.159	0.317
X_2	0.419	0.025		-0.203	0.297	0.142	-0.042	-0.208	0.121	-0.153	-0.057	0.341
X_3	0.374	0.390	0.265		0.237	-0.152	0.018	-0.152	-0.145	-0.334	-0.247	0.254
X_4	0.306	-0.154	-0.152	0.057		0.235	-0.125	0.086	-0.173	-0.006	0.132	0.206
X_5	0.279	0.082	0.176	-0.128	0.230		-0.165	0.097	-0.130	-0.127	-0.121	0.193
X_6	0.467	0.037	0.105	-0.189	0.216	-0.113		0.096	-0.162	0.135	-0.064	0.528
X_7	0.124	-0.068	-0.165	0.037	-0.112	-0.032	0.019		0.207	-0.017	0.102	0.095
X_8	0.158	-0.071	0.039	-0.165	0.268	0.147	-0.104	-0.082		-0.043	-0.045	0.102
X_9	0.323	-0.015	-0.122	-0.045	0.126	-0.106	0.037	0.058	0.044		-0.069	0.231
X_{10}	0.451	-0.004	0.026	-0.042	0.135	-0.072	-0.101	0.029	0.020	-0.037		0.405

表 2 施加生物炭的土壤 N₂O 排放效应的影响因子通径分析结果 Table 2 Path analysis results of factors influencing effects of biochar application on soil N₂O emission

X₁、X₂、X₃、X₄、X₅、X₆、X₇、X₈、X₉、X₁₀分别表示年降雨量、年均温、年日照时数、土壤 pH、土壤质地、施氮肥量、生物炭制造温度、 生物炭比表面积、生物炭 C/N、生物炭施加量; I 为土壤 N₂O 排放量降低率。X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉ and X₁₀ represent annual mean precipitation, annual mean temperature, annual sunshine hours, soil pH, soil texture, N fertilizer input, biochar manufacturing temperature, specific surface area of biochar, C/N ratio of biochar and biochar application amount, respectively. *I* represents decrease rate of soil N₂O emissions.

由表 2 可知, 各影响因素的直接通径系数的大 小顺序为: X_6 、 X_{10} 、 X_2 、 X_1 、 X_3 、 X_9 、 X_4 、 X_5 、 X_8 、 X7。表明施氮肥量、生物炭施加量和年均温是影响 生物炭减排效果的三大主导因素,年降雨量和年日 照时数对生物炭减排效果的直接影响程度接近,而 生物炭制造温度和比表面积的直接影响较小;且各 影响因素对生物炭减排效果的影响均具有直接正效 应。间接通径系数表示各单因素通过其他因素对生 物炭减排效果的影响程度。由表 2 可知, 气象因素 中、年均温和年降雨量均通过土壤 pH 对生物炭减 排效果的间接影响最大,年日照时数通过年降雨量 对生物炭减排效果的间接影响最大; 土壤性质中, 土壤 pH 通过土壤质地间接促进生物炭的减排作用, 土壤质地通过土壤 pH 对生物炭减排效果的间接影 响最大, 土壤 pH 和土壤质地之间的相互作用效应 较明显。田间管理因素中,施氮肥量通过土壤 pH 对 生物炭减排效果的间接影响最大;生物炭性质中, 生物炭制造温度通过生物炭比表面积对生物炭减排 效果的间接影响最大, 生物炭比表面积、C/N 和生物 炭施加量均通过土壤 pH 对生物炭减排效果的间接 影响最大。从总通径系数可知,施氮肥量、生物炭 施加量、年均温和年降雨量是影响生物炭减排效果 的最主要因素,pH 的间接影响对总通径系数贡献较 大、因此、合理施用氮肥和生物炭且适当控制土壤 酸碱度有利于中国农田土壤 N₂O 的减排。

3 结论

1)生物炭施加条件下,中国农田土壤 N₂O 排放减 少,但减排的程度与地区的降水量、温度、日照时 数、土壤 pH 和质地、施氮量、农田地膜覆盖等外部 因素有关。

2)制造温度、比表面积、C/N、施加量等生物炭 本身性质对土壤 N₂O 排放亦存在一定影响,其中生 物炭 C/N 和施加量影响较大。

3)施加生物炭显著降低华南、华东、华中和东北 地区土壤 N₂O 的排放量,而西北地区不显著。

因此, 在施加生物炭条件下, 实现 N₂O 减排或 提高生物炭减排效果需综合考虑气候、土壤性质、 田间管理方式、生物炭性质和施加量等因素。

参考文献 References

- UNEP. The emissions gap report[R]. Nairobi: United Nations Environment Programme, 2013
- [2] 赵自超,韩笑,石岳峰,等. 硝化和脲酶抑制剂对华北冬小麦-夏玉米轮作固碳减排效果评价[J]. 农业工程学报, 2016,

32(6): 254-262

Zhao Z C, Han X, Shi Y F, et al. Effect of nitrification and urease inhibitor on carbon sequestration and greenhouse gas emissions in winter wheat and summer maize rotation system in North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 254–262

 [3] 兰宇,孟军,杨旭,等.秸秆不同还田方式对棕壤 N₂O 排放 和土壤理化性质的影响[J].生态学杂志,2015,34(3): 790-796

Lan Y, Meng J, Yang X, et al. Effects of different straw incorporation ways on N₂O emission and soil physicochemical properties of brown soil[J]. Chinese Journal of Ecology, 2015, 34(3): 790–796

- [4] Li B, Fan C H, Zhang H, et al. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China[J]. Atmospheric Environment, 2015, 100: 10–19
- [5] 王欣, 尹带霞, 张凤, 等. 生物炭对土壤肥力与环境质量的 影响机制与风险解析[J]. 农业工程学报, 2015, 31(4): 248-257

Wang X, Yin D X, Zhang F, et al. Analysis of effect mechanism and risk of biochar on soil fertility and environmental quality[J]. Transactions of the CSEA, 2015, 31(4): 248–257

- [6] Karhu K, Mattila T, Bergström I, et al. Biochar addition to agricultural soil increased CH₄ uptake and water holding capacity-results from a short-term pilot field study[J]. Agriculture, Ecosystems & Environment, 2011, 140(1/2): 309–313
- [7] Nieder R, Benbi D K, Scherer H W. Fixation and defixation of ammonium in soils: A review[J]. Biology and Fertility of Soils, 2011, 47(1): 1–14
- [8] Zavalloni C, Alberti G, Biasiol S, et al. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study[J]. Applied Soil Ecology, 2011, 50: 45–51
- [9] 何飞飞, 荣湘民, 梁运姗, 等. 生物炭对红壤菜田土理化性 质和 N₂O、CO₂ 排放的影响[J]. 农业环境科学学报, 2013, 32(9): 1893–1900
 He F F, Rong X M, Liang Y S, et al. Effects of biochar on soil physichemical properties and N₂O, CO₂ emissions from vegetable-planting red soil[J]. Journal of Agro-Environment Science, 2013, 32(9): 1893–1900
- [10] Li B, Fan C H, Xiong Z Q, et al. The combined effects of nitrification inhibitor and biochar incorporation on yield-scaled N₂O emissions from an intensively managed vegetable field in southeastern China[J]. Biogeosciences, 2015, 12(6): 2003–2017
- [11] Liu X Y, Ye Y X, Liu Y M, et al. Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China[J]. Agricultural Systems, 2014, 129: 22–29
- [12] 王军,施雨,李子媛,等. 生物炭对退化蔬菜地土壤及其修复过程中 N₂O 产排的影响[J]. 土壤学报,2016,53(3): 713-723

Wang J, Shi Y, Li Z Y, et al. Effects of biochar application on N_2O emission in degraded vegetable soil and in remediation

process of the soil[J]. Acta Pedologica Sinica, 2016, 53(3): 713-723

- [13] Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150–1156
- [14] Challinor A J, Watson J, Lobell D B, et al. A meta-analysis of crop yield under climate change and adaptation[J]. Nature Climate Change, 2014, 4(4): 287–291
- [15] 张冉,赵鑫, 濮超, 等. 中国农田秸秆还田土壤 N₂O 排放及其 影响因素的 Meta 分析[J]. 农业工程学报, 2015, 31(22): 1-6 Zhang R, Zhao X, Pu C, et al. Meta-analysis on effects of residue retention on soil N₂O emissions and influence factors in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 1-6
- [16] 田康,赵永存,邢喆,等.中国保护性耕作农田土壤有机碳 变化速率研究——基于长期试验点的 Meta 分析[J]. 土壤学 报, 2013, 50(3): 433-440
 Tian K, Zhao Y C, Xing Z, et al. A meta-analysis of long-term

experiment data for characterizing the topsoil organic carbon changes under different conservation tillage in cropland of China[J]. Acta Pedologica Sinica, 2013, 50(3): 433–440

- [17] 张军涛,李哲.中国半湿润/半干旱类型及区域划分指标的研究[J]. 地理科学进展, 1999, 18(3): 230-237
 Zhang J T, Li Z. A study on demacation indexes between subhumid and semiarid sectors in China[J]. Progress in Geography, 1999, 18(3): 230-237
- [18] 李飞, 王春, 赵军, 等. 中国陆地多年平均积温空间化研究[J]. 自然资源学报, 2010, 25(5): 778-784
 Li F, Wang C, Zhao J, et al. The spatialization of multi-year average accumulated temperature in China[J]. Journal of Natural Resources, 2010, 25(5): 778-784
- [19] Stocker T F, Qin D, Plattner G K, et al. IPCC: Climate change 2013: The physical science basis[C]//Contribution of Working Group to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 710–719
- [20] 赵爱琴,魏秀菊,朱明. 基于 Meta-analysis 的中国马铃薯地膜 覆盖产量效应分析[J]. 农业工程学报, 2015, 31(24): 1–7
 Zhao A Q, Wei X J, Zhu M. Meta analysis on impact of plastic film on potato yield in China[J]. Transactions of the CSAE, 2015, 31(24): 1–7
- [21] Bax L, Yu L M, Ikeda N, et al. A systematic comparison of software dedicated to meta-analysis of causal studies[J]. BMC Medical Research Methodology, 2007, 7: 40
- [22] 苑俊丽,梁新强,李亮,等.中国水稻产量和氮素吸收量对
 高效氮肥响应的整合分析[J].中国农业科学,2014,47(17):
 3414–3423

Yuan J L, Liang X Q, Li L, et al. Response of rice yield and nitrogen uptake to enhanced efficiency nitrogen fertilizer in China: A meta-analysis[J]. Scientia Agricultura Sinica, 2014, 47(17): 3414–3423

 [23] 郑凤英,彭少麟. 生态学整合分析中两种常用效应值的实例应用比较[J]. 生态科学, 2005, 24(3): 250-253
 Zheng F Y, Peng S L. Comparison of two effect sizes of meta-analysis commonly used in ecology[J]. Ecologic Science, 2005, 24(3): 250-253

- [24] 郑侃,何进,李洪文,等.中国北方地区深松对小麦玉米产 量影响的 Meta 分析[J].农业工程学报,2015,31(22):7-15 Zheng K, He J, Li H W, et al. Meta-analysis on maize and wheat yield under subsoiling in northern China[J]. Transactions of the CSEA, 2015, 31(22):7-15
- [25] Morgan P B, Ainsworth E A, Long S P. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield[J]. Plant, Cell & Environment, 2003, 26(8): 1317–1328
- [26] 李晓彬, 汪有科, 张平. 充分灌溉下梨枣树茎直径动态变 化及 MDS 影响因子的通径分析[J]. 农业工程学报, 2011, 27(4): 88-93
 Li X B, Wang Y K, Zhang P. Dynamic changes of pear jujube

stem diameter and path analysis of MDS influencing factors with full irrigation[J]. Transactions of the CSAE, 2011, 27(4): 88–93

- [27] 孙世坤, 王玉宝, 吴普特, 等. 小麦生产水足迹区域差异及 归因分析[J]. 农业工程学报, 2015, 31(13): 142-148
 Sun S K, Wang Y B, Wu P T, et al. Spatial variability and attribution analysis of water footprint of wheat in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(13): 142-148
- [28] Koponen H T, Martikainen P J. Soil water content and freezing temperature affect freeze-thaw related N₂O production in organic soil[J]. Nutrient Cycling in Agroecosystems, 2004, 69(3): 213–219
- [29] Gundale M J, DeLuca T H. Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal[J]. Forest Ecology and Management, 2006, 231(1/3): 86–93
- [30] 刘少华, 严登华, 翁白莎, 等. 近 50 a 中国 10 有效积 温时空演变[J]. 干旱区研究, 2013, 30(4): 689-696
 Liu S H, Yan D H, Weng B S, et al. Spatiotemporal evolution of effective accumulated temperature 10 in China in recent 50 years[J]. Arid Zone Research, 2013, 30(4): 689-696
- [31] 朱永官, 王晓辉, 杨小茹, 等. 农田土壤 N₂O 产生的关键微 生物过程及减排措施[J]. 环境科学, 2014, 35(2): 792-800 Zhu Y G, Wang X H, Yang X R, et al. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies[J]. Environmental Science, 2014, 35(2): 792-800
- [32] 杨毅, 黄玫, 刘洪升, 等. 土壤呼吸的温度敏感性和适应性研究进展[J]. 自然资源学报, 2011, 26(10): 1811-1820
 Yang Y, Huang M, Liu H S, et al. The interrelation between temperature sensitivity and adaptability of soil respiration[J]. Journal of Natural Resources, 2011, 26(10): 1811-1820
- [33] 李彬波,曾科,李瑞,等.作物生长对土壤 N₂O 排放影响的研究进展[J].土壤通报,2015,46(4):1003-1010
 Li B B, Zeng K, Li R, et al. A review on soil N₂O emission as influenced by crop growth[J]. Chinese Journal of Soil Science, 2015,46(4):1003-1010
- [34] 张玉铭, 胡春胜, 张佳宝, 等.农田土壤主要温室气体 (CO₂、CH₄、N₂O)的源/汇强度及其温室效应研究进展[J].中 国生态农业学报, 2011, 19(4): 966–975

Zhang Y M, Hu C S, Zhang J B, et al. Research advances on source/sink intensities and greenhouse effects of CO_2 , CH_4 and N_2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966–975

- [35] Van Den Heuvel R N, Bakker S E, Jetten M S M, et al. Decreased N₂O reduction by low soil pH causes high N₂O emissions in a riparian ecosystem[J]. Geobiology, 2011, 9(3): 294–300
- [36] Nägele W, Conrad R. Influence of soil pH on the nitrate-reducing microbial populations and their potential to reduce nitrate to NO and N₂O[J]. FEMS Microbiology Letters, 1990, 74(1): 49–57
- [37] Luo Y, Durenkamp M, De Nobili M, et al. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH[J]. Soil Biology and Biochemistry, 2011, 43(11): 2304–2314
- [38] Yang W H, Weber K A, Silver W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538–541
- [39] 徐华, 邢光熹, 蔡祖聪, 等. 土壤水分状况和质地对稻田 N₂O 排放的影响[J]. 土壤学报, 2000, 37(4): 499-505 Xu H, Xing G X, Cai Z C, et al. Effect of soil water regime and soil texture on N₂O emission from rice paddy field[J]. Acta Pedologica Sinica, 2000, 37(4): 499-505
- [40] 赵苗苗,张文忠,裴瑶,等.农田温室气体 N₂O 排放研究进展[J]. 作物杂志, 2013, (4): 25-31
 Zhao M M, Zhang W Z, Pei Y, et al. Research advances on N₂O emission in agricultural soil[J]. Crops, 2013, (4): 25-31
- [41] Rochette P, Angers D A, Chantigny M H, et al. N₂O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures[J]. Canadian Journal of Soil Science, 2008, 88(2): 175–187
- [42] Hansen S, Mæhlum J E, Bakken L R. N₂O and CH₄ fluxes in soil influenced by fertilization and tractor traffic[J]. Soil Biology and Biochemistry, 1993, 25(5): 621–630
- [43] He F F, Jiang R F, Chen Q, et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in northern China[J]. Environmental Pollution, 2009, 157(5): 1666–1672
- [44] 顾美英,刘洪亮,李志强,等.新疆连作棉田施用生物炭对 土壤养分及微生物群落多样性的影响[J].中国农业科学, 2014,47(20):4128-4138
 Gu M Y, Liu H L, Li Z Q, et al. Impact of biochar application on soil nutrients and microbial diversities in continuous cultivated cotton fields in Xinjiang[J]. Scientia Agricultura Sinica, 2014, 47(20): 4128-4138
- [45] 苏旺, 屈洋, 冯佰利, 等. 沟垄覆膜集水模式提高糜子光合 作用和产量[J]. 农业工程学报, 2014, 30(13): 137–145
 Su W, Qu Y, Feng B L, et al. Photosynthesis characteristics and yield of broomcorn millet under film mulching on ridge-furrow for harvesting rainwater model in semi-arid region of northern Shaanxi[J]. Transactions of the CSAE, 2014, 30(13): 137–145
- [46] 李丽丽,李非里,刘秋亚,等.覆膜对土壤-莴苣体系氮素 分布和植物吸收的影响[J]. 生态学报,2011,31(13):

3811-3819

Li L L, Li F L, Liu Q Y, et al. Effect of plastic film mulching on the distribution and translocation of nitrogen in soil-lettuce system[J]. Acta Ecologica Sinica, 2011, 31(13): 3811–3819

- [47] Cayuela M L, Van Zwieten L, Singh B P, et al. Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis[J]. Agriculture, Ecosystems & Environment, 2014, 191: 5–16
- [48] 陆海楠,胡学玉,刘红伟.不同裂解条件对生物炭稳定性的影响[J].环境科学与技术,2013,36(8):11-14
 Lu H N, Hu X Y, Liu H W, et al. Influence of pyrolysis conditions on stability of biochar[J]. Environmental Science & Technology, 2013, 36(8):11-14
- [49] 张继义, 蒲丽君, 李根. 秸秆生物碳质吸附剂的制备及其吸附性能[J]. 农业工程学报, 2011, 27(S2): 104-109
 Zhang J Y, Pu L J, Li G. Preparation of biochar adsorbent from straw and its adsorption capability[J]. Transactions of the CSAE, 2011, 27(S2): 104-109
- [50] 王震宇,刘国成, Xing M, 等. 不同热解温度生物炭对 Cd()的吸附特性[J]. 环境科学, 2014, 35(12): 4735-4744
 Wang Z Y, Liu G C, Xing M, et al. Adsorption of Cd () varies with biochars derived at different pyrolysis temperature[J]. Environmental Science, 2014, 35(12): 4735-4744
- [51] 王效琴, 李文圣, 王旭东, 等. 不同泌乳期奶牛粪便碳氮变 化与温室气体排放特点研究[J]. 农业机械学报, 2016, 47(3): 179-185
 Wang X Q, Li W S, Wang X D, et al. Greenhouse gases emissions and varies of carbon and nitrogen of manure from different lactating period cows[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 179-185
- [52] Singh B P, Hatton B J, Singh B, et al. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils[J]. Journal of Environmental Quality, 2010, 39(4): 1224–1235
- [53] 徐楠楠,林大松,徐应明,等. 玉米秸秆生物炭对 Cd²⁺的吸 附特性及影响因素[J]. 农业环境科学学报, 2014, 33(5): 958-964
 Xu N N, Lin D S, Xu Y M, et al. Adsorption of aquatic Cd²⁺ by biochar obtained from corn stover[J]. Journal of
- Agro-Environment Science, 2014, 33(5): 958–964
 [54] Yanai Y, Toyota K, Okazaki M. Effects of charcoal addition on N₂O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments[J]. Soil Science and
- Plant Nutrition, 2007, 53(2): 181–188 [55] 李松, 李海丽, 方晓波, 等. 生物质炭输入减少稻田痕量温 室气体排放[J]. 农业工程学报, 2014, 30(21): 234–240 Li S, Li H L, Fang X B, et al. Biochar input to reduce trace greenhouse gas emission in paddy field[J]. Transactions of the CSAE, 2014, 30(21): 234–240
- [56] 贾俊香,熊正琴.秸秆生物炭对菜地 N₂O、CO₂ 与 CH₄排放 及土壤化学性质的影响[J].生态与农村环境学报,2016, 32(2):283-288

Jia J X, Xiong Z Q. Impact of application of maize stalk-derived biochar on soil properties of and N_2O , CO_2 and CH_4 emissions from vegetable fields[J]. Journal of Ecology

and Rural Environment, 2016, 32(2): 283-288

- [57] 刘华. 近 50 年中国降水和温度的统计分析和海洋对其影响 初步研究[D]. 青岛: 中国海洋大学, 2009
 Liu H. Statistical analysis on the precipitation and temperature over China in nearly 50 years and preliminary study on the impact of ocean[D]. Qingdao: Ocean University of China, 2009
- [58] 李慧群, 付遵涛, 闻新宇, 等. 中国地区日照时数近 50 年 来的变化特征[J]. 气候与环境研究, 2013, 18(2): 203-209
 Li H Q, Fu Z T, Wen X Y, et al. Characteristic analysis of sunshine duration change in China during the last 50 years[J]. Climatic and Environmental Research, 2013, 18(2): 203-209
- [59] 雷志栋,杨诗秀,许志荣,等. 土壤特性空间变异性初步研究[J]. 水利学报,1985,(9):10-21
 Lei Z D, Yang S X, Xu Z R, et al. Preliminary investigation of the spatial variability of soil properties[J]. Journal of Hydrau-

lic Engineering, 1985, (9): 10-21

- [60] 陈书涛, 黄耀, 郑循华, 等. 轮作制度对农田氧化亚氮排放的影响及驱动因子[J]. 中国农业科学, 2005, 38(10): 2053-2060
 Chen S T, Huang Y, Zheng X H, et al. Nitrous oxide emission from cropland and its driving factors under different crop rotations[J]. Scientia Agricultura Sinica, 2005, 38(10): 2053-2060
- [61] 成臣,曾勇军,杨秀霞,等.不同耕作方式对稻田净增温潜 势和温室气体强度的影响[J].环境科学学报,2015,35(6): 1887-1895

Cheng C, Zeng Y J, Yang X X, et al. Effect of different tillage methods on net global warming potential and greenhouse gas intensity in double rice-cropping systems[J]. Acta Scientiae Circumstantiae, 2015, 35(6): 1887–1895

欢迎订阅 2018 年《中国油料作物学报》

 ϕ

《中国油料作物学报》是由中国农业科学院油料作物研究所主办,科学出版社出版,全国唯一的有关油料作物专业 学术期刊。主要刊登油菜、大豆、花生、芝麻、向日葵、胡麻及其他特种油料作物有关品种资源、遗传育种、栽培生 理、土肥植保、综合加工利用以及品质测试技术等方面的首创性研究论文、综述专论等。主要供农业科研、教学和农 业技术人员查阅和参考。《中国油料作物学报》分别于2008年、2011年和2014年连续3届被评为中国精品科技期刊,多次 被评为全国优秀农业期刊和湖北省精品期刊。载文被国内外26家重要数据库收录,如《CAB Abstract》、《CA》、《WTI》、 《AgrisInternation》、中国科技论文统计源期刊、CEPS中文电子期刊(中国台湾)等。2015年版《中国科技期刊引证报告(核

心版)》公布的影响因子为0.812,在19种农艺学期刊中,综合评价总分排列第3位。载文已受到同行专家的广泛关注,是展示油料作物科研的重要窗口,欢迎国内外油料作物科技工作者踊跃投稿。请登陆本刊网站在线投稿,网址: http://www.jouroilcrops.cn。

《中国油料作物学报》双月出版(ISSN1007-9084, CN42-1429/S),邮局订阅,邮发代号: 38-13,每册定价25元;国外发行:中国国际图书贸易有限公司;国外代号:BM6551,每册定价20美元。也可直接向本刊编辑部订阅。

地址: 武昌徐东二路2号中国农业科学院油料作物研究所学报编辑部(430062) 电话: 027-86813823 传真: 027-86813823 E-mail: ylxb@oilcrops.cn 网址: http://www.jouroilcrops.cn

OIL CROP SCIENCE 征稿启事

OIL CROP SCIENCE 是中国农业科学院油料作物研究所新创办的,全国唯一的有关油料作物专业英文学术期刊。采 用国际通用的交流语言,实现扩大我国油料作物研究成果的国际化交流,促进我国油料作物学科发展,以及提升我国 油料作物科研及学术期刊的国际影响力和显示度的办刊宗旨。主要刊登油菜、大豆、花生、芝麻、向日葵、胡麻及其 他特种油料作物有关生物技术、品种资源、遗传育种、栽培生理、土肥植保、植物营养、功能性脂质化学、综合加工 利用以及品质测试技术等方面的首创性研究论文、综述专论等。本刊还发表研究简报、讨论文章以及相关的学术动态等;提 倡撰写简短的讨论文章,以活跃期刊学术气氛。OIL CROP SCIENCE 为季刊(ISSN2096-2428, CN42-1861/S),现向国内外油 料作物科研人员征集原创性英文稿件,投稿邮箱 ocs@oilcrops.en。投稿指南的详细信息请于 http://www.jouroilcrops.en 网 站的下载中心中下载。本刊不收取审稿费和版面费, 酎付稿酬。欢迎广大科研人员踊跃投稿。

地址: 武昌徐东二路2号中国农业科学院油料作物研究所OIL CROP SCIENCE编辑部(430062)

电话: 027-86728520 传真: 027-86728520 E-mail: ocs@oilcrops.cn