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A B S T R A C T

Soil hydraulic properties (SHP) such as the soil water retention curve and soil saturated hydraulic conductivity
(Ks) of the deep profile in the Earth's critical zone (CZ) are important factors for investigating the water cycle
process in the CZ. However, details are lacking about the SHP for the deep profile as well as their relationships
with other soil properties. In the present study, SHP were obtained for a 100-m profile by soil core drilling,
where the objectives were to understand the spatial distributions of SHP and to quantify the relationships be-
tween SHP and soil properties based on state-space model analysis and linear regression analysis. The results
showed that SHP were not significantly related to the silt content and there was no cross-correlation between
SHP and the soil organic carbon content. The soil physical properties (bulk density, sand content, and clay
content) could account for most of the total variation in SHP. Compared with linear regression analysis, state-
space modeling described the spatial relationship between SHP and soil physical properties much better. This
study provides information about the SHP in deep profiles, thereby provide important parameters for in-
vestigating the water cycling process in the CZ and for developing pedotransfer functions.

1. Introduction

The Earth's critical zone (CZ) is the intersection area for matter
migration and energy exchange in the pedosphere, atmosphere, hy-
drosphere, biosphere, and lithosphere in terrestrial ecosystems
(National Research Council, 2001), and thus it is the key area for sus-
taining ecosystem functioning and human survival (Lin, 2010). Water
cycle processes form the core center of matter cycling in the Earth's CZ,
so it is helpful to understand the interactions between vegetation and
water cycle processes.

Soil hydraulic properties (SHP) are key factors for understanding
and describing the migration of water and chemical materials in the soil
(Strudley et al., 2008) because they influence and control the migration
and distribution of soil water (Horn, 2004; Strock et al., 2001). Thus, it
is important to study the SHP to understand water cycle processes in the
Earth's CZ. The SHP mainly comprise the soil water retention curve
(SWRC), which describes the relationship between the soil water con-
tent and soil water potential, and the soil saturated hydraulic con-
ductivity (Ks), which is an important physical property that influences

soil water movements and solute transport (Buttle and House, 1997;
Mallants et al., 1997). In addition, understanding the spatial distribu-
tions of SHP and the relationship between SHP and related factors is
necessary for modeling soil water dynamics and developing pedo-
transfer functions for SHP.

Previous studies have determined the spatial distributions of SHP
and the relationships between SHP and related factors mainly in
shallow layers (0–5 m) (Kai-Hua et al., 2011; Lai and Ren, 2016; Liu
et al., 2007; She et al., 2017). For example, the spatial distributions in
the hydraulic properties of a multi-layered soil profile (0.1, 0.5, and
0.9 m) were investigated by Mallants et al. (1996). Sobieraj et al.
(2002) estimated the spatial distributions of Ks along a tropical rain-
forest catena (20, 30, 50, and 90 cm). Biswas and Si (2009) studied the
spatial relationship between SHP and related soil physical properties in
farmland. Wang et al. (2015) estimated the relationship between the
Van Genuchten (VG) soil parameters and soil properties as well as en-
vironmental factors on the Loess Plateau (0–5 cm). In addition, Lai and
Ren (2016) proposed three inverse modeling approaches for estimating
the effective hydraulic parameters in heterogeneous soils at the field
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scale. She et al. (2017) examined the multi-scale correlations between
SHP and soil factors as well as topographic attributes by multivariate
empirical mode decomposition along a Brazilian watershed transect
(0–0.2 m). Bevington et al. (2016) investigated the scale dependencies
of SHP by factorial kriging analysis in Holocene coastal farmland
(8–68 cm).

Clearly, the relationships between SHP and other factors in shallow
layers (0–5 m) have been studied widely from different perspectives.
However, the vertical distance of the Earth's CZ ranges from the top of
the plant canopy to the weathered bedrock (Lin, 2010), but insufficient
information is available about SHP to investigate water processes in the
Earth's CZ (> 5 m). Therefore, there is an urgent need to determine the
spatial distributions in the SHP of deep soil layers and to investigate the
relationships between SHP and other soil properties.

In addition, many methods have been employed to estimate the
relationships between variables and correlated variables, such as linear
regression and state-space modeling. Linear regression modeling ig-
nores the coordinates and spatial correlation (Goovaerts, 1999),
whereas state-space modeling considers the spatial dependences be-
tween variables. Several studies have concluded that state-space mod-
eling is a better tool for accurately estimating the relationships between
variables and correlated factors (Jia et al., 2012; Liu et al., 2012;
Wendroth et al., 2003). For example, Timm et al. (2004) evaluated the
relationships between the physical and chemical properties of soil. In
addition, She et al. (2014) and Liu et al. (2012) both estimated the soil
organic carbon (SOC) contents based on topographic properties using a
state-space model and showed that the state-space models performed
better than the equivalent linear regression models. Similarly, Duan
et al. (2016) concluded that state-space models are much better for
describing the spatial patterns of soil water storage. Jia et al. (2011)
estimated the relationship between the total net primary productivity
by managed grasslands and soil properties using a state-space model
approach.

Therefore, the objectives of this study were: (i) to determine the
spatial distributions of SHP and quantify the relationships between SHP
and other soil properties, i.e., the bulk density (BD) and sand, silt, clay,
and SOC contents, by a state-space model along a deep profile
(0–100 m) in the Earth's CZ; and (ii) to compare the results obtained by
state-space modeling and linear regression analysis.

2. Materials and methods

2.1. Study area description

The study was conducted at Changwu station of the Chinese
Academy of Sciences, which is located on the Loess Plateau of China
(N35°12′ N, E107°40′ E) (Fig. 1b). This area has a continental climate,
where the mean annual precipitation is 580 mm and the mean annual
temperature is 9.1 °C. The ground water level is 50–80 m. The soil
texture is silt loam and the soil type is dark loessial soil, where the
parent material is deep loamy Malan loess. The geomorphic landform
belongs to the typical plateau tableland region and typical dry rain-fed
agriculture is conducted in this area. The deep soil layer and good
physical properties provide favorable conditions for plant growth, and
agricultural production and ecological environment construction are
prominent in this area.

2.2. Soil sampling

Soil samples were collected using drilling equipment (assembled by
Xi'an Qinyan Drilling Co., LDT). Metal cylinders (diameter: 5 cm,
length: 5 cm) were used to collect undisturbed soil samples in the
middle of the soil column at 1-m intervals (0.5 m, 1.5 m, 2.5 m, 3.5 m,
…) to obtain measurements of the Ks, SWRC, and BD. Similarly, dis-
turbed soil samples were collected to determine the soil particle com-
position and soil organic matter contents. It should be noted that the

undisturbed soil samples were not replicated due to cost and challenges
obtaining the samples. Finally, the drilling depth is 204.5 m and 204
undisturbed soil cores and 204 disturbed soil samples were collected
and the sample collection process was completed in a period of 10 days
(May 17–27, 2016). It is noted that it is difficult to measure SHP of
undisturbed soil samples after 100 m. Therefore, we attained the data of
SHP from 0 to 100 m.

2.3. Laboratory analysis

Ks was determined for undisturbed soil samples using the constant
head method (Wang et al., 2008), SWRC was measured by the cen-
trifugation method (Hitachi CR21G centrifuge; 20 °C) (Lu et al., 2004),
and BD was determined based on the volume–mass relationship for
each oven-dried core sample (Wang et al., 2008). The disturbed soil
samples were also air-dried and passed through a 1.0-mm mesh, before
measuring the soil particle composition by laser diffraction (Mastersizer
2000, Malvern Instruments, Malvern, England) (Liu et al., 2005), and
through a 0.25-mm mesh to determine the SOC by dichromate oxida-
tion (Nelson & Sommers, 1982).

(a)

(b)

Fig. 1. Location of the Loess Plateau region in China (a) and the sampling site (b).
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2.4. Fitting the SWRC

Many models have been developed to fit the SWRC and the VG
model is one of the most commonly models (Liu et al., 2007). There-
fore, the VG equation (Genuchten, 1980) was used to fit the measured
SWRC data. The equation for the VG model (Genuchten, 1980) is:

= +
−

+
−( )

θ(h) θr (θs θr)

(1 |αh| )n 1 1
n (1)

where θ(h) is the volumetric water content (cm3 cm−3) for the soil
water pressure head h (cm), θs is the saturated soil water content
(cm3 cm−3), θr is the residual soil water content (cm3 cm−3), α is a
fitting parameter related to the inverse of the air entry pressure, and n is
a fitting parameter related to the soil pore distribution.

2.5. Theory of state-space modeling

The state-space model comprises a state equation and observation
equation, which describe how the state of one or more variables at
location i are correlated with the state of other variables at location
i − 1 (Nielsen et al., 1999; Shumway et al., 1989). The state equation is
described as follows:

= +−X Φx wi i 1 i (2)

where Xi is the state vector of several variables at location i, Φ is a
p × p matrix of state coefficients, and wi is the model error vector
(Timm et al., 2003). The model error, which is assumed to be un-
correlated, is a zero valued and normally distributed noise with an
m ∗ m covariance matrix Q, where the latter is the variance per unit
space and it depends on the interval between observations.

The observation equation is formed by the contact between the state
vector (Xi) and observation vector (Yi), and it is described as:

= +Y A X vi i i i (3)

where the observation vector, Yi, is associated with the state vector Xi

through the observation matrix Ai and model error, vi, which is also
considered to be zero, uncorrelated, and normally distributed.
However, vi and wi are assumed to be independent of each other. The
observation vector, Yi, cannot represent the whole real state and it is
only an indirect reflection of the state (Jia et al., 2011; Jia et al., 2012).
Both the state coefficient matrix, Φ, and state covariance matrix, Q, are
evaluated by a recursive procedure (Shumway and Stoffer, 1982), and
they are optimized using the Kalman filtering iteration procedure
(Kalman, 1960).

In order to remove differences in magnitude, it is necessary to
normalize the data before state-space analysis. The normalization
equation is described as:

=z [Z –(m–2s)]/(4s)i i (4)

where zi is the normalized value with a mean of 0.5 and standard de-
viation of 0.25 (Wendroth et al., 1999), m is the mean value, and s is
the standard deviation.

2.6. Statistical analysis

Descriptive statistical analyses (including the maximum, minimum,
average, coefficient of variation (CV)), Pearson's correlation analysis,
and linear regression analysis were performed with SPSS (version 16.0).
Nonlinear regression of the SWRCs was conducted with RETC software
(version 6.0). The autocorrelations and cross-correlations of variables
and the state-space model were determined using applied statistical
time series analysis (ASTSA), as developed by Shumway (1988).

3. Results and discussion

3.1. Spatial distribution of SHP and their correlations with soil properties

Fig. 2 shows the spatial distributions of SHP along the profile. θs and
n remained almost stable along the profile, with CV values of 5.58%
and 9.48%, respectively (Table 1). The Ks values for SHP ranged from
1.0 × 10−6 to 0.04 cm min−1, with strong variation (CV = 274.61%)
(Nielsen and Bouma, 1985). This may be explained by the unique
profile structure of the Loess Plateau, which was formed by 37 climate
cycles and comprises different soil layers, thereby resulting in the
strong variation in Ks (Ding et al., 1989). In addition, there was mod-
erate variation in α throughout the profile (CV = 58.96%). Among the
soil properties, silt and BD varied little, whereas the sand, clay, and SOC
contents exhibited moderate variation.

Pearson's correlation analysis was conducted between SHP and
other soil properties to select the variables used in the state-space
analysis (Table 2). Given the deep profile, variables comprising sand,
silt, clay, BD, and SOC were selected for Pearson's correlation analysis
with SHP. The four hydraulic properties were all negatively correlated
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Fig. 2. Spatial distributions of soil hydraulic properties (SHP) and soil properties along
the 100 m profile.
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with BD and the clay contents, but positively correlated with the sand
contents (P < 0.01). All of the SHP were not related to the silt content,
probably due to the low variation in the silt content (CV = 3.8%). In
addition, Ks was significantly associated with SOC (P < 0.01), and α
and n were negatively correlated with SOC (P < 0.05). We selected
variables that had significant relationships with the SHP to conduct the
state-space analysis. Therefore, the variables used for the state-space
analysis of Ks, α, and n comprised BD and the sand, clay, and SOC
contents, but the SOC content was not selected for θs.

3.2. Autocorrelation functions (ACFs) and cross-correlation functions
(CCFs) between SHP and related variables

ACFs and CCFs were used to calculate the spatial correlations of
different distances among variables, where the details of the ACF and
CCF have been described in other studies (Timm et al., 2003). The
variables must be significantly autocorrelated and cross-correlated with
other variables in state-space analysis (Wendroth et al., 2003). At the
95% confidence level, Fig. 3 showed the ACFs for SHP and the soil
properties. The results demonstrated that all the variables were auto-
correlated according to the state-space analysis and SOC had a sig-
nificant spatial autocorrelation up to 12 lags, whereas one or two lags
were found for the other variables. This might be explained by the
different loess-paleosol layers formed on the Loess Plateau by 37 cli-
mate cycles (Ding et al., 1989), thereby resulting in spatial auto-
correlations with low lags between adjacent observations. The ACF
results showed that the sampling density was sufficient to identify the
spatial representativeness of the variables.

The spatial cross-correlations differed in various directions as well
as the lags between SHP and related variables according to the results of
the CCF analysis (Fig. 4). In particular, the hydraulic properties were all
significantly cross-correlated with BD and the sand and clay contents,
but there were no cross-correlations with SOC for Ks, α, and n (Fig. 4).
Therefore, SOC was removed from the subsequent state-space analysis.
The results obtained for the cross-correlation functions showed that it
was possible for the selected variables to be used to assess SHP in the
state-space analysis.

3.3. State-space model for SHP

The state-space model described the spatial distributions for the
SHP and quantified the relationships between the SHP and other vari-
ables in the neighborhood. Table 3 shows the state-space equations for
different combinations and their coefficient of determination (R2) va-
lues.

For Ks, the best bivariate state-space model equation included clay
with an R2 value of 0.874, and the bivariate model including BD had a
similar R2 value (R2 = 0.870). Among the trivariate models, the best
included BD and clay contents, with an R2 value of 0.855. The R2 value
for the multivariate equation including BD, sand contents, and clay
contents was 0.757. Obviously, increasing the number of variables did
not make the R2 value increase. The state space model analyses for n, α,
and θs obtained the same results, in a similar manner to previous stu-
dies (Jia et al., 2011; Liu et al., 2012). The clay content was considered
to be the most important variable, where it explained 87.45% of the
total variation and it was associated with the best performance. It
should be noted that BD was also an important variable, where it ex-
plained 87% of the total variation. Zhao et al. (2014) estimated the Ks
values for a slope on the northern Loess Plateau and also concluded that
BD and soil particles were the key factors that affected Ks. Ks has a
significant relationship with the soil porosity and soil texture, and BD
and the clay contents also have major effects on the soil porosity and
soil texture.

For θs, the best performance among the bivariate equations was for
BD (R2 = 0.897), and with BD and sand in the trivariate equation
(R2 = 0.798). It should be noted that the sand content only explained
33.6% of the total variation (Table 3), thereby suggesting that the sand
content was not an important variable. Given its superior performance,
BD was the most important variable with the highest R2 value
(R2 = 0.897).

The best R2 value obtained for α among the bivariate equations was
0.948, which included BD, and R2 = 0.966 among the trivariate vari-
ables including BD and sand contents. The multivariate combination of
BD, and clay and silt contents had an R2 value of 0.965. The best models
included BD and sand contents.

Compared with other SHP, the best model in terms of n had the
highest R2 value (R2 = 0.987), which included the sand and clay con-
tents. Obviously, soil texture was the most important for n, where it

Table 1
Descriptive statistics for the soil hydraulic properties (SHP) and basic soil properties.

Parameter Min Max Mean SD CV Skewness Kurtosis

Ks, cm min−1 0.000001 0.040 0.002 0.005 2.746 4.717 26.609
θs, cm3 cm−3 0.378 0.472 0.420 0.023 0.056 0.170 −0.744
α, cm−1 0.0004 0.008 0.002 0.001 0.590 1.466 2.396
n 1.138 1.974 1.301 0.123 0.095 3.365 14.884
Sand, % 0.888 25.862 5.707 3.700 0.648 2.820 11.854
Silt, % 61.479 73.126 67.962 2.611 0.038 −0.296 −0.188
Clay, % 11.789 35.536 26.331 4.028 0.153 −0.486 1.937
BD, g cm−3 1.400 1.732 1.605 0.071 0.044 −0.587 −0.065
SOC, g kg−1 0.664 5.472 1.781 0.713 0.400 2.161 6.972

Min, minimum; Max, maximum; SD, standard deviation; CV, coefficient of variation; BD, bulk density; SOC, soil organic carbon.

Table 2
Pearson's correlation coefficients between soil hydraulic properties (SHP) and selected soil properties.

Parameter Ks θs α n BD Sand Silt Clay SOC

Ks 1 0.282⁎⁎ 0.330⁎⁎ 0.451⁎⁎ −0.469⁎⁎ 0.341⁎⁎ 0.019 −0.325⁎⁎ 0.349⁎⁎

θs 1 0.647⁎⁎ 0.419⁎⁎ −0.704⁎⁎ 0.417⁎⁎ 0.09 −0.441⁎⁎ −0.104
α 1 0.651⁎⁎ −0.508⁎⁎ 0.552⁎⁎ −0.136 −0.419⁎⁎ −0.210⁎

n 1 −0.380⁎⁎ 0.709⁎⁎ −0.12 −0.573⁎⁎ −0.209⁎

⁎ Correlation significant at P < 0.05 (two-tailed).
⁎⁎ Correlation significant at P < 0.01 (two-tailed).
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explained 0.987 of the total variation.
Clearly, BD was an important factor for all SHP, where it could

explain 87.0%, 89.7%, 94.8%, and 91.2% of the total variations in Ks,
θs, α, and n, respectively. Wang et al. (2015)) investigated the spatial
variability of SWRC (VG model) on the Loess Plateau and also found
that BD contributed greatly to the variations in the VG parameters
(except for α). Moreover, Biswas and Si (2009) investigated the re-
lationship between SHP and soil physical properties, and showed that
BD was significantly correlated with the VG parameters (except for α)
and Ks. BD is a basic soil physical property that can affect the transport
of water and solutes, and it is an indicator of the soil quality and soil
compaction, thereby making it an important variable for SHP.

In addition, the soil physical properties explained all the variations
in SHP, whereas SOC was not an important factor among the soil che-
mical properties in terms of its contribution to variations in the SHP.
This result is not consistent with those obtained in other studies. For
example, Wang et al. (2015) analyzed the factors that affected the VG
parameters and showed that SOC contributed greatly to the variations
in the VG parameters (except for α). Fu et al. (2015) also analyzed the
important factors for Ks in a small karst catchment and found that SOC
was one of the most important factors. SOC is an important chemical

property that is influenced by BD and the soil texture (Liu et al., 2012),
thereby influencing the SHP. We found that the upper soil layers had
higher SOC contents, which were affected by plant growth and human
activities to influence the variations in the SHP. The SOC was low in the
deep soil layer, so it had no effects on the variations in the SHP.

In order to evaluate the results, the state-space models with the best
performance for every SHP were tested in two different scenarios (using
all of the SHP measurements and 50% of the SHP measurements).
Figs. 5–8 show the observed, estimated, and omitted SHP values, as
well as the estimated 95% confidence intervals for the best performing
models in different scenarios. The width of the 95% confidence interval
represents± 2 standard deviations for each estimated value at position
i.

The coefficients of the same equations were different (Figs. 5–8),
which indicates that the weights of the variables depended on the
available data (Wendroth et al., 2001). For Ks, θs, and α, the R2 values
obtained by the state-space models using 50% of the data were similar
to those using all the measured data, or even higher, whereas the R2

values decreased for n. Liu et al. (2012) also reported that the state-
space models for estimating SOC across a large-scale region performed
better when using 50% of the data. However, Jia et al. (2011) estimated

------95% significance was 0.195 according to a t-test
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Fig. 3. Autocorrelation functions (ACF) for soil hydraulic
properties (SHP) and related variables.
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the total net primary productivity of managed grasslands by state-space
modeling and concluded that the R2 values were lower when using 50%
of data. It is possible that the different variables used in diverse areas
had different spatial correlations with other variables and the data
available.

In addition, the width of the 95% confidence interval was even
narrower for n when using 50% of the data (Fig. 8) and the R2 values
decreased, which is not consistent with the results obtained in other
studies (She et al., 2014; Wendroth et al., 2003), where the 95% con-
fidence interval was narrower so the predictions were more accurate.
The omission of some extremely high and low values might explain
these results (Fig. 8b).

3.4. Comparison of state-space analysis and linear regression analysis

The linear regression analysis results for different combinations of
the SHP are shown in Table 4. It should be noted that the variables were
tested for normality and log-transformation was necessary for variables
that differed from normality. The variables related to the best perfor-
mance for the SHP were similar to those determined by the state-space
analysis (except for Ks). The R2 values for the best models according to
linear regression analysis were 0.312, 0.564, 0.375, and 0.292 for Ks,
θs, α, and n, respectively, and 0.875, 0.897, 0.966, and 0.987 by state-
space modeling. Thus, all the R2 values for different combinations ac-
cording to state-space analysis were slightly higher than those using the
equivalent linear regression equations. Therefore, the state-space
models described the spatial patterns of the variables better, which may
be explained by the consideration of the spatial variability among the
SHP and other variables in the state-space model.

4. Conclusion

Information is lacking about the SHP in deep profiles, so we

------ 95% significance was 0.195 according to a t-test
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Fig. 4. Cross-correlation functions (CCF) for soil hydraulic properties (SHP) with the bulk
density (BD), and sand, silt, clay and soil organic carbon (SOC) contents.

Table 3
State-space analysis of soil hydraulic properties (SHP) using the bulk density (BD), and
sand and clay contents.

State-space model R2

(Ks)i = 0.768 ∗ (Ks)i − 1 + 0.237 ∗ (BD)i − 1 + wi 0.870
(Ks)i = 0.855 ∗ (Ks)i − 1 + 0.100 ∗ (sand)i − 1 + wi 0.724
(Ks)i = 0.760 ∗ (Ks)i − 1 + 0.229 ∗ (clay)i − 1 + wi 0.875
(Ks)i = 0.809 ∗ (Ks)i – 1 – 0.046 ∗ (BD)i − 1 + 0.247 ∗ (sand)i − 1 + wi 0.809
(Ks)i = 0.795 ∗ (Ks)i – 1 – 0.008 ∗ (BD)i − 1 + 0.221 ∗ (clay)i − 1 + wi 0.855
(Ks)i = 0.840 ∗ (Ks)i − 1 + 0.348 ∗ (sand)i – 1 – 0.179 ∗ (clay)i − 1 + wi 0.769
(Ks)i = 0.767 ∗ (Ks)i – 1 – 0.075 ∗ (BD)i − 1 + 0.023 ∗

(sand)i − 1 + 0.294 ∗ (clay)i − 1 + wi

0.757

(θs)i = 0.697 ∗ (θs)i − 1 + 0.321 ∗ (BD)i − 1 + wi 0.897
(θs)i = 0.501 ∗ (θs)i − 1 + 0.474 ∗ (sand)i − 1 + wi 0.336
(θs)i = 0.756 ∗ (θs)i − 1 + 0.238 ∗ (clay)i − 1 + wi 0.818
(θs)i = 0.825 ∗ (θs)i – 1 – 0.461 ∗ (BD)i − 1 + 0.660 ∗ (sand)i − 1 + wi 0.798
(θs)i = 0.655 ∗ (θs)i − 1 + 0.046 ∗ (BD)i − 1 + 0.321 ∗ (clay)i − 1 + wi 0.771
(θs)i = 0.809 ∗ (θs)i − 1 + 0.340 ∗ (sand)i – 1 – 0.140 ∗ (clay)i − 1 + wi 0.583
(θs)i = 1.136 ∗ (θs)i – 1 – 0.609 ∗ (BD)i – 1 – 0.420 ∗

(sand)i − 1 + 0.907 ∗ (clay)i − 1 + wi

0.751

(α)i = 0.746 ∗ (α)i − 1 + 4.318 ∗ (BD)i − 1 + wi 0.948
(α)i = 0.966 ∗ (α)i − 1 + 0.038 ∗ (sand)i − 1 + wi 0.906
(α)i = 0.816 ∗ (α)i − 1 + 3.020 ∗ (clay)i − 1 + wi 0.905
(α)i = 0.736 ∗ (α)i − 1 + 0.135 ∗ (BD)i − 1 + 2.099 ∗ (sand)i − 1 + wi 0.966
(α)i = 0.664 ∗ (α)i − 1 + 0.099 ∗ (BD)i − 1 + 4.10 ∗ (clay)i − 1 + wi 0.835
(α)i = 0.708 ∗ (α)i − 1 + 0.286 ∗ (sand)i − 1 + 0.261 ∗ (clay)i − 1 + wi 0.949
(α)i = 0.658 ∗ (α)i − 1 + 0.132 ∗ (BD)i − 1 + 0.187 ∗

(sand)i − 1 + 0.008 ∗ (clay)i − 1 + wi

0.965

(n)i = 0.777 ∗ (n)i − 1 + 0.176 ∗ (BD)i − 1 + wi 0.912
(n)i = 0.904 ∗ (n)i − 1 + 0.052 ∗ (sand)i − 1 + wi 0.981
(n)i = 0.860 ∗ (n)i − 1 + 0.138 ∗ (clay)i − 1 + wi 0.934
(n)i = 0.884 ∗ (n)i – 1 – 0.161 ∗ (BD)i − 1 + 0.290 ∗ (sand)i − 1 + wi 0.898
(n)i = 0.856 ∗ (n)i – 1 – 0.019 ∗ (BD)i − 1 + 0.177 ∗ (clay)i − 1 + wi 0.899
(n)i = 0.711 ∗ (n)i − 1 + 0.289 ∗ (sand)i − 1 + 0.008 ∗ (clay)i − 1 + wi 0.987
(n)i = 0.932 ∗ (n)i – 1 – 0.194 ∗ (BD)i – 1 – 0.069 ∗ (sand) + 0.343 ∗

(clay)i − 1 + wi

0.846
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investigated the spatial distributions of the SHP, and estimated the
relationships between SHP and soil properties in a 100-m profile using
state-space modeling. The results showed that due to the unique profile
structure of the Loess Plateau, spatial autocorrelations were not high for
the SHP. BD was shown to be an important variable in terms of its
contributions to the variations in all the SHP. The soil physical prop-
erties (BD, sand, and clay) explained variations in the SHP, but SOC
made no contribution among the soil chemical properties. In addition,
the performance of the models was similar or even better when using
50% of the data. Compared with the results obtained by multiple re-
gression analysis, state-space analysis described the relationships be-
tween the SHP and other variables better, thereby indicating that state-
space modeling is a more effective tool for estimating the relationships

among soil variables. Our study provides important parameters for
numerical simulations of soil water dynamics in deep soil layers, which
are important for predicting SHP based on the available soil physical
data.
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