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Abstract. Increased atmospheric nitrogen (N) deposition caused by human activities has potentially important effects
on ecosystem carbon (C) dynamics and different effects on C fractions with different stabilities and chemical compositions.
A better understanding of the responses of different C fractions to N addition is vital for maintaining soil quality and
protecting vegetation. In order to investigate the differential effects of N addition on total soil organic carbon (SOC) and
four SOC fractions with increasing degrees of oxidisability in Pinus tabuliformis rhizospheric and bulk soils, a 6-year
pot experiment was performed testing the effects of the addition of N at rates of 2.8, 5.6, 11.2, 22.4 and 44.8 g m–2 year–1

compared with a control (CK) group (no N addition). Addition of N addition had significant (P < 0.05) effects on SOC
fractions of very labile C (C1) and recalcitrant C (C4), but negligible effects on total SOC (TOC) and SOC fractions of
labile C (C2) and less labile C (C3). The C1 content and ratio of C1 to TOC in rhizospheres decreased following
the addition of low levels (N2.8–N5.6) of N, but increased after the addition of high levels (N11.2–N44.8) of N, with
minimum values obtained after the addition of 11.2N g m–2 year–1. Low rates (N2.8–N5.6) of N addition considerably
increased C4 and the ratio of C4 to TOC in the rhizosphere, whereas addition of high rates (N11.2–N44.8) of N decreased
these parameters. The responses of C1 and C4 in the bulk soil to N addition were opposite. The SOC fraction was
significantly higher in the rhizosphere than in the bulk soil, indicating large rhizospheric effects. However, increased N
addition weakened these effects. These findings suggest that low rates (N2.8–N5.6) of N addition stabilise SOC against
chemical and biological degradation, whereas increased rates of N addition increase the lability of SOC in the bulk soil.
Thus, the rhizosphere plays a vital role in soil carbon stability and sequestration in response to N addition.
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Introduction

Global emissions of reactive nitrogen (N), such as NH3, N2O,
urea, amines and proteins, have increased three- to fivefold
over the past century because of anthropogenic activities such
as the burning of fossil fuels and the use agricultural fertilisers
(Galloway et al. 2008; Reay et al. 2008; Lu et al. 2010; Fang
et al. 2011). N deposition rates in many areas of the world are
much higher than they would otherwise have been in the absence
of these human activities (Galloway et al. 2008). Increased
N deposition in terrestrial ecosystems has a profound effect
on global carbon (C) and N cycles and may induce long-term
changes to natural ecosystems (Vitousek et al. 1997; Galloway
et al. 2004; Phoenix et al. 2012). Thus, N is a common limiting
nutrient in terrestrial ecosystems (Vitousek and Matson 1991).

Some studies have suggested that N addition increases C storage
by alleviating N limitation, promoting tree productivity
(Gruber and Galloway 2008; Schlesinger 2009), decreasing
litter decomposition and soil respiration (Gruber and
Galloway 2008; Hobbie et al. 2012) and inhibiting microbial
enzymes, particularly those that degrade lignin (Waldrop et al.
2004). However, some studies have shown that the effects of
N addition on C cycling can be transient (Bowden et al. 2004;
Hagedorn et al. 2012), and others have reported that the effect
of N addition on soil C storage is negligible (Lovett et al. 2013;
Zeng et al. 2010). Thus, the role of long-term N addition on soil
C pools and stabilisation remains uncertain.

Walkley and Black (1934) proposed a method for
determining the C content of soil and Chan et al. (2001)
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modified the Walkley–Black method to separate soil organic
carbon (SOC) into four fractions with different labilities and
oxidisabilities: C1, very labile C; C2, labile C; C3, less labile C;
and C4, recalcitrant C. Different SOC fractions play different
roles in SOC dynamics and soil C sequestration. The C1 and
C2 fractions are primarily composed of light fraction C, which
belongs to the labile C (LC) pool and is mostly associated with
the availability of nutrients and formation of macroaggregates
(Janzen 1987; Maia et al. 2007). The C3 and C4 fractions are
associated with compounds with high chemical stability that are
slowly altered by microbial activities; these fractions comprise
the recalcitrant C (RC) pool (Chan et al. 2001; Sherrod et al.
2005). The LC pool, with short turnover times, can be easily
mineralised and is a more sensitive indicator of changes in soil
fertility than total SOC (Yang et al. 2009; Datta et al. 2010).
Meanwhile, the RC pool is a stable C sink in the soil cycle and
dominates long-term C storage (Neff et al. 2002; Jiang et al.
2014). The LC and RC pools are significantly affected by
changes in plant inputs, including aboveground biomass, fine
root biomass and dissolved organic C (Carrillo et al. 2011).
N addition can alter these inputs and thus indirectly affects the
turnover of the LC and RC pools. Positive (Chen et al. 2012a;
Jiang et al. 2014), negative (Rodriguez et al. 2014) and
even neutral (Chen et al. 2012b) responses of soil lability to
N addition have been reported. These apparent discrepancies
could be explained by differences in climate conditions, plant
species, soil type, the amount and chemical composition of
N fertilisers and the timing and duration of N addition in the
different studies. However, the role of long-term N addition
in the allocation of soil C between LC and RC pools in a
temperate semi-arid climate remains unclear and thus requires
investigation.

N addition at low levels (<25 kg h m–2 y–1) can alleviate
N shortages and promote plant growth, thereby increasing
C storage. However, excessive N (i.e. N in excess of biotic
demands) has negative effects on ecosystems. For example, an
N input of >25 kg� h m–2 has been reported to cause N saturation
in European forests (Emmett et al. 1998). Excessive N addition
can increase the intensity of unfavourable changes in the shoot/
root ratio, soil acidification, nutrient imbalances, insects and
pathogenic pests, nutrient deficiencies, aluminium toxicity due
to acidification by nitrification and assimilation of inorganic
N stealing C that could otherwise be used for maintenance and
growth (Fenn et al. 1998; Nadelhoffer et al. 1999; Andersson
et al. 2001). Thus, excessive N addition has a negative effect
on long-term soil C storage (Song et al. 2013). However,
information regarding the mechanisms involved in the effects
of long-term excessive N addition on stabilisation of C in the soil
is limited and thus requires further investigation.

The rhizosphere is commonly defined as the area where root
activity significantly affects the biological properties of the
soil (Zoysa et al. 1999; Chen et al. 2001). It is a biologically
active zone where complex interactions among plant roots, soil
particles and microbes occur (Puglisi et al. 2008). Compared
with bulk soil, plant rhizospheres generally have higher
C availability (Cheng et al. 2003) and a higher biomass of
soil micro-organisms (Griffiths 1994). In addition, the activity
of extracellular enzymes involved in soil organic matter (SOM)
decomposition and nutrient cycling are often higher in the

rhizosphere than in the bulk soil (Hinsinger et al. 2009). These
effects are primarily attributed to rhizodeposition, which may
account for as much as 25% of belowground allocated C (Jones
et al. 2009) and comprises water-soluble root exudates, such as
sugars, amino acids, organic acids and hormones (Grayston et al.
1997; Dennis et al. 2010). In addition, moisture dynamics and
nutrient availability in the rhizosphere are affected by root
uptake of water and nutrients (Zhu et al. 2014). Thus, the
rhizosphere functions as a central site of microbial activity
and biogeochemical cycling. Increased soil fertility due to
N addition can reduce relative belowground C allocation and
thus lower the effects of the rhizosphere (Phillips and Fahey
2008; Fontaine et al. 2011; Ai et al. 2012). However, some
studies have found that N addition has a neutral or even positive
effect on the actions of the rhizosphere (Phillips and Fahey
2008; Zhu et al. 2014). These conflicting results are due
primarily to differences in plant species, soil type, climate
condition, the amount and chemical composition of fertilisers
and the duration of N addition in different studies. Therefore,
more mechanistic studies on the responses of the rhizosphere
with regard to soil C lability following N addition are needed.

The Chinese pine Pinus tabuliformis is a prominent species in
the forest plantations of Shaanxi Province, China, and plays an
important role in the ecology of forest regeneration and forestry
in warm temperate regions. Previous studies indicated that
N addition decreases the labile C pool in soils under tree
species with high lignin litter (Rodriguez et al. 2014). In the
present study we investigated changes in total SOC, as well as in
the concentration and distribution of oxidisable organic carbon
fractions in rhizospheric and bulk soils of Chinese pine
following N addition in pot experiments. Based on previous
studies (Lv et al. 2017), we formulated the following hypotheses
to be tested: (1) low levels (<5.6 g kg–1 y–1) of N addition
reduce soil C allocation to the labile oxidisable SOC fractions
and increase soil C stability in both rhizospheric and bulk soils;
(2) excessive N addition promotes soil C allocation to the
labile oxidisable SOC fractions and increases soil C lability
in rhizospheric and bulk soils; and (3) N addition weakens
the rhizospheric effect on SOC, total nitrogen (TN) and SOC
fraction contents.

Materials and methods

Study site

The study was conducted in experimental plots of the Institute
of Soil and Water Conservation, Chinese Academy of Sciences
and Ministry of Water Resources, Yangling, Shaanxi, China.
The area has a temperate continental monsoon climate, a mean
annual temperature of 13.28C, mean annual precipitation of
674.3mm, a mean frost-free period of 225 days and 1993.7 h
annual sunshine. Chinese pine seeds were planted on a seedbed
(5m� 10m) in March 2007. Then, 1-year-old seedlings were
individually transplanted in March 2008 to polyvinyl chloride
(PVC) experimental pots (35 cm diameter, 40 cm deep). Soil
was collected from the 0–30 cm soil horizon in a Chinese pine
forest plantation in Yichuan, Shaanxi Province (Lv et al. 2017),
and a huangmian soil was developed on wind-deposited loessial
parental material in the absence of bedding, with a loose silty
texture, macroporosity and wetness-induced collapsibility.
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Although the pH of the huangmian soil is weakly alkaline
(8.5–8.8), it has a low N content (the soil used in the present
study had an N content of 0.724mg kg–1). The soil was sieved
through a 2-mm plastic mesh and was homogenised before the
experiment, with 18 kg soil added to each experimental pot.

Experimental design and soil sampling

In the present study, the effects of N addition on different
fractions of SOC were investigated. There were six treatment
groups in the experiment: a control (CK) group, with no added
N, and five treatment groups in which N was added at a rate of
2.8, 5.6, 11.2, 22.4 and 44.8 g m–2 year–1 (N2.8, N5.6, N11.2,
N22.4 and N44.8 respectively). The current rate of N deposition
on the Loess Plateau in China is 2.06 g–1 year–1. This experiment
not only simulated the current rate of N deposition on the Loess
Plateau, but also simulated the extremely excessive N deposition
on the Loess Plateau. According to the single-factor randomised
block design, each treatment had 68 pots. Urea was dissolved
in 10mL water and was added once to each experimental pot
from late March to early April every year from 2008 to 2014
before the seasonal rains. This experiment was conducted in
the open.

Six 5-year-old Chinese pines of medium height and basal
diameter were selected from each treatment for measurement on
11 July 2014. The roots of the Chinese pines were gently shaken
to remove loosely adhering soil particles as that described by
Butler et al. (2003). Selected plants were removed from their
pots and weighed. The root–soil systems were sliced down the
middle and shaken in plastic bags until approximately four-fifths
of the initial weight was in the bag. The portion obtained was
considered bulk soil. The remaining one-fifth that was still
attached to the root system was considered rhizosphere soil.
The rhizosphere soil was then carefully removed from the
roots with a probe and forceps. Plant material and gravel
were removed from the soil samples. One subsample each of
plant rhizosphere and bulk soil was air dried, crushed and passed
through a 0.25-mm sieve for the measurement of total SOC
(TOC) and oxidisable SOC. Another subsample was passed
through a 1-mm sieve for the measurement of TN, NH4

+-N, and
NO3

–-N in the plant rhizosphere and bulk soil. The remaining
soil samples were stored at 48C for the measurement of pH and
microbial biomass C in the plant rhizosphere and bulk soil.
Plant shoots and roots were harvested separately and were oven
dried at 658C to a constant weight, which was regarded as the
aboveground biomass and belowground biomass respectively.

Laboratory analysis

TOC was determined using the Walkley–Black method (Nelson
et al. 1996) and TN was determined using the Kjeldahl method
(Bremner and Mulvaney 1982). Soil pH was measured using
a pH electrode in a solution with a soil (in grams) to water (in
millilitres) ratio of 1 : 2.5. NH4

+ and NO3
– concentrations in soil

samples were analysed using a continuous flow analyser.
Different oxidisable SOC fractions were estimated using

the modified Walkley–Black method described by Chan et al.
(2001). Briefly, 0.5 g ground soil (0.25mm) was placed in a
500-mL Erlenmeyer flask, to which 10mL of 0.167M K2CrO7

was added. The resulting solution was then added to 5, 10 or
20mL concentrated H2SO4 (18M) to produce three solutions

with acid–aqueous ratios of 0.5 : 1, 1 : 1 and 2 : 1 respectively
(corresponding to 6, 9 and 12M H2SO4). The samples were
oxidised with dichromate in an acidic medium (Yeomans and
Bremner 1988) at different H2SO4 concentrations without
external heating. Residual dichromate was determined by
titrating against 0.5M FeSO4. The amount of oxidisable SOC
was determined and separated into the following four fractions
with decreasing lability: Fraction 1 (C1), SOC oxidisable at 6M
H2SO4, corresponding to the very labile SOC fraction; Fraction
2 (C2), the difference between oxidisable SOC extracted with 9
and 6M H2SO4, corresponding to the labile fraction; Fraction
3 (C3), the difference between oxidisable SOC extracted with 12
and 9M H2SO4, corresponding to the less labile fraction; and
Fraction 4 (C4), the residual SOC after reaction with 12M
H2SO4 compared with TOC, corresponding to the non-labile
SOC fraction. Oxidisable organic carbon (OC) was determined
by summing C1+C2+C3 (Chan et al. 2001). The rhizospheric
effect was calculated as follows:

Rhizospheric effect ¼ ðCiR � CiBÞ=CiR

where CiR is the content of the Ci fraction in the rhizosphere and
CiB is the content of the Ci fraction in the bulk soil.

Statistical analysis

One-way analysis of variance (ANOVA) was used to assess the
effects of N addition on SOC, TOC, TN, NO3

–-N, NH4
+-N, C :N

ratio and pH. If significant effects were detected (P < 0.05),
Duncan’s multiple-range test was used to compare means.
Pearson linear correlation analysis and Redundancy analysis
(RDA) were performed to analyse the responses of the SOC
fractions to N addition. ANOVA and Pearson correlation
analyses were performed using SPSS version 21.0 (IBM
Corp., Armonk, NY, USA), whereas the RDA was performed
using CANOCO for Windows 4.5 (Biometris, Wageninggen,
Netherlands). Figures were drawn using SigmaPlot 10.0 (Systat
Software, Inc., San Jose, CA, USA).

Results

SOC and TN responses to N addition

TOC contents in the plant rhizospheres increased in N2.8 and
N5.6, but not significantly (Fig. 1), and were highest in N5.6 and
N44.8.There were no significant increases in the TOC content
of plant rhizospheres in the N2.8 and N5.6 treatment groups
(Fig. 1). The highest TOC content was observed in the N5.6 and
N44.8 groups. Conversely, there were no significant decreases
in TOC in the bulk soil in the N2.8–N5.6 groups, but TOC in the
bulk soil increased in the N11.2–N44.8 groups. Maximum TOC
in bulk soil was found in the N5.6 treatment group. TOC content
was significantly higher in the rhizosphere than in the bulk soil.
The rhizospheric effect on TOC increased in the N2.8 and N5.6
groups, whereas excessive N addition in the N11.2, N22.4 and
N44.8 groups had a negligible effect on this rhizospheric effect.

TN content in both rhizosphere and bulk soils tended to
increase with N content, with highest TN content seen in the
rhizosphere in the N44.8 treatment group (Fig. 1). TN content
was significantly higher in the rhizosphere than in the bulk soil.
Compared with CK, N addition had a negligible effect on the
rhizospheric effect on TN. However, the rhizospheric effect on
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TN was significantly higher in the N5.6 and N44.8 groups than
in the N22.4 group.

C : N ratios decreased with increasing N content in both the
rhizosphere and bulk soils (Table 1).

Responses of oxidisable SOC fractions to N addition

The addition of N significantly altered the oxidisable SOC
content in the very labile (C1) and recalcitrant (C4) C fractions
in the rhizosphere and bulk soil, but had no significant effect
on labile (C2) and less labile (C3) C fractions (Fig. 2). N2.8,
N5.6, N11.2 and N22.4 treatments decreased C1 content in
the rhizosphere, but increased the C1 fraction in bulk soil.
Rhizospheric C1 content was highest in the N44.8 treatment
group (Fig. 2). In contrast, rhizospheric C4 content increased
in the N2.8, N5.6 and N11.2 treatment groups. Although C4

content was significantly lower in bulk soil in all treatments
with added N compared with the CK group, there were no
significant differences among the different N treatment groups.
The OC content in rhizosphere decreased in the N2.8, N5.6,
N11.2 treatment groups, but increased in the N22.4 and N44.8
treatment groups, and was highest in the N44.8 group. The OC
content in bulk soil increased with N addition, although this
increase did not reach statistical significance. The content of
the SOC fractions was significantly higher in the rhizosphere
than in bulk soil, except for C4 content in the CK group.

The C1, C4 and OC content in the rhizosphere was
53.2–62.6%, 5.8–17.2% and 82.8–94.2% respectively (Fig. 2).
The C1 and OC fractions in the rhizosphere decreased following
the addition of N at low levels (i.e. in the N2.8, N5.6, N11.2
groups), but increased at high levels (in the N44.8 group).
The lowest C1 and OC content was observed in the N5.6
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Fig. 1. Effects of N addition on (a) total organic C (TOC) and (b) total nitrogen (TN) in rhizosphere and bulk soil. N was
added at rates of 2.8, 5.6, 11.2, 22.4 and 44.8 g m–2 year–1 (N2.8, N5.6, N11.2, N22.4 and N44.8 respectively). CK, control
treatment. Data are the mean� s.e.m. Different letters indicate significant differences in TOC or TN within rhizosphere or
bulk soil between N treatment groups.

Table 1. Effects of the addition of N on properties of plant rhizosphere and bulk soil
Data are given as the mean� s.e.m. Within columns values with different letters differ significantly (P < 0.05). N was
added at rates of 2.8, 5.6, 11.2, 22.4 and 44.8 g m–2 year–1 (N2.8, N5.6, N11.2, N22.4 and N44.8 respectively).

CK, control treatment

Treatment group NH4
+-N (mg kg–1) NO3

–-N (mg kg–1) C :N pH

Rhizosphere soil
CK 11.437 ± 0.579b 6.628± 0.563d 13.459 ± 0.473a 8.585 ± 0.015a
N2.8 13.103 ± 0.763a 10.592 ± 1.684d 14.014 ± 0.532a 8.578 ± 0.016a
N5.6 10.413 ± 0.208c 14.870 ± 1.616cd 13.561 ± 0.312a 8.533 ± 0.018a
N11.2 11.568 ± 0.734b 19.462 ± 4.052c 12.293 ± 0.288a 8.513 ± 0.048a
N22.4 12.667 ± 0.281ab 28.770 ± 2.946b 12.251 ± 0.242b 8.411 ± 0.033b
N44.8 13.083 ± 0.659a 38.172 ± 1.893a 12.000 ± 0.480b 8.252 ± 0.040c

Bulk soil
CK 11.088 ± 0.501b 7.632± 1.098c 11.047 ± 0.423a 8.675 ± 0.024a
N2.8 13.053 ± 0.747a 8.853± 1.592c 10.446 ± 0.229ab 8.673 ± 0.032a
N5.6 13.823 ± 0.531a 15.493 ± 1.751bc 9.707± 0.175b 8.602 ± 0.017ab
N11.2 12.833 ± 0.846ab 21.753 ± 2.778b 9.830± 0.212b 8.563 ± 0.021b
N22.4 12.587 ± 0.375ab 31.010 ± 4.096a 9.684± 0.177b 8.445 ± 0.031c
N44.8 12.597 ± 0.562ab 36.617 ± 2.331a 10.154 ± 0.118ab 8.350 ± 0.034d
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treatment group. However, the amount of organic C in the C4
fraction in the rhizosphere increased following the addition of
low levels of N (i.e. in the N2.8 and N5.6 groups), but decreased
after the addition of high levels (in the N11.2, N22.4 and N44.8
groups). Maximum C4 content was observed in the N5.6 group.
The organic C content as C1, C4 and OC fractions in bulk soil
was 47.8–58.6%, 10.6–19.1% and 80.9–89.4% respectively.
Conversely, the addition of N increased the amount of
organic C in the C1 and OC fractions in bulk soil, but
decreased the amount in the C4 fraction compared with the
CK group. The percentage of C1 and the OC : TOC ratio were
significantly higher in the rhizosphere than bulk soil in the
CK group, whereas the ratio of C4 to TOC was significantly
lower in the rhizosphere than bulk soil. However, there were no
significant differences between the rhizosphere and bulk soil
in terms of the amount of organic C in the C1, C4 and OC
fractions in the N2.8, N5.6, N11.2 and N22.4 and N44.8
treatment groups. Moreover, the rhizospheric effect on C1

and OC decreased at low levels of N addition (i.e. in the
N2.8, N5.6 and N11.2 groups), but increased at high levels
(in the N22.4 and N44.8 groups). The lowest effects were
observed in the N11.2 treatment group (Fig. 2). In contrast,
the rhizospheric effect on C4 exhibited an opposite trend, with
the maximum effect observed in the N5.6 treatment group
(Fig. 3).

The RDA and correlation analysis investigated the effects
of soil properties on various C fractions. The first two canonical
axes accounted for 31.6% and 6.5% of the total variance
respectively across all data for rhizospheric soil of Chinese
pine. These axes also accounted for 45.4% of the total variance
in the bulk soil (35.2% for RDA1 and 10.2% for RDA2; Fig. 4).
TOC and TN had a greater effect on the various SOC fractions
than the other parameters, in both the rhizospheric and bulk
soils. TOC and TN had stronger effects on very labile (C1) and
labile (C2) C fractions than on less labile (C3) and recalcitrant
(C4) C fractions in the rhizospheric and bulk soils. In both soil
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types, the C :N ratio and microbial biomass carbon (MBC)
had the highest correlations with the C3 and C4 fractions
respectively. These results were supported by the correlation
matrix, which identified a significantly positive correlation

among C1, C2 and TOC content in both soil types; these
parameters were all positively correlated with TN (P < 0.01).
In contrast, the correlations among C3, C4 and TOC content
were not significant in the rhizosphere, and these fractions were
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not significantly correlated with either the rhizospheric or bulk
soil (Tables 2 and 3).

Discussion

Although rhizospheric and bulk soil SOC fractions responded
differently to N addition, the rhizospheric and bulk soil TOC
was relatively unchanged after N addition. The addition of N
decreased the C1 fraction in the N11.2–N22.4 groups and
increased the C4 fraction in the rhizospheres of the N5.6–
N44.8 groups. The C1 fraction in the rhizosphere was
significantly lower in the N44.8 than N11.2–N22.4 groups,
whereas the C4 fraction in the rhizosphere was significantly
higher in the N5.6 N11.2–N44.8 groups. However, N addition,
increased the C1 fraction in the N11.2 and N44.8 groups, but
decreased the C4 fraction in the bulk soil in the N2.8–N44.8
groups. Soil SOC fractions and their content depend on the
balance between OC inputs and outputs (Mack et al. 2004).
Plant residues, fine roots and rhizodeposition inputs to the soil
may be factors controlling the accumulation of SOC fractions in
the rhizosphere and bulk soils under atmospheric N deposition.
In the present study, low levels of N addition (i.e. in the N2.8
and N5.6 groups) increased aboveground biomass, but had no

significant effect on belowground plant biomass. In contrast,
high levels of N addition (i.e. in the N22.4 and N44.8 groups)
decreased aboveground biomass and increased belowground
biomass (Fig. 5). Chinese pine is a coniferous tree, and its
leaf litter generally contains a higher lignin content and has a
lower decomposition rate than leaf litter of broad-leaved trees
(Zhang et al. 2008). Low levels of N addition (3–8 kg N h–1 y–1)
can promote plant growth by alleviating N shortages, which
commonly occur in most terrestrial ecosystems (Vitousek et al.
1997; Fenn et al. 2003). High levels of N addition can cause
N saturation in the soil, thereby inducing a change from N to P
limitation (Britton et al. 2008; Han et al. 2011), and increases
in soil inorganic N concentrations can lead to N pollution,
particularly in water (Han et al. 2011), inhibition of plant
growth and an increased root shoot ratio. Meanwhile, the
increase in belowground plant biomass induced by excessive
N addition promotes fine root and rhizodeposition inputs to
the soil, thus contributing to the accumulation of recalcitrant
carbon in the rhizosphere. However, in the present study, the
N44.8 treatment facilitated the accumulation of labile carbon
compared with the N11.2 and N22.4 treatments. Extremely
excessive N addition in the present study seriously inhibited
plant growth as a result of increased P limitation in the soil

Table 2. Correlation Coefficients (Pearson’s r) among C1, very labile C; C2, labile C; C3, less labile C; and C4, recalcitrant C; OC, oxidisable
organic carbon; TOC, total organic carbon; TN, total nitrogen in rhizosphere soil. Correlations among different organic carbon fractions and soil

chemical properties in rhizosphere soil
*P< 0.05 level, **P< 0.01 (two-tailed). C1, very labile C; C2, labile C; C3, less labile C; and C4, recalcitrant C; OC, oxidisable organic carbon; TOC, total

organic carbon; TN, total nitrogen

C1 C2 C3 C4 OC TOC TN NH4
+-N NO3

–-N pH

C1 1
C2 0.377* 1
C3 0.213 0.142 1
C4 –0.022 –0.200 –0.438 1
OC 0.882** 0.730** 0.405* –0.192 1
TOC 0.882** 0.670** 0.263 0.140 0.945** 1
TN 0.726** 0.437** 0.030 0.209 0.689** 0.765** 1
NH4

+-N 0.036 –0.014 0.323 –0.166 0.082 0.027 0.181 1
NO3

–-N 0.163 –0.039 –0.338 0.139 0.025 0.071 0.548** 0.283 1
pH –0.359* –0.083 0.271 –0.115 –0.224 –0.265 –0.650** –0.235 –0.919** 1

Table 3. Correlation Coefficients (Pearson’s r) among C1, very labile C; C2, labile C; C3, less labile C; and C4, recalcitrant C; OC, oxidisable
organic carbon; TOC, total organic carbon; TN, total nitrogen in bulk soil. Correlations among different organic carbon fractions and chemical

soil properties in bulk soil
*P< 0.05 level, **P< 0.01 (two-tailed). C1, very labile C; C2, labile C; C3, less labile C; and C4, recalcitrant C; OC, oxidisable organic carbon; TOC, total

organic carbon; TN, total nitrogen

C1 C2 C3 C4 OC TOC TN NH4
+-N NO3

–-N pH

C1 1
C2 0.382* 1
C3 0.048 0.078 1
C4 –0.068 0.001 0.146 1
OC 0.904** 0.674** 0.304 –0.016 1
TOC 0.820** 0.630** 0.338* 0.355* 0.929** 1
TN 0.641** 0.423* 0.005 –0.077 0.639** 0.569** 1
NH4

+-N 0.010 0.019 0.024 –0.360* 0.021 –0.114 –0.101 1
NO3

–-N –0.427** –0.106 0.194 0.174 –0.314 –0.229 –0.531** 0.362 1
pH –0.293 –0.080 0.048 0.164 –0.238 –0.162 –0.532** –0.361 –0.255 1
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(Fig. 5). Thus, Chinese pines must increase their bioavailable
C inputs to ectomycorrhiza in exchange for P in order to
increase soil labile carbon and subsequently P (Read and
Perez-Moreno 2003; Hobbie and Hobbie 2006). The very
labile C (C1) fraction in the bulk soil accumulates primarily
from plant residues (Maia et al. 2007). Increased inputs of
plant residues to soil with N addition may increase the C1
fraction in bulk soil.

N addition can frequently have a negative effect on the
decomposition of recalcitrant substrates because of an inhibition
of microbial enzymes, such as phenol oxidase, which degrades
lignin, and an increase in the activity of hydrolases in
carbohydrate decomposition (DeForest et al. 2004; Frey et al.
2004; Zak et al. 2008; Whittinghill et al. 2012). N addition
can also suppress heterotrophic respiration, and this effect is
consistent with reduced phenol oxidase activity (Rodriguez
et al. 2014). The rhizosphere is a zone of high microbial
activity in the vicinity of growing plants relative to the bulk
soil (Butler et al. 2003), and soil enzyme activities may not be
equally distributed between the rhizosphere and bulk soil, with
higher activity in the former (Ai et al. 2012). In the present study,
N addition increased the microbial biomass in the rhizosphere
(Lv et al. 2017), whereas it had minimal effect on the microbial
biomass in bulk soil (Fig. 6), suggesting that the microbial
activity in the rhizosphere was sensitive to added N. Thus,
the rhizospheric C1 fraction was likely decreased following
the addition of N primarily because of an increased rate of
carbohydrate decomposition. Decreased phenol oxidase activity
following N addition, which lowered the decomposition rate of
RC, likely contributed to the accumulation of the recalcitrant
C (C4) fraction in the rhizosphere. Although the microbial
biomass in bulk soil was less affected by N addition, it was
also significantly stimulated by the addition of excessive N (i.e.
in the N22.4 and N44.8 groups). The amount of organic C in
the C1 and OC fractions was significantly higher in the
rhizosphere than in bulk soil in the CK group, indicating that
the availability of C substrates for soil microbes was low.
The increased microbial activity in the bulk soil induced by
N addition likely promoted RC decomposition to increase
bioavailable C substrates for soil microbes and thus contributed
to LC accumulation.

We also tested whether N addition altered the TOC
proportions of the SOC fractions. The amount of organic
C in the C1 and OC fractions in the rhizosphere decreased
after the addition of low levels of N (i.e. in the N2.8, N5.6 and
N11.2 groups), but increased in the N44.8 group, with minimum
C1 and OC content observed in the N11.2 group. The amount of
organic C found in the C4 fraction in the rhizosphere showed
an opposite trend following N addition. This indicates that the
addition of low levels of N (i.e. in the N2.8 and N5.6 groups)
enhanced SOC allocation to recalcitrant rhizospheric C, whereas
excessive N addition (i.e. in the N44.8 group) enhanced SOC
allocation to labile rhizospheric C. This finding is in agreement
with our hypotheses 1 and 2. In contrast, the addition of N had
an opposite effect on the labile and recalcitrant C pools in bulk
soil. These results suggest that rhizosphere soil is important
for long-term soil C storage under low levels of N addition,
whereas bulk soil plays a vital role in maintaining long-term
soil C storage under excessive N addition. A previous study on
temperate forest soil also confirmed that increased N addition
significantly reduced SOM decomposition rates and soil lability
(Rodriguez et al. 2014); these effects are partly consistent with
the results of the present study. However, some studies in a
subtropical monsoon climate found that N addition increased
the LC pool in the soil (Chen et al. 2012a; Jiang et al. 2014).
Thus, climate condition and soil quality affect how the lability
of soils responds to increased N addition. Excessive N addition
plays a totally opposite role in the allocation of soil LC and RC
pools to that of low levels of N addition.

Most SOC fractions and TOC content were higher in the
rhizosphere than in the bulk soil. The C4 fraction was higher
in the bulk soil in the CK group. Approximately 40% of plant
primary production is exuded by roots into the soil by
rhizodeposition, which contributes to the high availability of
soil C in the rhizosphere (Lynch and Whipps 1990). N is a
common limiting nutrient in natural ecosystems (Vitousek
and Howarth 1991). Some studies have suggested that low
N availability can induce positive rhizospheric priming
effects (Fontaine et al. 2011; Zhang and Wang 2012; Dijkstra
et al. 2013), thus promoting the mineralisation of SOM for
the provision of nutrients used for plant growth. In the CK group,
the enhanced RC decomposition rate was induced by low
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Fig. 5. (a) Aboveground and (b) belowground biomass in the control (CK) group and treatment groups after N addition. N was
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mean� s.e.m. Different letters indicate significant differences between the treatment groups.
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N availability, which offsets the effects of rhizodeposition on
C accumulation and consequently decreases the C4 fraction in
the rhizosphere.

TN content tended to increase with N addition in both the
rhizosphere and bulk soils. This trend is in agreement with
other studies (Ochoa-Hueso et al. 2013) that evaluated the
effects of N addition on soil TN content. In the present study,
excess N addition significantly increased soil TN content in
the rhizosphere. The positive affects of N addition on the
accumulation of soil N in the present study were probably
associated with N limitation, which is common in these
ecosystems, and with the ability of ectomycorrhizal fungi to
acquire N and compete with free-living decomposers (Waldrop
et al. 2004; Reid et al. 2012; Averill et al. 2014). In addition,
TN content was significantly higher in the rhizosphere
than in the bulk soil because of the increased plant C supply
to the rhizosphere and subsequent enhanced microbial N
immobilisation (Cheng et al. 2011; Laungani and Knops 2012).

The amount of organic C found in the C1, C4 and OC
fractions differed significantly between the rhizosphere and
bulk soils in the CK group, but not in the groups in which
N was added. Increased amounts of added N weakened the
rhizospheric effects on C1 and OC content (Fig. 3). The
rhizosphere is a zone of high microbial activity in the vicinity
of growing plants (Butler et al. 2003). Micro-organisms
preferentially colonise the rhizosphere because root exudates

are a major source of nutrients in the soil, making the rhizosphere
an area of intense activity with specific biological, chemical
and physical characteristics (Lynch andWhipps 1990; Reynolds
et al. 1998). N addition increased N availability and may have
reduced the demand for roots to invest C in nutrient-absorbing
systems, thereby reducing the allocation of C to root systems
and the allocation of proportionally less C to belowground
growth (Treseder 2008). The microbial composition of the
soil changed with N addition because of the altered nutrient
conditions (Treseder 2008; Liu and Greaver 2010). Furthermore,
N addition suppressed microbial activities (Liu and Greaver
2010) that have a negative effect on rhizospheric priming
effect (Kuzyakov et al. 2002). A previous study found that
long-term addition of N fertilisers to a wheat–maize rotation
field reduced the rhizospheric effect on most extracellular
enzyme activities (Ai et al. 2012). N addition also induced
lower rhizospheric effects on SOM decomposition (Liljeroth
et al. 1994).

Our redundancy and correlation analyses showed that TOC
and TN contents had more effect than the other parameters on
the SOC fractions in the rhizospheric and bulk soils. TOC and
TN had stronger effects on very labile C (C1) and labile C (C2)
than on less labile C (C3) and recalcitrant C (C4) fractions.
The most easily oxidised C fraction (C1) responded sensitively
to environmental changes. This finding is consistent with the
hypothesis that LC is more sensitive to management practices
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(Blair et al. 1995; Maia et al. 2007; Yang and Kay 2001). Thus,
the C1 fraction can be an indicator of changes, caused by
atmospheric N deposition, in the quality of soil organic material.

Conclusions

The results of the present 6-year N-addition pot study reveal that
the amount of organic C found in the C1 and OC fractions of the
rhizosphere decreased at low levels of N addition (i.e. in the
N2.8, N5.6, N11.2 groups) and increased at high levels (i.e. in
the N44.8 group). Minimum C1 and OC content was observed
in the N11.2 group. The amount of organic C found in the C1
and OC fractions of bulk soil exhibited an opposite response
to N addition. This suggests that the SOC in the rhizosphere
became more recalcitrant at low levels of N addition (i.e. in the
N2.8 and N5.6 groups), but addition of high levels of N resulted
in labile C accumulation that was less stable against chemical
and biological degradation. The SOM in the bulk soil exhibited
an opposite response to N addition. The rhizosphere and bulk
soils had distinctly different chemical properties, but N addition
weakened the rhizospheric effect. The results of the present
study also indicate that the most easily oxidised C fraction (i.e.
C1) was sensitive to environmental changes. These results can
provide a theoretical basis for C dynamics and long-term C
turnover in a changing global environment. Nevertheless, the
microbial processes involved in C stabilisation and transposition
to different C pools following the application of N require
further investigation.
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