DOI: 10.11766/trxb201604190106

沙层厚度和粒径组成对覆沙黄土坡面产流产沙的影响*

谢林妤1 白玉洁1 张风宝1,27 杨明义1,2 李占斌1,2,3

(1西北农林科技大学水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌 712100)

(2中国科学院水利部水土保持研究所,陕西杨凌 712100)

(3西安理工大学水利水电学院,西安 710048)

摘 要 片沙覆盖黄土区是水蚀风蚀交错带内土壤侵蚀最为强烈的区域,研究该区内土壤侵蚀特征可对水蚀风蚀交错带水土流失的预报及防治提供理论依据。采用室内模拟降雨,研究黄土坡面不同覆沙厚度(2 cm、5 cm和10 cm)和沙层粒径组成(100% < 0.25 mm、75% < 0.25 mm +25% > 0.25 mm、50% < 0.25 mm +50% > 0.25 mm、未处理原沙和100% > 0.25 mm)对坡面产流产沙的影响。结果表明,覆沙黄土坡面较黄土坡面的初始产流时间明显延长,产流速率和产流量减小,产沙速率和产沙量增大,降雨过程中产流产沙波动性增大,且这些变化随覆沙厚度增加而明显加强;沙层粒径组成在不同覆沙厚度下对坡面产流产沙的影响不同,2 cm覆沙厚度坡面在降雨前期随粒径变粗产流产沙呈增大趋势,降雨后期无明显变化;5 cm覆沙厚度坡面随沙层粒径变粗产流速率呈增加趋势,降雨前期上覆粗粒径沙层坡面的侵蚀速率高于细粒径沙层坡面的产流过程为雨水垂直入渗一沙土界面潜流一沙层边缘渗流一地表径流,产沙过程为沙层边缘渗流侵蚀一沙层坍塌重力侵蚀一地表径流输移,明显不同于无覆沙黄土坡面的超渗产流方式及溅蚀一片蚀一细沟侵蚀的侵蚀发展过程。

关键词 覆沙黄土坡面;覆沙厚度;粒径组成;产流产沙

中图分类号 S157.1 文献标识码 A

水蚀风蚀交错带是黄土高原土壤侵蚀最为强 烈的区域^[1-3],也是黄河下游河床粗泥沙的主要源 区^[4-5]。该区域冬春季以风蚀为主,夏秋季以水蚀 为主^[6-7],土壤侵蚀在时间上交错,空间上重叠。 独特的多动力综合侵蚀条件和侵蚀特征形成了特殊 的地貌类型,其中以片沙覆盖黄土丘陵地貌最为 特殊,侵蚀产沙也最为强烈^[8]。片沙覆盖黄土丘 陵地貌因沙层和下伏黄土在入渗、容重、结构、孔 隙度、机械组成、导水率和持水性等方面的差异, 沙层与黄土层之间存在明显的沙土界面,呈典型的 沙土二元结构,目前这一特殊地貌类型土壤侵蚀过 程及机理在坡面尺度上的研究相对薄弱。张丽萍 等^[9-10]最早关注覆沙黄土坡面土壤侵蚀问题,通 过野外模拟降雨试验发现覆沙黄土坡面产生的径流 量小,若雨强小,则无径流产生,一旦产生径流, 则含沙量很大,产流产沙过程是垂直渗流一坡面潜 流一崩塌,明显不同于单一黄土坡面的产流产沙 过程。惠振江^[11]在野外考察中发现覆沙黄土坡面 存在沙土界面流,并对其进行了定性描述。汤珊珊 等^[12-13]和Xu等^[14]通过室内模拟降雨试验初步探 讨了覆沙坡面的侵蚀一搬运过程、径流一产沙关系 以及侵蚀泥沙颗粒分布情况,但该试验覆沙厚度较 薄(小于1.5 cm),且未涉及覆沙层颗粒组成对产 流产沙过程的影响。总之,片沙覆盖黄土丘陵区沙

http://pedologica.issas.ac.cn

^{*} 国家自然科学基金项目(41371283, 41571130082, 41330858)资助 Supported by the National Natural Science Foundation of China (Nos. 41371283, 41571130082 and 41330858)

 ^{*} 通讯作者 Corresponding author, E-mail: fbzhang@nwsuaf.edu.cn
 作者简介: 谢林妤(1992—), 女, 陕西榆林人, 硕士研究生, 研究方向为坡面土壤侵蚀。E-mail: xly1660014798@163.com
 收稿日期: 2016-04-19; 收到修改稿日期: 2016-06-23; 优先数字出版日期(www.cnki.net): 2016-07-14

土二元结构坡面产流产沙的研究主要集中在定性的 理论描述层面,定量化试验研究还很少,其坡面 侵蚀形成的特征、过程及机理的研究有待进一步 加强。

片沙覆盖黄土区分布范围广,因侵蚀动力条件、地貌条件及地表组成物质的差异,覆沙层厚度 和沙层颗粒组成存在差异,由此导致坡面产流产沙 特征不同。本文拟采用室内模拟降雨的方法,研究 不同覆沙厚度和沙层粒径组成对覆沙黄土坡面产流 产沙的影响,揭示覆沙黄土坡面的侵蚀特征,为该 区域水土流失的治理和预防提供理论依据。

1 材料与方法

本试验于2015年6-9月在中国科学院水利 部水土保持研究所人工模拟降雨大厅进行。试 验采用侧喷式人工模拟降雨系统,降雨器高度 为16 m,可保证所有雨滴在降落时达到终点速 度,降雨均匀度 > $80\%^{[15]}$ 。基于武秀荣等^[16] 研究结果,试验模拟陕西省神木县六道沟流域 (110°21′E~110°23′E,38°46′N~38°51′N)最为 典型的上层为沙、下伏为老黄土(离石黄土)的沙 土二元结构,试验用的老黄土和沙均取自神木六 道沟流域,黄土粉粒和黏粒含量高,沙的砂粒含 量高(表1)。黄土剔除根系杂物后过5 mm筛,沙 剔除根系等杂物后,过筛分为<0.25 mm和>0.25 mm两类,并按不同质量含量百分比进行混合,即 a(100%<0.25 mm)、b(75%<0.25 mm+25% >0.25 mm)、c(50%<0.25 mm+50%>0.25 mm)、d(未处理原沙)和e(100%>0.25 mm)5 个粒径组成。

试验土槽用长宽深为1.1 m×0.8 m×0.4 m的可

表1 取样点黄土与沙的主要物理性质

Table 1 Physical properties of the soil and original sand at the san	apling sites
--	--------------

材料类型 - Material _ type	粒径组成Particle size content(%)				灾舌	才 附 庄	饱和导水率	
	砂粒Sand (2~0.05 mm)		粉粒Silt	黏粒Clav	- 百里 Bulk density	TU际反 Porosity	Saturation conductivity	
	2 ~ 0.25 mm	0.25 ~ 0.05 mm	(0.05 ~ 0.002 mm)	(< 0.002 mm)	$(\rm g \ cm^{-3})$	(%)	coefficient	
							$(mm min^{-1})$	
沙Sand	75.71 ± 3.06	19.56 ± 2.17	3.73 ± 1.70	1.00 ± 0.88	1.60 ± 0.04	39.60 ± 2.40	1.40 ± 0.46	
黄土	23.21 ± 2.09		(((2)))) 55	10.16 ± 0.47	1.43 ± 0.03	46.20 ± 1.40	0.05 + 0.02	
Loess soil			00.05 ± 2.35				0.03 ± 0.02	

注:表中数据为平均值±标准差 Note: The data in the table are mean ± standard deviation

移动式变坡钢制土槽,底部10 cm×10 cm的间距打 孔,孔径为2 mm,以保证良好的渗透。土槽中间 用隔板分开,形成两个宽为0.4 m的小土槽,布设 平行试验。试验雨强为90 mm h⁻¹,坡度为15°。 装土前,土槽底部铺纱布,纱布上铺设10 cm的河 道砂,保证良好的透水性,河道砂上再铺纱布, 纱布上铺20 cm的黄土层,黄土层的含水率控制在 10%左右(结合黄土高原神木试验站野外监测和室 内前期准备结果而定),容重控制在1.40 g cm⁻³左 右,接近野外自然状况,为精确控制容重,黄土 按5 cm 厚度分层装土。土槽四周尽量压实以防止 边壁效应的发生。在黄土坡面上覆干沙层,干沙 自然倒在黄土层上并抹平,为防止沙层滑塌,沙 层最末端人为形成约30°的斜坡。沙层砂粒组成 为5组,各组沙的粒径组成粗砂(2~0.25 mm)、 细砂(0.25~0.05 mm)、粉粒(0.05~0.002 mm)和黏粒(<0.02 mm)的比例分别为a(0、80.52%、15.36%和4.12%)、b(25.00%、60.40%、11.52%和3.08%)、c(50.00%、40.26%、7.68%和2.06%)、d(75.71%、19.56%、3.73%和1.00%)和e(100%、0、0和0),每个粒径组成下有3个覆沙厚度(2 cm、5 cm和10 cm),做一组无覆沙黄土坡面试验,共计16场试验。试验开始前进行雨强率定,先用遮雨布盖住土槽,在土槽四周均匀布设4个雨量筒,接3 min降雨量,率定雨强。雨强达到要求后,快速揭开覆盖土槽的遮雨布并用秒表记时。降雨过程中记录初始产流时间,产流后每3 min在径流出口接全样。降雨结束后称全样质量,放置24 h澄清,用虹吸法排除清水,然后称泥沙及剩余水的质量,再将泥沙

搅拌均匀并取少量代表样称重烘干,测定其含水 量,以推算降雨过程的径流量和产沙量。

两个平行试验取平均值,利用Origin 8.0 软件 作图,利用SPSS 19.0 软件进行单变量方差分析 (ANOVA)。

2 结 果

2.1 不同沙层厚度和粒径组成下的初始产流时间 不同覆沙厚度黄土坡面较无覆沙黄土坡面初

始产流时间均明显延后,2 cm、5 cm和10 cm覆沙 厚度的初始产流时间分别较无覆沙黄土坡面的初 始产流时间延长了6~10倍、12~20倍和16~26倍 (图1)。初始产流时间随覆沙厚度的增加呈延长 趋势,2 cm覆沙厚度的初始产流时间小于5 cm和 10 cm覆沙厚度的初始产流时间。覆沙粒径较细的 a、b和c处理,5 cm和10 cm覆沙厚度的初始产流时间 间相差不大,且为2 cm覆沙厚度的初始产流时间2 倍以上。覆沙粒径较粗的d和e处理,5 cm覆沙厚度 的初始产流时间约为2 cm覆沙厚度的2倍,10 cm覆

Fig. 1 Initial runoff time as affected by thickness and particle size of sand cover on slope

表2 基于方差分析的各因子对覆沙坡面初始产流时间、60 min 累积产流量和侵蚀量影响的显著性及贡献率

Table 2	ANOVA of significance and	contribution rate of variou	s factors affecting	initial runoff time,	60 min runoff	volume and	l sediment
		yield on loess slop	es covered with ae	olian sand			

变量 Variable	来源 Source	平方和 Sum of squares	自由度 Degree of freedom	均方和 Sum of mean squares	F值 F value	显著性 Significance	因子贡献率 Contribution rate of each source (%)
初始产流时间	厚度 Thickness	2 226	2	1 113	80.86	0.000	68.03
Initial runoff	粒径 Particle size	179.5	4	44.88	3.26	0.041	3.85
time	交互 Interaction	620.0	8	77.50	5.63	0.002	15.77
	误差 Error	206.5	15	13.76			12.35
	总计 Total	3 232	29				
60 min产流量	厚度 Thickness	761.0	2	380.5	52.89	0.000	48.94
60 min runoff	粒径 Particle size	399.0	4	99.76	13.86	0.000	24.27
volume	交互 Interaction	257.7	8	32.21	4.48	0.006	13.12
	误差 Error	107.9	15	7.19			13.68
	总计 Total	1 526	29				
60 min侵蚀量	厚度 Thickness	139.4	2	69.68	7.12	0.007	13.53
60 min sediment	粒径 Particle size	145.0	4	36.25	3.70	0.027	11.96
yield	交互 Interaction	454.1	8	56.76	5.80	0.002	42.45
	误差 Error	146.8	15	9.78			32.06
	总计 Total	885.3	29				

http://pedologica.issas.ac.cn

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

沙厚度的初始产流时间约为5 cm覆沙厚度的2倍。 不同覆沙厚度下初始产流时间对沙层粒径组成变 化的响应不同,2 cm和5 cm覆沙厚度随覆沙粒径 的变粗初始产流时间整体均呈缩短趋势,10 cm覆 沙厚度随覆沙粒径变粗初始产流时间反而延长(c 除外)。方差分析结果显示,厚度、粒径及厚度 与粒径的交互作用对初始产流时间均有显著影响 (p<0.05)。厚度、粒径、厚度与粒径的交互作 用及其他不可控因子对初始产流时间变化的贡献分 别为68.03%、3.85%、15.77%和12.35%(表2), 覆沙厚度控制初始产流时间,粒径组成对初始产流 时间的影响较小。

2.2 不同沙层厚度和粒径组成下的产流过程

次降雨过程中,各覆沙厚度和粒径组成下产流 速率随降雨历时明显呈现两个阶段(图2),第一 阶段产流均呈迅速增大趋势,第二阶段呈稳定或波 动产流。其中无覆沙黄土坡面的产流速率整体大于 覆沙黄土坡面,无覆沙黄土坡面达到稳定产流的时 间较覆沙坡面短,覆沙黄土坡面产流在第二阶段的 波动性大于无覆沙黄土坡面。各粒径组成下的产流 速率尽管存在波动交织,但在沙层粒径组成较细的 a、b和c,2 cm覆沙厚度坡面的产流速率基本上大 于5 cm和10 cm覆沙厚度的产流速率,5 cm覆沙厚 度坡面的产流速率小于10 cm覆沙厚度的。覆沙粒

Fig. 2 Runoff yield rate on loess slopes the same in sand particle size composition, but different in thickness of sand cover

径组成为d和e条件下,5 cm覆沙厚度坡面的产流速 率和2 cm覆沙厚度的产流速率相接近,大于10 cm 覆沙厚度的产流速率,且均有明显波动。5 cm厚度 的覆沙粒径e出现产流速率大于无覆沙黄土坡面产 流速率的情况,5 cm和10 cm覆沙厚度坡面在降雨 过程中产流速率的波动性大于2 cm覆沙坡面。

随覆沙粒径变粗,2 cm和5 cm覆沙厚度下产流 速率增大阶段的持续时间有缩短趋势,粗粒径坡 面的产流速率能快速达到准稳定阶段(图3)。整 个降雨过程中,2 cm和10 cm覆沙厚度下不同粒径 组成坡面产流速率的差异小于5 cm覆沙厚度坡面。 2 cm覆沙厚度坡面在产流增加阶段不同粒径组成坡 面的产流速率相差较大,粗粒径覆沙(d和e)的产 流速率明显大于细粒径覆沙(a和b)的产流速率, 而在产流达到准稳定阶段后,不同粒径组成坡面的 产流速率呈交织波动,差异变小。5 cm覆沙厚度坡 面在整个降雨过程中,粗、细粒径覆沙坡面产流速 率差异较大,粗粒径(d和e)的产流速率明显大于

Fig. 3 Runoff yield rate on loess slopes the same in thickness of sand cover, but different in sand particle size composition

细粒径(a和b)的产流速率。10 cm覆沙厚度的坡 面,在不同覆沙粒径条件下,产流速率在产流增加 阶段的差异小于产流准稳定阶段,在准稳定阶段, 覆沙粒径不同的坡面产流速率交织分布,且波动 较大, 整个降雨过程随粒径变化产流速率并无明 显规律。

降雨60 min累积产流量进行的方差分析显示, 厚度、粒径及厚度与粒径的交互作用对降雨60 min 累积产流量均有显著影响(p<0.05)。各因子对 其变化的贡献率为厚度>粒径>不可控因子>厚 度与粒径的交互作用,分别为48.94%、24.27%、 13.86%和13.12%(表2)。

2.3 不同沙层厚度和粒径组成下的产沙过程

100%<0.25mm

3.0

2.5

无覆沙黄土坡面土壤侵蚀速率明显小于覆沙 坡面侵蚀速率,随覆沙厚度增加侵蚀速率呈增加趋 势, 整体表现为2 cm < 5 cm < 10 cm (图4)。坡 面侵蚀速率在次降雨过程中呈先增大、到达峰值后 又减小的变化模式。相对于2 cm覆沙厚度, 5 cm和 10 cm覆沙厚度的坡面侵蚀开始较晚,但其侵蚀速 率在短时间内迅速增加达到峰值,之后其侵蚀速 率明显高于2 cm覆沙厚度的。覆沙粒径较细(a和 b)时,2 cm覆沙厚度的侵蚀速率稍低于5 cm覆沙 厚度的,但相差不大; 10 cm覆沙厚度侵蚀速率在 产流开始后很短时间内迅速增大且明显大于2 cm和 5 cm覆沙厚度时侵蚀速率。覆沙粒径变粗(c,d和 e),2 cm覆沙厚度时的侵蚀速率明显小于5 cm和 10 cm覆沙厚度的, 5 cm和10 cm覆沙厚度侵蚀速率 的峰值基本接近,但达到峰值后,10 cm覆沙厚度 侵蚀速率相对5 cm覆沙厚度减小较慢。各厚度和粒 径下的侵蚀速率最终均有与一元坡面侵蚀速率一致

75%<0.25mm+25%>0.25mm

 $0 \,\mathrm{cm}$

2 cm

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

的趋势,随覆沙厚度增加,达到与一元坡面侵蚀速 率一致所需时间明显延长。

2 cm和5 cm覆沙厚度时,随覆沙粒径变粗,侵 蚀开始时间和侵蚀速率达到峰值的时间均提前, 10 cm覆沙厚度随粒径组成变化无明显规律(图5)。 2 cm覆沙厚度侵蚀开始阶段,细粒径覆沙坡面侵蚀 速率明显小于粗粒径覆沙坡面。随着降雨的进行, 细粒径覆沙坡面侵蚀速率逐渐增大,且大于粗粒径 覆沙坡面侵蚀速率;各粒径组成在降雨70 min后, 侵蚀速率基本相同。5 cm覆沙厚度在降雨约60 min 之前,粗粒径覆沙坡面侵蚀速率大于细粒径覆沙坡 面侵蚀速率,各粒径组成在降雨90 min后,侵蚀速 率趋于稳定,但较细覆沙坡面(a和b)的侵蚀速率 稍高于其他粒径组成。10 cm覆沙厚度坡面侵蚀速 率随粒径变化无明显规律,各粒径组成在降雨120 min以后,侵蚀速率开始相近并趋于稳定。覆沙厚 度越大,降雨过程中的侵蚀速率波动越明显。

降雨60 min累积侵蚀量的方差分析结果显示, 厚度、粒径及厚度与粒径的交互作用对降雨60 min 累积侵蚀量的变化均有显著影响(*p* < 0.05),厚

Fig. 5 Erosion rate on loess slopes the same in thickness of sand cover, but different in sand particle size composition

度、粒径、二者交互作用及不可控因子对60 min累 积侵蚀量变化的贡献率分别为13.53%、11.96%、 42.45%和32.06%(表2)。

3 讨 论

3.1 沙层厚度和粒径组成对初始产流时间的影响

无覆沙黄土坡面黏粒含量高、容重大、导水 率小,降雨时易形成结皮,属超渗产流,初始产流 时间很短^[17-18]。覆沙坡面沙层入渗明显大于黄土 层,降雨过程中沙层入渗快,存储雨水,延缓产 流,导致产流时间延长。随覆沙厚度增加,需湿润 沙层的水量和沙层蓄水总量均增加,降雨初期水 分垂直到达黄土层时间延长,因此延长了产流时 间。试验结果与汤珊珊等^[12]研究的结果一致。在 2 cm和5 cm覆沙厚度条件下,随覆沙粒径变粗,大 孔隙增加,水流通道易形成,沙层蓄水沿水流通道 的优先路径流出,因此产流时间提前。10 cm覆沙 厚度粒径较细的a、b和c,产流时间与5 cm覆沙厚 度相同粒径组成的产流速率相差不大,可能是因为 10 cm覆沙厚度较厚, a、b和c粒径组成存在较多的 细颗粒,垂直入渗过程中淋溶使细颗粒垂直迁移, 导致沙层孔隙堵塞,雨水不能很快渗入到沙土界 面,在沙土表层形成少量径流。试验过程中也发现 这一现象, 表层径流使初始产流时间相对提前, 且 与5 cm覆沙厚度的初始产流时间相差不大。覆沙粒 径较粗(d和e)时,初始产流时间为e>d,且初始 产流时间较5 cm覆沙厚度的明显延长,可能是因为 覆沙厚度对初始产流时间起了较明显作用。沙层较 厚且粒径较粗时,降雨垂直入渗的淋溶作用不足以 堵塞孔隙,垂直入渗的路径长,湿润消耗雨水多, 不能形成地表径流,而形成的是沙土界面流,属于 渗流范围。渗流流速相对于地表径流很慢,且需要 达到一定的水力坡度后才能产流,因此初始产流时 间明显延长。此外,随厚度增加,水分在沙层中的 运移过程更为复杂,偶然性和随机性增加,可能导 致出现10 cm 覆沙厚度下c粒径组成时初始产流时 间明显小于其他粒径组成。

3.2 沙层厚度和粒径组成对产流的影响

相对于黄土坡面,覆沙坡面沙层颗粒吸附及渗 流流速缓慢延长了入渗黄土层的时间,减少了径流 量;覆沙坡面以产生沙土界面流为主,属渗流,径 流从坡脚沙层坍塌处流出,部分存储在沙层中,随 沙层溯源侵蚀而释放,典型沙盖黄土坡面产流过程 为雨水垂直入渗一沙土界面潜流一沙层边缘渗流一 地表径流,不同于黄土坡面的超渗产流,因此,覆 沙黄土坡面较黄土坡面可明显降低产流速率。覆沙 厚度和沙层粒径组成对坡面产流的影响存在交互作 用,覆沙厚度较薄或较厚时,沙层粒径变化对产 流的影响不明显。覆沙较薄坡面(如2 cm)产流初 始阶段,粗粒径组成因孔隙大,垂直入渗很快到达 沙土界面,易形成沙土界面流,水流易流出且产流 速率大。相反,细粒径组成坡面不易快速产流,且 流速不大,部分雨水蓄积在沙层,但随降雨的进 行,薄覆沙坡面在沙层的蓄水达到饱和,开始全坡 面产流,沙粒组成变化对产流速率已无明显影响, 不同粒径组成坡面产流速率较为接近。覆沙较厚坡 面(如10 cm),覆沙厚度对产流的影响掩盖了粒 径组成变化对产流的影响,导致整个降雨过程中不 同粒径组成坡面产流速率相差不大,且无明显规律 性。粒径组成变化对5 cm覆沙厚度坡面产流有明显 影响,降雨过程中粗粒径坡面产流速率大于细粒径 组成坡面产流速率。说明沙层粒径组成对不同厚度 覆沙坡面产流的影响可能存在临界下线和临界上 线,较临界下线薄或者较临界上线厚的覆沙坡面, 粒径组成变化对产流速率的影响均不能被完全体现 出来。

不同覆沙厚度和粒径组成下产流特征及方式的 变化直接影响产流速率。对于薄覆沙坡面,产流早 且沙层易饱和导致全坡面蓄满产流,能维持较高的 产流速率;对于厚覆沙坡面,雨水入渗,主要形成 沙土界面流,产流较晚,产流开始是从坡脚沙土界 面处渗出,部分雨水存储在沙层,但随着侵蚀的开 始,沙层坍塌、溯源后退,出露的黄土坡面产流快 且量大,加之沙层蓄水的释放,也能够维持较高的 产流速率,这种情况可能弱化了覆沙厚度对产流速 率的影响。对于粒径组成的变化,粗粒径覆沙坡面 雨水容易下渗、出流,沙层的坍塌后退较快,能够 维持较高产流速率。细粒径覆沙坡面尽管入渗慢, 但能产生部分的地表径流,与沙层渗流相结合,也 能维持较高的产流速率,从而弱化了粒径组成变化 对于产流速率的影响。覆沙厚度和粒径组成及二者 交互作用决定沙层蓄水量、产流方式和产流时间, 各因子对产流量的贡献均较大且显著(表2)。此 外,覆沙黄土坡面不同于无覆沙黄土坡面,沙层无 黏结性,且能存贮一定的雨水,在湿润过程沙层基

质吸力变化不同于黏性土壤,在水力和本身重力作 用下,坍塌或发生重力侵蚀具有偶然性或随机性, 阻止或汇集径流,尤其覆沙较厚时更为明显,这使 得产流速率变化的波动性比较大, 甚至出现一些接 近或者大于黄土坡面的产流速率的值。

3.3 沙层厚度和粒径组成对产沙的影响

黄土具有一定的结构和黏性,降雨过程中黄 土坡面受雨滴击溅和径流冲刷,遵循溅蚀一片蚀一 细沟侵蚀的过程,降雨侵蚀力和径流侵蚀力一方面 要克服土壤之间的黏聚力,将土壤颗粒从土体中分 离出来,另一方面要从坡面输移出已分离的土壤颗 粒^[19-20]。覆沙黄土坡面的沙层颗粒之间基本无黏 性,大孔隙多,降雨在沙层垂直入渗形成沙土界面 流,基本不形成或形成少量地表径流。在坡脚沙层 和黄土层接触边缘,沙土界面流只要满足沙粒启动 条件,就能发生侵蚀,径流挟带沙粒输移出坡面。 此外沙层自然休止角小,内部无黏聚力,在沙土界 面流的作用下易侵蚀。典型覆沙坡面遵循垂直入 渗一潜流-渗流侵蚀-坍塌的侵蚀过程,这与张丽 萍等^[9]的野外试验结果一致。沙层越厚越易发生 坍塌,为径流输移提供了大量的沙源,尽管覆沙黄 土坡面产流晚,产流量小,但其侵蚀量大于无覆沙 黄土坡面,且随覆沙厚度增加,侵蚀量明显增大。 方差分析显示厚度与粒径组成对60 min累积侵蚀量 变化的贡献率较低, 而交互作用和误差项的贡献 明显较大(表2),首先是因为覆沙厚的坡面产流 晚,侵蚀时间短,沙层溯源侵蚀量相对小,不同降 雨历时不同因子的贡献可能存在差异;其次是泥沙 的输移受到径流影响明显,而在方差分析时未考虑 径流的作用,径流贡献被归到了误差项。此外,沙 层无黏性,厚度与粒径不同组合下的摩擦力、内应 力、颗粒成拱、渗流力及自身重力变化复杂,沙层 侵蚀具有随机性和不确定性。

覆沙厚度和粒径组成变化导致坡面产流方式 和侵蚀方式变化,直接影响侵蚀速率的变化。薄覆 沙坡面是蓄满产流, 侵蚀动力以径流为主, 且易发 生全坡面侵蚀。随覆沙厚度增加,沙层本身重力对 于沙层坍塌贡献增大,产流以沙层前缘出渗和释放 坍塌体蓄存雨水为主,侵蚀以沙层坍塌后退溯源侵 蚀为主。粗粒径覆沙坡面,易形成沙土界面流,侵 蚀以沙层坍塌后退溯源侵蚀为主,侵蚀速率增加较 快。此外,粗覆沙坡面,雨水下渗的淋溶作用导致 大量细颗粒在沙层中垂向迁移,易在沙土界面形成

一个泥浆层,泥浆层极有利于泥沙的输移。沙土界 面形成泥浆层的现象在覆沙较厚或较薄的坡面表现 均不明显,沙层较薄,易于蓄满而导致全坡面产流 和侵蚀, 而沙层过厚, 垂直淋溶的细颗粒物质不易 到达沙土界面,都难以在沙土界面形成泥浆层,这 可能是覆沙层粒径组成变化对产流产沙的影响在 5 cm覆沙厚度下比在2 cm和10 cm覆沙厚度下更为 明显的主要原因。对于细粒径覆沙坡面,降雨后难 以很快形成沙土界面流, 而形成的表层径流量少且 较晚,使得坍塌后退的溯源侵蚀和表层径流的侵蚀 均不强烈,因此,侵蚀开始阶段,细粒径覆沙坡面 的侵蚀速率小于粗粒径覆沙坡面。随着降雨的进 行,粗粒径覆沙坡面的沙层后退,泥沙输移距离明 显加长,侵蚀速率开始降低;相反,细粒径覆沙坡 面的沙土界面流开始加强,沙面形成一些小的细 沟, 坡面径流的汇集和沙层中水向细沟中释放, 导 致侵蚀力加强,细颗粒又容易被携带,加之沙层蓄 水增多,孔隙水压增大,渗流侵蚀增大,沙层稳定 性减弱,因此侵蚀量开始增加,并高于粗粒径覆沙 坡面的侵蚀量。降雨后期,坡面覆沙被侵蚀,覆沙 厚度和沙层粒径组成对侵蚀速率的影响基本消失, 坡面侵蚀逐渐趋于一致。次降雨过程中, 10 cm覆 沙厚度坡面侵蚀速率与产流速率相似,对沙粒粒径 组成变化的响应不明显,这主要是因为10 cm覆沙 厚度改变了产流方式和侵蚀方式,加之沙层厚度增 加,重力作用明显且具有偶然性和随机性,沙层前 缘随机坍塌直接影响其沙源供应,导致侵蚀出现明 显的波动性和不确定性。这也说明不同覆沙厚度下 沙层粒径组成对于覆沙坡面侵蚀影响的不一致,二 者存在明显交互作用。覆沙太薄或太厚时, 粒径组 成变化的作用体现不明显。粒径组成对于坡面侵蚀 的影响存在一个合理的覆沙厚度范围。

总之, 片沙覆盖黄土坡面是水蚀风蚀交错带 存在的一种特殊的沙土二元结构坡面,其产流产 沙过程和机理与一元结构坡面明显不同。结合已 有研究^[9-14]和本次试验结果发现,片沙覆盖黄土 坡面产流方式多样且随厚度变化而变化,沙层蓄满 产流、沙土界面流(渗流)及沙层溯源侵蚀后出露 黄土坡面上的地表径流都可能单独或同时发生,产 流过程及径流动力机制比较复杂,产流速率及产流 量在不同条件下存在多变性;同样片沙覆盖坡面产 沙机理尚不明确,降雨过程中,沙层的正压力、摩 擦力、有效应力、渗流力和孔隙水压力等对沙层共 同作用, 渗流侵蚀、径流侵蚀、重力坍塌、沙层溯 源侵蚀相互交织发生,侵蚀动力系统复杂多样,产 沙速率的规律性较差,利用现有一元结构坡面的 侵蚀理论很难完全解释。此外,覆沙层基本无黏 性,相当于颗粒物质体系,研究发现,尽管单个颗 粒(沙粒)是以固体存在的,但颗粒物质的集体 行为表明,它具有独特的运动规律,能形成颗粒 流^[21-23],颗粒流不同于固体、液体和气体,用经 典力学和流体力学很难解释。颗粒体系中颗粒之间 的摩擦力和成拱主导其运动性质, 而摩擦力和成拱 具有很大的不确定性:颗粒体系中应力分布不均, 存在力链,力链或拱上颗粒的一些局部微小变动都 可能引起整个颗粒体系的崩塌^[24]。针对片沙覆盖 黄土坡面侵蚀而言,干沙时沙粒之间无黏附力,存 在摩擦力和颗粒拱, 随降雨进行沙粒之间能够形成 液桥黏附力,液桥黏附力随饱和度的增加,先增 大,后减小,饱和度大于100%时,颗粒间黏附力 又消失^[25],同时摩擦力和颗粒拱也相应发生了变 化,降雨湿润过程沙层受力体系变化相当复杂;降 雨导致产流后,发生侵蚀,产生固-液两相流体, 它涉及的问题要比单纯的流体和颗粒流更为复杂, 包含众多相互作用的非线性系统,在降雨条件相同 时,沙层前缘不同位置引发侵蚀的概率不一致,因 此,片沙覆盖黄土坡面产流产沙过程是复杂的非线 性系统,具有很大的不确定性,机理比较复杂。本 研究从现象上描述了覆沙厚度和沙层粒径组成对于 片沙覆盖黄土坡面产流产沙过程的影响,对比了不 同厚度和粒径组成下产流产沙特征的差异,但因观 测手段限制,未涉及覆沙厚度和粒径组成对沙层内 部摩擦力、有效内应力、孔隙水压力及渗流力等作 用力的影响,导致无法系统揭示片沙覆盖黄土坡面 侵蚀过程的动力学机制。未来研究应利用先进观测 手段结合仿真模拟技术,从沙层内部水分运动、沙 层颗粒体系受力特征及径流动力特征等方面入手, 系统分析片沙覆盖黄土坡面侵蚀过程的动力变化特 征,揭示其动力学机制。

4 结 论

覆沙黄土坡面较无覆沙黄土坡面能明显延长 初始产流时间,减少产流量,增加侵蚀量。典型覆 沙黄土坡面产流过程为雨水垂直入渗一沙土界面潜 流一沙层边缘渗流一地表径流,产沙过程为沙层边 缘渗流侵蚀一沙层坍塌重力侵蚀一地表径流输移, 明显不同于无覆沙黄土坡面的超渗产流方式及溅 蚀一片蚀一细沟侵蚀的侵蚀发展过程。覆沙厚度影 响覆沙坡面产流产沙方式,随厚度增加产流量减 少,侵蚀量增大。在不同覆沙厚度下,覆沙粒径组 成对坡面产流产沙的影响存在差异。覆沙厚度、粒 径组成及厚度与粒径交互作用对初始产流时间、60 min累积产流量和累积产沙量均具有显著影响。初 始产流时间和60 min累积产流量的变化主要受覆沙 厚度变化的控制,而对60 min累积产沙量变化贡献 较大的为覆沙厚度与粒径交互作用和不可控因素, 这也充分说明覆沙黄土坡面产沙影响因子的复杂性 和不确定性。

参考文献

- [1] 唐克丽,侯庆春,王斌科,等.黄土高原水蚀风蚀交错 带和神木试区的环境背景及整治方向.陕西杨凌:中国 科学院水利部西北水土保持研究所集刊,1993:2—15 Tang K L, Hou Q C, Wang B K, et al. The environment background and administration way of windwater erosion crisscross region and shenmu experimental area on the Loess Plateau (In Chinese). Yangling, Shaanxi: Memoir of NISWC, Academia Sinica and Ministry of Water Resources, 1993: 2—15
- [2] 查轩,唐克丽.水蚀风蚀交错带小流域生态环境综合治 理模式研究.自然资源学报,2000,15(1):97—100
 Cha X, Tang K L. Study on comprehensive control model of small watershed eco-environment in water and wind crisscrossed erosion zone (In Chinese). Journal of Natural Resources, 2000, 15(1):97—100
- [3] 唐克丽.黄土高原生态环境建设关键性问题的研讨.水 土保持通报, 1998, 18(1): 2-8, 26
 Tang K L. Discussion on key problem of eco-environment construction on Loess Plateau (In Chinese). Bulletin of Soil and Water Conservation, 1998, 18(1): 2-8, 26
- [4] 徐建华,吕光圻,甘枝茂.黄河中游多沙粗沙区区域界 定.中国水利,2000,12:37—38
 Xu J H, Lü G X, Gan Z M. Definition of coarse silt and silty area in the middle reach of Yellow River (In Chinese). China Water Resources, 2000, 12:37—38
- [5] 田杏芳.黄河中游地区开发建设项目新增水土流失研究.南京:河海大学,2005
 Tian X F. Study on treatment direction of coarse sand area in middle reaches of Yellow River (In Chinese).
 Nanjing: Hohai University, 2005
- [6] 宋阳,刘连友,严平.风水复合侵蚀研究述评.地理学

69

报,2006,61(1):77-88

Song Y, Liu L Y, Yan P. A review on complex erosion by wind and water research (In Chinese). Acta Geographica Sinica, 2006, 61 (1): 77-88

- [7] 史培军, 王静爱. 论风水两相作用地貌的特征及其发育 过程.内蒙古林学院学报,1986,8(2):88-89 Shi P J, Wang J A. The landform features and development of aeolian-fluvial interactions (In Chinese). Journal of Inner Magnolia Forestry College, 1986, 8 (2): 88-89
- 吴成基, 甘枝茂, 孙虎, 等. 黄河中游多沙粗沙区亚区 [8] 划分.人民黄河, 1999, 21(12): 22-24 Wu C J, Gan Z M, Sun H, et al. Division of subregions of coarse silt and silty area in the middle reach of Yellow River (In Chinese). Yellow River, 1999, 21 (12) : 22-24
- 张丽萍,唐克丽,张平仓.片沙覆盖的黄土丘陵区土 [9] 壤水蚀过程研究. 土壤侵蚀与水土保持学报, 1999, 5 (1): 40-45

Zhang L P, Tang K L, Zhang P C. Soil water erosion processes in loess hilly-gully region covered with sheet sand (In Chinese). Journal of Soil Erosion and Soil and Water Conservation, 1999, 5 (1): 40-45

[10] 张丽萍, 倪含斌, 吴希媛. 黄土高原水蚀风蚀交错区 不同下垫面土壤水蚀特征实验研究.水土保持研究, 2005, 12 (5): 130-131 Zhang L P, Ni H B, Wu X Y. Soil water erosion

processes on sloping land with different material in the wind-water interaction zone in the Loess Plateau (In Chinese). Research of Soil and Water Conservation, 2005, 12 (5) : 130-131

- [11] 惠振江. 陕北毛乌素沙地与黄土区过渡地带荒漠化研 究. 陕西杨凌:西北农林科技大学, 2001 Hui Z J. Desertification in the transition zone between Mowusu sandy land and loess hill region (In Chinese). Yangling, Shaanxi: Northwest A&F University, 2001
- [12] 汤珊珊,李占斌,任宗萍,等.覆沙坡面产流产沙过程 试验研究.水土保持学报,2015,29(5):25-28 Tang S S, Li Z B, Ren Z P, et al. Experimental study on the process of runoff and sediment yield on sandcovered slope (In Chinese). Journal of Soil and Water Conservation, 2015, 29 (5): 25-28
- [13] 汤珊珊,李鹏,任宗萍,等.模拟降雨下覆沙坡面侵蚀 颗粒特征研究. 土壤学报, 2016, 53(1): 39-47 Tang S S, Li P, Ren Z P, et al. Particle size composition of sediment from sand-covered slope under simulated rainfall (In Chinese). Acta Pedologica Sinica, 2016, 53 (1): 39-47
- [14] Xu G C, Tang S S, Lu K X, et al. Runoff and sediment

yield under simulated rainfall on sand-covered slopes in a region subject to wind-water erosion. Environmental Earth Sciences, 2015, 74 (3): 2523-2530

- [15] 郑粉莉,赵军.人工模拟降雨大厅及模拟降雨设备简 介.水土保持研究, 2004, 11(4): 177-178 Zheng F L, Zhao J. Introduction of the artificial rainfall simulation and rain markers (In Chinese). Research of Soil and Water Conservation, 2004, 11 (4): 177-178
- [16] 武秀荣,张风宝,王占礼.片沙覆盖黄土坡面沙土二 元结构剖面土壤物理性质变化研究.水土保持学报, 2014, 28 (6) : 190-193 Wu X R, Zhang F B, Wang Z L. Variation of sand and loess properties of binary structure profile in hilly region covered by sand of the Loess Plateau (In Chinese). Journal of Soil and Water Conservation, 2014, 28 (6): 190-193
- [17] 卜崇峰, 蔡强国, 张兴昌, 等. 黄土结皮的发育机理与 侵蚀效应研究. 土壤学报, 2009, 46(1): 16-23 Bu C F, Cai Q G, Zhang X C, et al. Mechanism and erosion effect of development of soil crust of loess (In Chinese). Acta Pedologica Sinica, 2009, 46 (1): 16 - 23
- [18] 陈洪松,邵明安,张兴昌,等.野外模拟降雨条件下坡 面降雨入渗、产流试验研究.水土保持学报,2005, 19(2): 5-8 Chen H S, Shao M A, Zhang X C, et al. Field experiment on hillslope rainfall infiltration and runoff under simulated rainfall conditions (In Chinese). Journal of Soil and Water Conservation, 2005, 19 (2): 5-8
- 田凤霞,王占礼,牛振华,等.黄土坡面土壤侵蚀过 [19] 程试验研究. 干旱地区农业研究, 2005, 23(6): 145-150 Tian F X, Wang Z L, Niu Z H, et al. Experimental research on soil erosion process in loess hill slope (In Chinese). Agricultural Research in the Arid Areas, 2005, 23 (6): 145-150
- [20] 王文龙, 雷阿林. 黄土性质与土壤侵蚀的关系初探. 水 土保持通报, 1998, 18(7): 81-83 Wang W L, Lei A L. Relations between loess properties and soil erosion (In Chinese). Bulletin of Soil and Water Conservation, 1998, 18 (7): 81-83
- [21] 陆坤权, 刘寄星. 颗粒物质(上). 物理, 2004, 33 (9): 629-635 Lu K Q, Liu J X. Static and dynamic properties of granular matter (I) (In Chinese). Physics, 2004, 33 (9): 629-635
- [22] 陆坤权, 刘寄星. 颗粒物质(下). 物理, 2004, 33

http://pedologica.issas.ac.cn

71

(10):713-721

Lu K Q, Liu J X. Static and dynamic properties of granular matter (II) (In Chinese). Physics, 2004, 33 (10): 713-721

- [23] 栗苏文,夏建新,曹斌.颗粒流动特殊现象探析.泥沙研究,2005,127(6):65—69
 Li S W, Xia J X, Cao B. Review of special phenomena in granular flow (In Chinese). Journal of Sediment Research, 2005, 127(6):65—69
- [24] 麻土华,郑爱平,李长江.降雨型滑坡的机理及其启

示. 科技通报, 2014, 30(1): 39—43, 71 Ma T H, Zheng A P, Li C J. Mechanism of rainfallinduced landslides and its implications to landslide prediction (In Chinese). Bulletin of Science and Technology, 2014, 30(1): 39—43, 71

[25] 孙其诚,金峰.颗粒物质的多尺度结构及其研究框架. 物理,2009,38(4):225-232
Sun Q C, Jin F. The multiscale structure of granular matter and its mechanics (In Chinese). Physics, 2009,38(4):225-232

Effects of Thickness and Particle Size Composition of Overlying Sand Layer on Runoff and Sediment Yield on Sand-covered Loess Slopes

XIE Linyu¹ BAI Yujie¹ ZHANG Fengbao^{1, 2†} YANG Mingyi^{1, 2} LI Zhanbin^{1, 2, 3}

(1 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China)

(2 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi

712100, China)

(3 Institute of Water Resources and Hydro-electric Engineering, Xi' an University of Technology, Xi' an 710048, China)

[Objective] The region of loess slopes covered with sporadic aeolian sand is the most Abstract serious erosion-stricken area in the aeolian-water erosion interlaced zone of the Loess Plateau. This project is oriented to study characteristics of the soil erosion in this region in an attempt to provide some principal theory for prediction and control of soil erosion in the aeolian-water erosion interlaced zone. Observations in this special region found that aeolian sand-covered loess slopes were different in runoff production pattern and erosion process from ordinary loess slopes. So far, a little has been reported about studies on soil erosion on this special type of slopes. [Method] An indoor experiment with simulated rainfalls on soil erosion on sand-covered loess slopes was carried out. The experiment was designed to have only one rainfall intensity (90 mm h^{-1}) , one slope gradient (15°) , three levels of thickness for overlying aeolian sand (2 cm,5 cm and 10 cm) and five patterns of particle size composition (100% < 0.25 mm, 75% < 0.25 mm + 25%>0.25 mm, 50% < 0.25 mm + 50% > 0.25 mm, original aeolian sand and 100% > 0.25 mm). [Result] Results show that overlying aeolian sand layers delayed the initiation of runoff and reduced the generation rate and volume of runoff, but increased the yielding rate and volume of sediment on loess slopes. The initiation of runoff on slopes covered with 2 cm, 5 cm and 10 cm thick of aeolian sand was $6 \sim 10$ times, $12 \sim 20$ times and 16 ~ 26 times later than that on the ordinary loess slope, respectively. Thickness of the aeolian sand layer is the main factor affecting delayed runoff and sediment yield. The thicker the overlying sand layer, the later the initiation of runoff, the lower the runoff rate and runoff volume and the higher the yielding rate and volume of sediment yield. During the rainfall process, runoff and sediment fluctuated sharply in rate and volume and the fluctuation intensified with the aeolian sand layer increasing in thickness. The effect of particle size composition of the sand layer on runoff and sediment yield varied with thickness of the sand layer. On slopes covered with a sand layer 2 cm in thickness, runoff and sediment yield tended to increase with the sand layer increasing in particle size during the initial period of rainfall, but no such a tendency was observed

during the late period of rainfall. On slopes covered with a sand layer 5 cm in thickness, runoff increased in rate with the sand layer increasing particle size. The slopes covered with coarse sand was higher in erosion rate than the slopes covered with find sand during the initial period of rainfall, and it went reversely in the late period of rainfall. On slopes covered with a sand layer 10 cm in thickness, runoff and sediment yield did not vary much with particle size composition of the sand layer. There might be a reasonable range of aeolian sand thickness in which the influence of particle size composition and their interaction significantly (p < 0.05) influence the initiation of runoff, 60 min runoff volume and 60-min sediment yield. [Conclusion] The runoff production process on aeolian sand-covered loess slopes goes as vertical infiltration of rainwater-flow at the interface between sand layer and loess layer-seepage at the toe of the sand layer-overland runoff, while the erosion process goes as seepage erosion at the toe of the sand layer-retrogressive collapse caused by gravity and flow-surface runoff transport, which are completely different from the pattern of runoff yield under excessive infiltration and the erosion development process of splash erosion-sheet erosion-rill erosion on bare loess slopes.

Key words Aeolian sand-covered loess slope; Aeolian sand thickness; Particle size composition; Runoff and sediment

(责任编辑:陈荣府)