黄土高原南部3种农田土壤剖面坚实度的变化规律

王 益¹, 刘 军¹, 王益权¹, 张兴昌^{1,2}

(1 西北农林科技大学 资源环境学院,陕西 杨凌 712100;2 中国科学院 水利部 水土保持研究所,陕西 杨凌 712100)

[摘 要] 为了揭示黄土高原南部地区不同质地类型土壤剖面坚实度的变化及其与土壤含水率的定量关系,以 黄墡土、±娄土、裸露在地表的粘化层耕作剖面为研究对象,定位观测其 0~45 cm 土壤坚实度与含水率的变化。结果 表明,黄墡土、±娄土、裸露在地表粘化层耕作剖面的犁底层平均坚实度均大于耕层,犁底层平均坚实度较耕层分别高 194.8%,87.3%,10.4%;剖面土壤质地越粘其平均坚实度越大;土壤坚实度与含水率呈负相关关系;土壤坚实度变化 速率为 0时,以上 3种土壤剖面临界含水率分别为 0.171 2,0.175 7,0.183 5;质地不同的土壤 剖面坚实度时空变化特 征有差异,其中黄墡土剖面 0~20 cm 土层土壤坚实度为 350~500 kPa,受土壤含水率变化的影响较小;20~30 cm 土 层土壤的坚实度为 500~1 400 kPa,不易受外界环境影响;30 cm 以下土层土壤坚实度为 700~1 600 kPa,受土壤含水 率变化影响较大。±娄土剖面 0~40 cm 土层土壤坚实度为 600~1 200 kPa,受含水率变化影响较大;40 cm 以下土层 土壤坚实度稳定在 1 800 kPa 左右。粘化层剖面 0~15 cm 土层土壤坚实度在 2 000 kPa 左右,受环境影响较大,15 cm 以下土层土壤坚实度稳定在 1 800 kPa,受含水率变化影响较小。

[关键词] 土壤含水率;土壤坚实度;犁底层;土壤质地;土壤剖面;黄土高原 [中图分类号] SI52.9 [文献标识码] A [文章编号] 167 D9387(2007) 092 02 002 05

Variation of soil compactness in 3 kinds of farmland soil profile in south Loess Plateau

WANG Yi¹, LIU Jun¹, WANG Y2quan¹, ZH ANG Xing2chang^{1, 2}

(1 College of Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China; 2 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China)

Abstract: In order to observe soil compactness and water content dynamic change in 3 kinds of differ2 ent texture soil profile (0- 45 cm) in the south area of Loess Plateau, Huangshan soil, Lou soil, and Argic horizon were studied to find the law of soil compactness change and the relationship with soil water con2 tent. The result indicated the compactness in the plow2pan was great higher than that in the plow layer and the average compactness of plough pan was 194. 8%, 87. 3%, and 10. 4% of cultivated horizon, respective2 ly. The compactness increased with stickier of soil texture. Soil compactness and water content had negative correlation; different texture soil had a different variation velocity during the reduction process of soil water content; when the variation velocity was 0, three soil water content above was 0. 171 2, 0. 175 7, 0. 183 5, re2 spectively. Dynamic change of compactness was various with different soil texture. In Huangshan soil pro2 file, soil compactness was 350- 500 kPa in 0- 20 cm, and the influence of soil water content changes was little; in 20- 30 cm soil the compactness was 500- 1 400 kPa and it was difficult bo be influenced by the environment, the compactness was 700- 1 600 kPa under 30 cm depth, and could easily be affectde by rain

^{*[}收稿日期] 200@0@24

[[]基金项目] /十一五0国家科技支撑计划重大项目/黄土高原水土流失综合治理工程关键支撑技术研究0(2006 BAD09B06)

[[]作者简介] 王 益(1979-), 男, 陕西大荔人, 在读博士, 主要从事土壤物理化学, 水土资源与生态环境研究。

[[]通讯作者] 张兴昌(1965-),男,陕西武功人,教授,博士生导师,主要从事环境科学研究。

water. In Lou soil profile, the soil compactness was 600- 1 200 kPa in the layer of 0- 40 cm and could be easily affected by the change of soil water content, the soil compactness under 40 cm depth was 1 800 kPa and had little change. In the Argic horizon profile, soil compactness was 2 000 kPa in the 0- 15 cm and could be easily affected by environmental change; the compactness was 1 800 kPa under 15 cm and was not easily be affected by the change of soil water content.

Key words: soil water content; soil compactness; plow pan; soil texture; soil profile; Loess plateau

自然因素和人为因素,如雨滴冲击、重力作用、 人畜践踏、机械行走等均对土壤压实有一定作 用[122]。土壤压实现象几乎影响所有土壤的物理、化 学、生物学性质及功能^[324]。目前,土壤压实正成为 一个日趋严重的世界性问题^[5]。研究中常以土壤坚 实度为指标、对压实效应进行评价。土壤坚实度是 指土壤对挤压力的反应、其是土壤质地、结构、有机 物含量、交换性阳离子类型及含量等因素的综合反 映。由于土增坚实度与土壤粘结力和土壤孔性有 关,凡与粘结性有关的因素均与土壤坚实度有关。 土壤坚实度体现着土壤颗粒的粘结性、从本质上依 赖于土壤基模性状(质地与结构)、从形式上却是土 壤含水量的函数,与土壤墒情、干湿交替过程有着密 切关系,是一个动态性质,因此土壤坚实度的变化过 程是土壤性质与环境因子共同作用结果。研究土壤 坚实度不仅可以综合反映和表征土壤的质地、结构 等理化性状,而且在某种意义上反映着环境因素变 化过程与强度对土壤结构性质的影响。国内贾树海 等161研究了草地生态系统中放牧对表层土壤坚实度 的影响:李小昱等^[7] 研究了土壤坚实度的空间变异 及分形特征;辛平等^[8]在野外模拟研究了降雨对土 壤坚实度的影响;李东海等^[9]研究了不同类型人工 林对土壤剖面坚实度的影响及程度。有关黄土高原 地区农田土壤坚实度的动态变化、土壤坚实度与含 水率关系的定量化研究还不多见。本试验对黄土高 原南部地区几种不同质地类型土壤剖面坚实度的变 化规律进行了研究、对全面了解黄土高原南部农田土 壤的性状具有重要价值。

- 1 材料与方法
- 1.1 供试材料

试验地均选在陕西杨凌西北农林科技大学农作 一站试验区。该区位于渭河北岸头道塬(北纬 34b 1&c,东经108b40c,海拔521 m),平均气温12.5 e, 年降雨量632 mm。试验期间不进行任何田间耕 作,以消除翻耕对土壤坚实度造成的影响。观测点 地表裸露,未种植作物,未进行人为扰动。选择代表 黄土地区不同质地黄墡土、土 (裸露在地表的粘 化层耕作剖面为研究对象。2004 年秋季在45 d 时 间内,每5 d 左右测定1次0~45 cm 土壤含水率与 土壤坚实度,共测定8次;按每5 cm 间距逐层进行 测定,土壤坚实度每次测定6个重复,土壤含水率每 次测定3个重复。试验前分别测定了3种供试土壤 剖面中各土层(0~5,5~10,10~15,15~30,30~45 cm)的机械组成。在试验期间,除第5 天和第17 天 有自然降雨过程外,其余时间均为晴天。

1.2 测定方法

土壤机械组成采用吸管法测定^[10], 土壤含水率 采用烘干法测定^[10], 土壤坚实度采用土壤坚实度仪 测定(FieldScout SC 900, Spectrum Technologies Inc)。 1.3 数据处理

采用 SigmaPlot 9.0 软件(Systat Software, Inc)和 DPS V6.55 对数据进行处理^[11]。

2 结果与分析

2.1 3种供试土壤剖面的坚实度比较

2.1.1 3种供试土壤剖面的机械组成 土壤质地
 类型是影响土壤结构性和土壤坚实的重要因子,图
 1是3种不同类型土壤剖面的机械组成。

从图 1 可以看出,除了粘粒(< 0.002 mm)含量 差别较大外,各观测点土壤剖面范围内,3 种供试土 壤剖面的机械组成区别不大。其中黄墡土的粘粒含 量最小,平均值仅为 16.08%,变异系数为 0.07;其 次是±娄土耕层,其剖面粘粒含量平均值为 21.39%, 变异系数为 0.07;粘化层土壤剖面粘粒含量平均值 为 33.16%,变异系数为 0.26。黄墡土、±娄土和粘 化层土壤质地分别是粉壤、粘壤土和粉粘土。由此 可知,各剖面上土壤粒径的总体变异程度分别为弱、 弱、中变异性,即各供试土壤剖面上 0~45 cm 土层 中土壤质地差异不明显,3 种供试土壤剖面属于不 同质地类型的均质剖面。

2.1.2 3种供试土壤剖面不同层次的坚实度 犁 底层是农田在长期耕作管理过程中,经机械压实作 用形成的一种特殊土层。这层土壤的特点是容重 大、孔隙度小、通透性差、妨碍作物根系向下生长及 吸收深层的水分和养分,是限制农作物增产的一个 重要因素^[12]。犁底层在土壤剖面中的位置,可以作 为衡量农业生产发展水平的指标,供试土壤犁底层 一般存在的深度为地表以下 20 cm 处,是常年等深 耕作产生的效应。犁底层的厚度可以反映耕作历史 的长短。由本试验所选取试验点的观察可知,犁底 层在黄墡土和±娄土剖面上分布比较明显,其在 3 种 土壤剖面上的具体表现是在距地表 20~ 30 cm 土层 深处,厚约 10~ 15 cm,印证着陕西关中是中国农耕 文明的发祥地,且农耕历史悠久。

3 种供试土壤剖面耕层(0~20 cm) 和犁底层 (20~45 cm)的坚实度见表 1。表 1 表明, 各个土壤 剖面犁底层的平均坚实度均比耕层大。与耕层相 比, 黄墡土犁底层平均坚实度的增加幅度最大, 达 194.8%, ±娄土次之, 为 87.3%, 粘化层最小 (10.4%)。这可能是由于各个土壤田间管理措施不 同所致。

表1 3种供试土壤剖面耕层与犁底层的坚实度比较

Table 1	Comparison	of compactness	between	cultivated	horizon	and	plough	pan	in	3 kinds	of soil	profile

性征会物		gshan soil	土娄土 L c	bu soil	粘化层 Argic horizon		
Param et er	耕层 Cultivated horizon	犁底层 Plough pan	犁底层 耕层 Plough pan Cultivated horizon		耕层 Cultivated horizon	犁底层 Plough pan	
最小值 Min	140	410	123	497	357	1 164	
最大值 Max	672	1 638	1 521	2 228	2 708	2 269	
平均值Aver	362	1 067	707.6	1 325	1 545	1 705	
总体平均值 Poulation mean	753		1 05	0	1 654		

由表1还可知, 土壤质地越粘其剖面平均坚实 度越大。其中粘化层土壤剖面的平均坚实度最大, 为1654 kPa; ±娄土剖面次之, 为1050 kPa; 黄墡土 剖面最小, 为753 kPa。其主要原因是由于土壤粘 结性发生于土粒的表面, 而土壤粘结性的强弱决定 于其比表面积大小, 土壤质地愈粘重, 则比表面积越 高,粘结性增强,坚实度越大。

 2.2 3种供试土壤剖面坚实度与含水率的关系 本试验在田间连续测定了土壤剖面坚实度及含 水率的变化,并对 3种供试土壤剖面的坚实度与含 水率之间的相关性进行了分析,结果见表 2。

表 2 3 种供试土壤剖面坚实度与含水率的拟合方程

Table 2 Equation of compactness and water content in 3 kinds of soil

土壤剖面 Soil type	方程Equation	相关系数 r Correlation coefficient	dy/dx = 0
黄墡土 Huangshan Soil	$y= -111.\ 70x^{2}+\ 38.\ 251x-\ 0.\ 281\ 1$	0.504 7*	x= 0.171 2
土娄土 Lou Soil	$y= -130.32x^2 + 45.782x - 0.8902$	0.5501*	x= 0.175 7
粘化层 Argic horizon	$y=$ - 90.487 x^{2} + 33.206 x + 0.245 8	0.656 4*	x= 0.183 5

注:* 表示相关性达极显著水平(A= 0.01)。y 为土壤坚实度的对数值,x 为土壤含水率。

Notes: * means significant correlation at 0.01 levels, y is logarithm of soil compactness, and x is soil water content.

由表 2 可知, 3 种不同质地土壤剖面坚实度与 含水率间均呈负相关性,且相关性均达极显著水平。 但是 3 种不同质地土壤剖面坚实度随含水率的变化 速率(方程求导后曲线的斜率)并不相同,其中粘化 层的含水率变化速率最大,其次为黄墡土,±类土最 小。 对表 2 中的拟和方程求其导数值为 0 时的 x 值,其物理意义是当土壤坚实度变化速率为 0(dy/ dx= 0)时,土壤的临界含水率。表 2 显示, 3 种不同 质地土壤剖面坚实度变化速率为 0 时,土壤临界含 水率有很好的规律性,即随着土壤质地粘度增加,含 水率逐渐增大,这主要是由于质地越粘,颗粒比表面

2.3.2

积越大,达到水分饱和时能吸附更多水分子所致。 2.3 3种供试土壤剖面坚实度的时空变化特征

在生态环境因素剧烈变化条件下,研究土壤坚 实度时空变异特征,对于揭示环境因子在不同性状 土壤剖面上的作用强度及影响深度,有着极为重要 的作用与意义。在试验观察的45 d内,3 种供试土 壤剖面 0~45 cm 土层土壤剖面坚实度的时空变化 等值线图见图 2~4。

2.3.1 黄墡土剖面 从图 2 可以看出, 黄墡土 0~ 20 cm 土层, 土壤坚实度为 350~500 kPa, 变异较 小。含水率变化对土壤坚实度的影响较小,说明0~20 cm 土层土壤总是处于松散状态,结构性较差。 极易受到外界环境的影响,风蚀、水蚀等破坏土壤的 活动很容易发生;20~30 cm 土层,土壤的坚实度为 500~1400 kPa,变异较大,且随着土层深度增加土 壤坚实度发生较大变化,其主要原因是该层土壤受 到表层(0~20 cm)土壤的保护,不易受外界环境影 响;30 cm 以下土层土壤坚实度为 700~1600 kPa, 初期由于受降雨影响而变异较大,后期土壤干燥后 在1300 kPa 左右且相对稳定,变异较小。

Fig. 2 Compactness dynamic isoline of Huangshan soil profile ±娄±剖面 ±娄土剖面坚实度的时空动态变 化等值线图见图 3。

壤含水率较高, 土壤坚实度为 600~1 200 kPa, 变异 较大。随后土壤一直处于蒸发失水过程, 土壤含水 率逐渐降低, 此时土壤坚实度逐渐由 600 kPa 增加 为 900 kPa 左右(20~ 30 cm 土层), 变异较小。说 明含水率高时土壤坚实度大, 主要是由于土壤颗粒 周围水膜产生的粘附性增强所致, 含水率降低过程 中土壤坚实度增加, 是由于在持续失水过程中土壤 结构体发生了收缩现象, 而使土壤的粘结性增大所 致。在 30~ 40 cm 土层, 土壤坚实度为 900~ 1 200 kPa, 变异较大, 同时该层土壤坚实度受水分变化的 影响较大; 在 40 cm 以下土层, 土壤坚实度相对稳 定,为1800kPa左右。

2.3.3 粘化层剖面 图4显示,在0~45 cm 土层, 粘化层土壤剖面坚实度为1400~2000 kPa,说明 粘化层土壤剖面总体上非常坚实,这是由于其粘粒 含量较高,颗粒间粘结力较大所致。其中在0~15 cm 土层,0~20 d,土壤含水率变化较大,故土壤坚 实度也随之变化;但在土壤含水率较小的后期(20 d 后),土壤坚实度相对稳定在2000 kPa 左右。在15 cm 以下土层,土壤坚实度稳定在1800 kPa,说明该 土层受外界环境的影响较小,且土壤结构受到压实 破坏后很难自然恢复。

3 结 论

(1)本研究中, 黄土高原南部地区农田土壤剖面 均有土壤犁底层, 其分布于距地表 20~30 cm 处, 厚 度为 10~15 cm; 黄墡土、±娄土、裸露在地表粘化层 耕作剖面的犁底层坚实度均比耕层大, 犁底层坚实 度较耕层分别高194.8%, 87.3%, 10.4%; 土壤质地 越粘其剖面平均坚实度越大, 以上 3 种供试土壤剖 面的平均坚实度分别为 1 654, 1 050, 753 kPa。

(2)本研究中,不同质地类型剖面土壤的坚实度 与含水率间均呈负相关关系,相关性均达极显著水 平。土壤坚实度变化速率为0时,随着土壤质地变 粘,土壤临界含水率逐渐变大,黄墡土、±娄土、裸露 在地表粘化层的土壤临界含水率分别为0.1712, 0.1757,0.1835。

(3)本研究中,不同土壤的坚实度时空变异特征 不尽相同。其中黄墡土剖面表层(0~20 cm)土壤坚 实度变化不大,且受环境变化影响较小,下层(20~ 45 cm) 土壤坚实度变异较大,且受环境影响剧烈; ±缕土剖面表层(0~40 cm)土壤坚实度变化较大,且 受含水率影响明显,下层(40~45 cm)土壤坚实度较 高且稳定,也受含水率的影响;粘化层剖面表层(0~ 15 cm) 土壤坚实度变异较小,但受环境影响较大,15 cm 以下土层土壤坚实度相对稳定,受外界环境的影 响较小。

[参考文献]

- Gysi M. Compaction of a Eutric Cambisol under heavy wheel traffic in Switzerland: field data and a critical state soil mechan2 ics model approach[J]. Soil Tillage Research, 2001, 61: 132 142.
- [2] Canillas E C, Salokhe V M. Regression analysis of some factors in fluencing soil compaction [J]. Soil Tillage Research, 2001, 61: 1672178.

(下转第209页)

被类型用 TM3 波段光谱值划分, TM3 波段光谱值 大于 100 时为轻度荒漠化沙地, TM3 波段光谱值小 于 100 时为荒草地。

4 小 结

本研究提出的分层地表信息提取方法,充分利 用了不同土地覆被类型的波谱特征^[8],挖掘波段间 蕴含的内在联系,放大敏感信息,提取地表覆被信 息。与 K2means 和 ISODA TA 等常规分类方法相 比,本研究提出的分层地表信息提取方法,避免了将 各个波段光谱值作为同等重要的量来参与信息提取 而引起异物同谱和同物异谱现象^[9210],理论上可以 提高遥感图像分类精度。有关该法的实际应用效 果,还有待今后进一步对比分析确定。

[参考文献]

[1] 郝成元, 吴少红, 杨勤业. 毛乌素地区沙漠化与土地利用研究
 [J]. 中国沙漠, 2006(1): 33239.

- [2] 王礼先. 全球荒漠化防治现状及发展趋势[J]. 世界林业研究, 1994, 7(1):10:17.
- [3] 李 强, 王正志. 遥感图像分类与后处理综合技术研))) 基于 约束满足神经网络方法[J]. 遥感学报, 1999, 3(3): 192198.
- [4] 熊 桢,郑兰芬,童庆禧.分层神经网络分类算法[J].测绘学 报,2000,29(3):229234.
- [5] 潘东晓, 虞勤国, 赵元洪. 遥感图像的神经网络分类法[J]. 国土 资源遥感, 1996, 29(3): 42255.
- [6] 尤淑撑,张 玮,严泰来. 模糊分类技术在作物类型识别中的应用[J]. 国土资源遥感, 2000, 43(1): 32 43.
- [7] 莫宏伟. 榆阳区土地利用和生态效应评价分析[J]. 陕西师范大 学学报, 2005, 33(1): 1102114.
- [8] 牛明香, 赵庚星, 李尊英. 南四湖湿地遥感信息分区分层提取研究[J]. 地理与地理信息科学, 2004, 20(2): 42.
- [9] 李四海. 土地覆盖遥感专题信息的分层提取方法及其应用[J].
 遥感技术与应用, 1999, 14(4): 2329.
- [10] 王 建, 董光荣, 李文君, 等. 利用遥感信息决策树方法提取荒漠化土地类型的研究探讨[J]. 中国沙漠, 2000, 20(3): 242 247.

(上接第 204 页)

- [3] A ssouline S. Modeling soil compaction under uniaxial comprese sion [J]. Soil Sci Soc Am J, 2002, 66: 17842 1787.
- [4] Souch C A, Martin P J, Stephens W, et al. Effects of soil com2 paction and mechanical damage at harvest on growth and bio2 mass production of short rotation coppice willow[J]. Plant and Soil, 2004, 263: 1722182.
- [5] Hakansson I, Reeder R C. Subsoil compaction by vehicles with high axle load extent, persistence and crop response [J]. Soil Till Research, 1994, 29: 2772 304.
- [6] 贾树海, 王春枝, 孙振海, 等. 放牧强度和时期对内蒙古草原土 壤压实效应的研究[J]. 草地学报, 1999, 7(3): 2172222.
- [7] 李小昱, 雷廷武, 王 为. 农田土壤特性的空间变异性及分形特

征[J]. 干旱地区农业研究, 2000, 18(4): 61265.

- [8] 辛 平,黄高宝,张国盛,等.耕作方式对表层土壤饱和导水率 及紧实度的影响[J].甘肃农业大学学报,2005,40(2):202 207.
- [9] 李东海,杨小波,邓运武,等. 桉树人工林林下植被、地面覆盖物 与土壤物理性质的关系[J]. 生态学杂志 2006, 25(6):602611.
- [10] 刘孝义. 土壤物理及土壤改良研究法[M]. 上海: 上海科学技 术出版社, 1982: 2032.
- [11] 唐启义, 冯明光. 实用统计分析及其 DPS 数据处理系统[M].北京: 科学出版社, 2002: 38240.
- [12] 希勒尔 D. 土壤物理学概论[M]. 西安: 陕西人民出版社, 1988: 272 34.