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Abstract Although biochar application to paddy fields has
been widely studied, its effects on Fe(III) reduction have not
yet been investigated. Paddy soil slurry and soil microbial
inoculation incubation were conducted with unmodified bio-
char (UMB) or glucose-modified biochar (GMB) additions at
different particle sizes. The Fe(II) concentration and pH value
were determined regularly, and Fe(III) reducing capacity
(FeRC) was evaluated by modeling. Fe(III) reduction poten-
tial (a) was increased by 0–1.96 mg g−1 in response to UMBs
addition, and a more remarkable increase in a was related to
the decrease of particle size. The dissolved organic carbon of
UMBs was responsible for the majority of the biochar reduc-
ing capacity. UMBs addition increased the contribution of free

Fe and nitrate nitrogen to FeRC, while it decreased that of
available phosphorus. Moreover, GMBs led to greater promo-
tion of FeRC than the corresponding UMBs, with an increase
in a of 2.9–16% in soil slurry and reduction rate of 13–35% in
microbial inoculation incubation. The maximum Fe(III) re-
duction rate (Vmax) with GMBs addition was faster or invari-
able than UMBs, while the time to Vmax (TVmax) was shorter or
stable. The effect of GMBs on Fe(III) reduction was less sen-
sitive as GMB particle size increased. Compared with UMBs
addition, pH declined remarkably in response to GMBs.
These findings suggest that GMBs can effectively stimulate
Fe(III) reduction in paddy fields, while simultaneously allevi-
ating the pH increase usually caused by pristine biochar
application.
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Introduction

Paddy fields with repeated redox alternations could provide
favorable conditions for redox reactions of nutrients and ac-
tivemetals with variable valency (Kögel-Knabner et al. 2010).
Iron [Fe(III)] reduction is a ubiquitous and important
geobiochemical process under anoxic conditions such as in
submerged paddy fields (Hori et al. 2015; Lovley 2006).
Owing to the high relative abundance of Fe(III) as a terminal
electron acceptor and its significance in electron transfer
(Feng et al. 2013), Fe(III) cycling is considered as important
as carbon, nitrogen, phosphorus, and sulfate cycling (Johnston
et al. 2014; Kögel-Knabner et al. 2010; Li et al. 2012). Fe(III)
reduction is a preferential electron sink for the oxidation of
organic pollutants such as pentachlorophenol (Chen et al.
2012; Liu et al. 2013) and dichlorodiphenyltrichloroethane
(Li et al. 2010) in submerged paddy soils. Moreover, the tox-
icity and mobilization of heavy metals are found to be closely
related to Fe(III) reduction (Myers et al. 2004; Wang et al.
2009; Whittleston et al. 2013). Furthermore, Fe(III) reduction
as a competitor to electrons could suppress the emissions of
methane during methanogenesis (Jaeckel and Schnell 2000).
This process also exerts strong influences on the bioavailabil-
ity of nutritive elements (Kumar et al. 2014; Li et al. 2016).

In the last 10 years, biochar has been widely produced be-
cause it provides a means of sequestering carbon to offset car-
bon emissions relative to the burning of plant- and animal-based
biomass (Atkinson et al. 2010; Glaser et al. 2002). A growing
number of studies have investigated the application of biochar
to soil with emphasis on its effects on soil properties, soil fer-
tility, and crop yield (Anderson et al. 2011; Herath et al. 2013;
Zhang et al. 2012). Biochar has also been shown to have pos-
itive effects on climate change mitigation, (in)organic pollutant
sorption and degradation, and microbial activity (Beesley et al.
2011; Kammann et al. 2012; Lehmann et al. 2011; Ren et al.
2016). Moreover, many modified biochar products have been
shown to provide benefits, including enhanced soil fertility and
removal of soil contaminants. Khan proposed a nutrient-
impregnated charcoal by taking biochar as a controlled-release
fertilizer carrier and N, P, and K fertilizer as a nutrient source
(Khan et al. 2007). Modified biochar prepared with KMnO4,
NaOH, and Fe-Mn oxides before pyrolysis or with H2O2 and
AlCl3 before application was responsible for higher sorption of
heavy metal ions (Pb2+, Cu2+, AsO4

3−) than the pristine bio-
chars (Ding et al. 2016; Payne and Abdel-Fattah 2005; Qian
et al. 2013;Wang et al. 2015;Wang et al. 2014; Zuo et al. 2016).

However, few studies have investigated the effects of bio-
char application on Fe(III) reduction in submerged paddy
soils. Nevertheless, biochar amendment-induced changes in
soil pH, organic matter content, microbial community, and
nutritive elemental bioavailability were all indirectly related
to Fe(III) reduction (Cui et al. 2011; Koide et al. 2011;
Lehmann et al. 2011). More importantly, the redox activity

revealed by the aromatic carbon and quinone structures indi-
cates that the biochar could accept and donate electrons,
resulting in an electron shuttling function (Graber et al.
2014; Kappler et al. 2014). Thus, biochar amendment into
paddy fields may have great influences on Fe(III) reduction.

Organic carbon as an electron donor was found to be one of
the dominant factors influencing Fe(III) reduction (Lentini
et al. 2012; Peng et al. 2015). Previous studies suggested that
microbial dehydrogenation and hydrogen production coupled
to organic matter fermentation were of significance to micro-
bial Fe(III) reduction for providing preferential substrates (Jia
et al. 2015). Yi et al. (2012) indicated that glucose was the
most dominant electron donor for Fe(III)-reducing microor-
ganisms in paddy soils, followed by pyruvate, lactate, and
acetate. Microbial community structure analysis showed that
the abundance and activity of fermentative Fe(III) reducers
likeClostridium, Pseudomonas, and Bacillus are much higher
than the obligate ones like Anaeromyxobacter,Geobacter, and
Shewanella in flooded paddy fields, especially during the
stage of rapid Fe(III) reduction (Bongoua-Devisme et al.
2013; Lentini et al. 2012; Li et al. 2011; Zhu et al. 2011).
Moreover, being decomposed into lactate and acetate during
anaerobic fermentation, glucose could provide substrates for
both fermentative and obligate Fe(III)-reducing bacteria (Feng
et al. 2013; Yi et al. 2012). Hence, because of the ability of
biochar to sorb low molecular weight dissolved organic car-
bon thus increasing the input of electron donors, biochar mod-
ified with glucose is expected to exert profound effects on
Fe(III) reduction in paddy soil.

Therefore, the present study was conducted to (i) investi-
gate the response of Fe(III) reduction to biochar addition and
elucidate the potential mechanism and (ii) evaluate the ability
of glucose-modified biochar to accelerate Fe(III) reduction in
paddy soils. To accomplish this, anaerobic soil slurries incu-
bation and soil microbial inoculation incubation were con-
ducted after amendment with pristine biochar or glucose-
modified biochar of different particle sizes. The results of this
study demonstrate the response of important biochemical pro-
cesses to biochar application and suggest an effective method
for productive and strategic biochar application to rice paddy
fields.

Materials and methods

Soil sampling and characterization

Paddy soils were sampled from eight drained post-harvest
paddy fields representative of China’s major rice production
provinces. The sites were situated in (1) Nanchang County,
Jiangxi Province (NC; 28° 33′ N, 115° 56′ E); (2) Fenghua
County, Zhejiang Province (FH; 29°45′ N, 121° 26′ E); (3)
Hanzhong, Shanxi Province (HZ; 33° 09′ N, 107° 25′ E); (4)
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Yongji County, Jilin Province (YJ; 43° 44′ N, 125° 54′ E); (5)
Guiyang, Guizhou Province (GY; 26° 22′ N, 106° 42′ E); (6)
Qionglai, Sichuan Province (QL; 30° 25′ N, 103° 44′ E); (7)
Zhongwei, Ninxia Hui Autonomous Region (ZW; 37° 29′ N,
105° 08′ E); and (8) Songyuan, Jilin Province (SY; 44° 34′ N,
124° 05′ E). In each paddy field, the top 20 cm soil was
sampled at five sites along a S-shaped pattern and mixed to
give a composite sample. The samples were then air-dried,
after which the residual plant parts were removed and samples
were passed through a sieve with a mesh size of 1 mm. The
sieved samples were then kept in polyvinylchloride bottles in
darkness at room temperature until use (Peter Mayer and
Conrad 1990). The major nutrient elements and iron oxides
in the tested paddy soils were determined by standardmethods
(Page 1982) and are given in Table 1.

Biochar and biochar modification

Biochar was derived from abandoned branch of apple tree and
pyrolyzed at 500 °C for 6–8 h in the absence of air. The
biochar consisted of 72% carbon, 24% oxygen, 2.6% hydro-
gen, and 1.2% nitrogen. The surface area of biochar was
87 m2 g−1, the pH was 10.43, and the ash content was 14%.
To obtain different particle sizes, the biochar was ground to
pass through 5.0-, 3.0-, 2.0-, 1.0-, 0.5-, and 0.25-mm sieves.
The unmodified biochar was divided into six fractions accord-
ing to particle size: B1 (0–0.25 mm), B2 (0.25–0.5 mm), B3
(0.5–1.0 mm), B4 (1.0–2.0 mm), B5 (2.0–3.0 mm), and B6
(3.0–5.0 mm); they were collectively named UMBs. The
water-dissolved organic carbon (DOC) content, acid-
dissolved total iron, and Fe(II) content of the different particle
size fractions of biochar are given in Fig. 1.

To modify the biochar with glucose, 5 g of B3, B4, and B5
fractions were added into the same volume (25 mL) of 9 g L−1

glucose solution (then named GMB3, GMB4, and GMB5,

respectively), and each particle size fraction of biochar was
shaken for 6, 12, and 48 h to obtain different levels of biochar
modification with glucose. Next, the solids were separated
from solution by quantitative filtration and dried for 12 h at
60 °C. Biochars modified with glucose were collectively
named GMBs. The adsorption rate of glucose to GMBs under
different modification times was determined by the potassium
permanganate oxidation method and listed in Table 2 (Blair
et al. 1995). Briefly, 0.02 g UMBs or GMBs was added to
20 mL distilled water and 5 mL concentrated sulfuric acid
(H2SO4) and then bathed for 30 min in boiling water to dis-
solve the glucose adsorbed on the biochar. After filtration
through a 0.45-μmpore size membrane, 5 mL filtered solution
was transferred to a 100-mL Erlenmeyer flask with 10 mL of
0.01 mol L−1 potassium permanganate (KMnO4) and 5 mL
H2SO4. The oxidation was conducted in a boiling water bath
for 30 min, after which 10 mL of 0.01 mol L−1 sodium oxalate
(Na2C2O4) was added to the hot Erlenmeyer flask, and the
excess of Na2C2O4 was titrated with 0.01 mol L−1 KMnO4.
The adsorption rate of glucose to GMBs was calculated as

Table 1 Soil basic properties of the texted paddy soils (means ± SD, n = 3)

Soil pH Ox-Fe
(mg g−1)

DCB-Fe
(mg g−1)

Organic matter
(mg g−1)

Available
phosphorus
(mg kg−1)

Available potassium
(mg kg−1)

Nitrate nitrogen
(mg kg−1)

Ammoniacal
nitrogen (mg kg−1)

NC 5.17 ± 0.02 3.62 ± 0.04 13.9 ± 0.2 48 ± 5. 5.7 ± 0.2 114 ± 3 5.26 ± 0.04 37.7 ± 0.5

FH 5.42 ± 0.02 6.15 ± 0.08 10.5 ± 0.2 65 ± 2 11 ± 1 180 ± 4 18.7 ± 0.2 29.7 ± 0.5

HZ 5.82 ± 0.02 6.0 ± 0.2 12.4 ± 0.2 44 ± 2 2.9 ± 0.3 135 ± 4 12.5 ± 0.3 26.1 ± 0.2

YJ 6.21 ± 0.01 4.1 ± 0.1 9.9 ± 0.3 38 ± 3 6.8 ± 0.4 149 ± 3 0.8 ± 0.8 13.37 ± 0.08

GY 7.45 ± 0.01 5.7 ± 0.3 14. 4 ± 0.2 95 ± 7 14.9 ± 0.8 78 ± 5 16.1 ± 0.5 10.0 ± 0.2

QL 7.83 ± 0.02 2.97 ± 0.09 7.8 ± 0.1 35 ± 1 13.0 ± 0.9 70 ± 2 34.8 ± 0.1 12.0 ± 0.4

ZW 8.24 ± 0.02 1.9 ± 0.2 9.7 ± 0.1 22 ± 1 17 ± 3 74 ± 5 7.8 ± 0.4 6.095 ± 0.007

SY 10.15 ± 0.01 0.56 ± 0.01 2.3 ± 0.2 17 ± 1 8.24 ± 0.02 352 ± 5 8.9 ± 0.2 0.68 ± 0.06

NCNanchang county, Jiangxi Province; FH Fenghua county, Zhejiang Province;HZ Hanzhong, Shanxi Province; YJYongji county, Jilin Province; GY
Guiyang, Guizhou Province; QL Qionglai, Sichuan Province; ZW Zhongwei, Ninxia Hui Autonomous Region; SY Songyuan, Jilin Province; Ox-Fe
oxalate-extractable Fe (amorphous Fe); DCB-Fe sodium hydrosulfite-sodium citrate-sodium bicarbonate-extractable Fe (free Fe)

Fig. 1 Content of water-dissolved organic matter, acid-dissolved total
iron, and Fe(II) of the different particle size fractions of biochar
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follows: Adsorption rate = (GGMBs − GUMBs) / Gadd, where
GGMBs or GUMBs was equivalent to glucose in GMBs or
UMBs according to the titrated volume of KMnO4; Gadd

was the added glucose when modifying biochar.

Preparation of soil microbial inoculation

Ten grams of soils from GYand SY was flooded with 10 mL
sterile distilled water in two 25-mL sterile serum bottles to
give a 1:1 soil to liquid ratio. After being covered with rubber
stoppers, purged with nitrogen gas for 10 min, and sealed with
aluminum covers, the serum bottles were incubated in a
controlled-environment incubator in darkness at 30 °C for
1 week to recover the microbial community. The soil slurries
were then quantitatively transferred to sterile centrifuge tubes
with 80 mL sterile distilled water. Next, microbial community
extraction was performed at 30 °C for 1 h in a shaking incu-
bator (FUMAQYC 211, Shanghai, China) at 7×g, after which
the tube was centrifuged (Zongkia KDC-40 Low Speed
Centrifuge, Anhui, China) at 164×g for 25 min. The superna-
tant fluid was collected as soil microbial inoculant.

Experiment design

Experiment I To investigate the response of Fe(III) reduction
to biochar addition in different paddy soils, soils from eight
drained post-harvest paddy fields were amended with biochar
at different particle sizes. This was achieved by adding 0.06 g
UMBs with particle sizes of 0–0.25, 0.25–0.5, 0.5–1.0, 1.0–
2.0, 2.0–3.0, and 3.0–5.0 mm to a series of 10-mL serum
bottles containing 3 g paddy soils (B1, B2, B3, B4, B5, and
B6, respectively). Serum bottles were then incubated anaero-
bically by capping with rubber stoppers, flushing with
filtered-sterilized nitrogen gas for 5 min, sealing with alumi-
num covers, and incubating in darkness at 30 °C for 40 days.
A control (CK) without added biochar was also prepared for
each soil.

Experiment II To provide abundant electron donors and fur-
ther strengthen the benefits of biochar, GMBs (0.06 g) pre-
pared in 2.2 (GMB3, GMB4, and GMB5) were mixed with
3.000 g soil (GY and SY) in a series of 10-mL serum bottles
and then submerged with 3 mL sterilized distilled water at a
ratio of 1:1 (w/v). The serum bottles were subsequently anaer-
obically incubated as described in the BExperiment design^
section.

Experiment III Soil microbial inoculation essay with syn-
thetic ferrihydrite FeOOH as sole electron acceptor was con-
ducted to make Fe(III) reduction more intuitive, as well as to
elucidate the potential mechanism of UMBs for accelerating
Fe(III) reduction and to evaluate the ability of GMBs. To
accomplish this, aliquots (1 mL) of the microbial inoculation
and 0.06 g modified biochar (GMB3, GMB4, and GMB5)
were incubated anaerobically in series of 10-mL sterile serum
bottles with inorganic medium. The inorganic medium
contained 1 mL of 5 g L−1 NH4Cl solution as a nitrogen
source, 1 mL of 0.025 mol L−1 phosphate buffer solution,
1 mL of 1.7 g L−1 synthetic ferrihydrite FeOOH, and 1 mL
distilled and sterilized water. The corresponding UMBs (B3,
B4, and B5) were also conducted to substitute for GMBs as a
control group. The (un)modified biochars were considered the
sole carbon source in the microbial inoculation essay.

Sample analysis

During anaerobic incubation, for each experiment, three se-
rum bottles for each treatment were taken randomly on days 0,
1, 3, 5, 7, 10, 13, 16, 20, 25, 30, 35, and 40 and analyzed for
Fe(II) concentration and pH. The Fe(II) concentration was
quantified using ferrozine assay (He and Qu 2008; Lovley
and Phillips 1986). Briefly, 0.4 mL of well-shaken subsample
was transferred to a polyethylene plastic tubewith 4.6 mLHCl
solution and allowed to react at 30 °C for 24 h. Next, the tube
was centrifuged (Zongkia KDC-40 Low Speed Centrifuge,
Anhui, China) at 2009×g for 10 min, and 1 mL of supernatant
was mixed with a 5 mL aliquot of 1 mol L−1 NaAC buffer and
a 5 mL aliquot of 1 g L−1 phenanthroline to develop color. The
concentration of Fe(II) was subsequently determined based on
the absorbance at 510 nm. The pH was determined using a
calibrated Delta320 pH meter with a compound glass elec-
trode (Mettler-Toledo Instruments, Shanghai, China).

Statistical analyses

Data are expressed as the arithmetic means ± the standard
deviation (three replicates). Analysis of variance (ANOVA)
was conducted using SAS 8.0 and differences between treat-
ments were identified by t tests. A p < 0.05 was considered to
indicate significance. Changes in Fe(II) concentration with
incubation time were simulated with the logistic model:

Table 2 Adsorption rate of glucose to modified biochars (GMBs) after
different modification times

Modification time GMB3 (%) GMB4 (%) GMB5 (%)

6 h 6.3 ± 0.4c 3.3 ± 0.7b 3.3 ± 0.3b

12 h 12.5 ± 0.3b 11.9 ± 0.1a 8.7 ± 0.2a

48 h 16 ± 1a 12.2 ± 0.1a 9.0 ± 0.2a

Different letters indicate significant differences among modified biochars
with the same particle size but different modification times at p < 0.05

GMB3, GMB4, and GMB5: biochars particle size fractions B3 (0.5–
1.0 mm), B4 (1.0–2.0 mm), and B5 (2.0–3.0 mm) modified with glucose,
respectively; 6 h, 12 h, and 48 h: modification times of glucose to biochar
for 6, 12, and 48 h, respectively
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Ct = a/(1 + be−ct) (He and Qu 2008). The Fe(III) reducing
process was characterized using kinetic parameters, where a
was the Fe(II) reduction potential, b referred to the model
parameter, and cwas the reaction rate constant. The maximum
Fe(III) reduction rate (Vmax) was calculated as 0.25 ac, and the
time to Vmax (TVmax) was lnb/c. The Fe reduction rate in the
microbial inoculation experiment was calculated as the ratio
of Fe(II) concentration at the end (the 40th day) of incubation
to Fe(III) concentration at the beginning of anaerobic incuba-
tion. The contribution of soil properties to the Fe(III) reduction
process with UMBs was summarized by canonical correspon-
dence analysis (CCA) using Canoco 4.5 (http://www.
canoco5.com) (Hoy et al. 2008). The independent variables
included soil organic matter (OM), ammoniacal nitrogen
(AN), nitrate nitrogen (NN), available phosphorus (AP), avail-
able potassium (AK), free iron (sodium hydrosulfite-sodium
citrate-sodium bicarbonate-extractable Fe; DCB-Fe), amor-
phous iron (oxalate-extractable Fe; Ox-Fe), and soil pH
(pH). The dependent variables contained the Fe(III) reducing
capacity (FeRC) kinetic parameters a, Vmax, and TVmax. The
results of CCA were visualized in the form of a biplot using
Canodraw 4.5 (http://www.canodraw.com).

Results

Variations in Fe(III) reducing capacity with UMBs
addition in paddy soil slurries

Changes in Fe(II) concentration with incubation time were
fitted with a logistic model to provide insight into the potential
for Fe(III) reduction. As shown in Table 3, the Fe(III) reduc-
tion potential (a) varied from 1.27 to 10.4 mg g−1 in control
soils (CK treatment) from different rice production provinces
without biochar addition (Table 3). The highest awas found in
soil collected from HZ with the highest maximum Fe(III) re-
ducing rate (Vmax), 1.9 mg (g day)−1, while the lowest a was
detected in soil from SY, which was coincident with the lowest
Vmax 0.22 mg (g day)−1 (Table 3).

UMB addition at different particle sizes led to an increase
in a of 0–1.96 mg g−1, which was 0–20% higher than the
control soils (Table 3). A more remarkable increase in a was
detected as particle size decreased (p < 0.01). a in the B1 and
B2 treatments was increased significantly by 4.5–20 and 4.6–
19%, respectively, while the addition of B5 and B6 did not
seem to cause a significant increase in a. The effect of particle
size onVmax in NC, HZ, and YJ soils was different from that in
FH, GY, QL, ZW, and SY soils. Vmax declined or remained
stable in the former soils, while it increased in the latter soils.
TVmax was significantly shortened or remained stable with
UMBs addition at different particle size (except for NC soil
amended with B6 fraction of biochar and YJ soil amended
with B4 fraction of biochar; Table 3). Generally speaking,

the variation in Fe(III) reducing kinetics revealed that biochar
addition promoted Fe(III) reduction in paddy soils.

Moreover, the addition of UMBs resulted in an input of
0.009–0.028 mg acid-dissolved total iron per gram of soil
(Fig. 1), which was extremely recalcitrant and unavailable to
microorganisms in paddy soils. When compared with the
acid-dissolved Fe(II) content in paddy soils (1.27 to
10.4 mg g−1 soil; Table 3), the low iron input via biochar
addition could be neglected in this study.

Variation in Fe(III) reducing capacity with GMBs
addition in paddy soil slurries

When compared with CK, GMBs showed a significant pro-
motion effect on Fe(III) reduction (Tables 3 and 4). At the end
of the 40-day incubation, Fe(II) accumulation increased by
0.37–1.08 mg g−1 in GY paddy soil and 0.11–0.64 mg g−1 in
SY paddy soil with the addition of GMBs, respectively
(Online Resource 1). Furthermore, the extent of the promotion
effect was more obvious as biochar particle size decreased.
For GMB3, there was a remarkable increase in a of 6.7–
10% in GY soil and 15–16% in SY soil (Table 4). For
GMB4 and GMB5, a increased by 5.6–8.1% (GMB4) and
2.9–6.4% (GMB5) in GY soil and 15–16% (GMB4) and
14–15% (GMB5) in SY soil, respectively (Table 4). In addi-
tion, GMBs had a better effect than the corresponding UMBs,
resulting in a significant difference in both soils. These find-
ings indicated a successful effect of modified biochar addition
on Fe(III) reduction. Nonetheless, the addition of GMBs had a
negligible effect on Vmax and TVmax in GYpaddy soil. GMBs
modified for 12 and 48 h had similar a, Vmax, and TVmax

values, which demonstrated a higher promotion effect than
that for 6 h in GY soil. In SY soil, Vmax in each GMB treat-
ment varied with modification time, while modification time
did not influence a and TVmax in SY soil (Table 4).

Variations in pH with the addition of UMBs and GMBs
in paddy soil slurries

The addition of UMBs led to an increase in soil initial pH that
was negatively related to biochar particle size and followed
the order B1 > B2 > B3 > B4 > B5 ≈ B6 ≈ CK (Online
Resource 2). Following soil flooding, a slow decrease in pH
occurred during the first 7 days of incubation, after which it
stabilized and there was no significant difference among
UMBs treatments. These results suggested that the increase
caused by UMBs addition gradually disappeared after anaer-
obic incubation for 40 days.

With the addition of GMBs, a rapid decrease of pH
occurred during the first 7 days of soil slurry incubation
(Fig. 2). The pH value then reached a level equal to that
of the CK treatment in the GY soil, while it decreased
from an initial value of 10.51 to 9.48 in the SY soil,
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which lasted until the end of the incubation period
(Fig. 2). This decrease of pH after GMBs treatments was
higher than that in the CK and UMBs treatments in SY
soil, illustrating that the addition of GMBs alleviated the
increase of soil pH that occurred in response to the input
of UMBs. Moreover, GMBs modified for 12 and 48 h
produced a greater decrease in pH than those incubated
for 6 h in SY soil (Fig. 2).

Variation in Fe(III) reducing capacity with GMBs
during soil microbial inoculation incubation

Table 5 presents the logistic kinetic parameters of Fe(III)
reduction with biochar as an electron donor and soil inoc-
ulation as a microbial source. With the addition of UMBs,

Fe(II) accumulation was 160–261 mg L−1 in the GY treat-
ments and 154–215 mg L−1 in the SY treatments after
40 days of incubation (Online Resource 3), coincident
with the reduction rate at 50–76 and 46–65%, respectively
(Table 5). These results revealed that UMBs could pro-
vide an electron for Fe(III) reduction. Furthermore, micro-
bial inoculation from GY with UMBs resulted in a much
higher Fe(III) reduction rate than that from SY, likely due
to differences in the microbial community collected from
GY and SY soil.

The addition of GMBs had a remarkable promotion
effect on Fe(III) reduction. For a, the increase was 45–
76 mg L−1 in GY and 81–113 mg L−1 in SY with GMBs,
respectively (Table 5). The Vmax with GMBs addition was
1.6–2.5 and 1–3.6 times faster in GY and SY, respectively,

Table 3 Kinetic parameters of Fe(III) reduction in submerged paddy soils after the addition of unmodified biochar (UMBs) at different particle sizes

Soils Particle size Logistic model parameters Soils Particle size Logistic model parameters

a/mg g−1 Vmax/mg (g day)−1 TVmax/day a/mg g−1 Vmax/mg (g day)−1 TVmax/day

NC CK 5.789 ± 0.06c 0.82 ± 0.02a 3.26 ± 0.07b GY CK 7.9 ± 0.1d 1.3 ± 0.1d 1.10 ± 0.09ab

B1 6.712 ± 0.07a 0.62 ± 0.04bc 3.4 ± 0.2b B1 8.74 ± 0.02a 1.6 ± 0.1a 0.9 ± 0.1b

B2 6.61 ± 0.06a 0.59 ± 0.02c 3.4 ± 0.2b B2 8.34 ± 0.06b 1.45 ± 0.01b 0.98 ± 0.04b

B3 6.36 ± 0.09b 0.65 ± 0.08bc 3.5 ± 0.2ab B3 8.11 ± 0.06c 1.41 ± 0.05bc 1.07 ± 0.09ab

B4 5.9 ± 0.1c 0.70 ± 0.02b 3.5 ± 0.2ab B4 7.96 ± 0.06cd 1.31 ± 0.03cd 1.15 ± 0.06a

B5 5.9 ± 0.1c 0.67 ± 0.02bc 3.6 ± 0.1ab B5 8.0 ± 0.2cd 1.28 ± 0.04d 1.16 ± 0.08a

B6 5.9 ± 0.1c 0.63 ± 0.09bc 3.9 ± 0.4a B6 7.89 ± 0.04d 1.268 ± 0.001d 1.2 ± 0.1a

FH CK 9.33 ± 0.04c 1.75 ± 0.06e 2.85 ± 0.08a QL CK 5.9 ± 0.1d 0.82 ± 0.04b 3.1 ± 0.2a

B1 10.16 ± 0.08a 2.5 ± 0.1a 2 ± 0d B1 7.11 ± 0.08a 1.008 ± 0.002a 3.08 ± 0.08a

B2 10.15 ± 0.05a 2.27 ± 0.06ab 2.53 ± 0.03cd B2 7.06 ± 0.04a 0.90 ± 0.09ab 3.3 ± 0.1a

B3 9.9 ± 0.2b 2.20 ± 0.07bc 2.5 ± 0.1cd B3 6.522 ± 0.04b 0.87 ± 0.06ab 3.1 ± 0.2a

B4 9.8 ± 0.1b 2.0 ± 0.2cd 2.6 ± 0.2bcd B4 6.4 ± 0.1c 1.0 ± 0.2ab 2.8 ± 0.6a

B5 9.37 ± 0.05c 1.9 ± 0.2de 2.7 ± 0.2abc B5 6.0 ± 0.06d 0.95 ± 0.03ab 2.98 ± 0.06a

B6 9.33 ± 0.06c 1.8 ± 0.1e 2.80 ± 0.09ab B6 5.97 ± 0.04d 0.95 ± 0.09ab 2.8 ± 0.1a

HZ CK 10.4 ± 0.5c 1.9 ± 0.3a 3.8 ± 0.3a ZW CK 5.9 ± 0.1c 0.339 ± 0.009b 4.3 ± 0.4a

B1 12.3 ± 0.2a 1.7 ± 0.2a 3.9 ± 0.2a B1 6.8 ± 0.2a 0.41 ± 0.03a 5.2 ± 0.6a

B2 12.4 ± 0.2a 1.66 ± 0.06a 4.0 ± 0.2a B2 6.8 ± 0.2a 0.43 ± 0.04a 5.0 ± 0.7a

B3 12.2 ± 0.2a 1.65 ± 0.02a 4.1 ± 0.1a B3 6.44 ± 0.1b 0.41 ± 0.02a 4.4 ± 0.6a

B4 11.50 ± 0.06b 1.9 ± 0.1a 3.4 ± 0.3a B4 6.2 ± 0.2b 0.39 ± 0.02a 4.7 ± 1.2a

B5 11.2 ± 0.4b 1.6 ± 0.2a 4.0 ± 0.3a B5 5.9 ± 0.08c 0.44 ± 0.02a 4.6 ± 0.4a

B6 10.5 ± 0.2c 1.7 ± 0.4a 3.9 ± 0.4a B6 5.1 ± 0.1c 0.44 ± 0.04a 4.9 ± 0.2a

YJ CK 7.3 ± 0.1c 0.72 ± 0.05a 4.34 ± 0.06bcd SY CK 1.27 ± 0.02d 0.22 ± 0.02a 1.68 ± 0.06a

B1 8.0 ± 0.1a 0.73 ± 0.1a 3.65 ± 0.04e B1 1.46 ± 0.02a 0.36 ± 0.16a 1.0 ± 0.1c

B2 7.95 ± 0.03a 0.70 ± 0.07a 4.0 ± 0.3de B2 1.38 ± 0.02b 0.32 ± 0.01a 1.13 ± 0.02c

B3 7.88 ± 0.09a 0.63 ± 0.06a 4.5 ± 0.3abc B3 1.343 ± 0.006c 0.27 ± 0.02a 1.21 ± 0.02bc

B4 7.56 ± 0.09b 0.67 ± 0.05a 4.8 ± 0.1a B4 1.31 ± 0.02c 0.27 ± 0.06a 1.2 ± 0.2c

B5 7.13 ± 0.06c 0.7 ± 0.1a 4.3 ± 0.2cd B5 1.26 ± 0.02d 0.25 ± 0.03a 1.4 ± 0.1bc

B6 7.16 ± 0.01c 0.62 ± 0.04a 4.7 ± 0.3ab B6 1.26 ± 0.03d 0.21 ± 0.05a 1.59 ± 0.03ab

Different letters indicate significant differences among treatments with different particle sizes at p < 0.05. The coefficient of determination values that
ranged from 0.930 to 0.997 indicated that it was appropriate to use logistic model to characterize Fe(III) reducing kinetics

B1, B2, B3, B4, B5, and B6: biochars with particle size of 0–0.25, 0.25–0.5, 0.5–1.0, 1.0–2.0, 2.0–3.0, and 3.0–5.0 mm, respectively
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than with UMBs. TVmax was significantly reduced or
remained stable in response to the addition of UMBs
(Table 5). The response of Fe(III) reduction to GMBs
addition was less sensitive as GMBs particle size in-
creased, occurring in the order GMB3 (95–98%) >
GMB4 (78–91%) > GMB5 (63–78%) (Table 5). There
were no significant differences in a, Vmax, and TVmax

between 12-h GMB and 48-h GMB at the same particle
size (Table 5), which was related to the similar absorption
rate. From the viewpoint of microbial inoculation source,
the increase in a and Vmax between UMBs and GMBs
addition was higher in the SY treatments than in the GY
treatments, indicating that microbial inoculation from SY
soil was more sensitive to glucose modification.

Table 4 Kinetic parameters of Fe (III) reduction in paddy soils after the addition of biochar modified with glucose (GMBs) at different particle sizes

Soils Treatments Logistic model parameters Soils Treatments Logistic model parameters

a/mg g−1 Vmax/mg (g day)−1 TVmax/day a/mg g−1 Vmax/mg (g day)−1 TVmax/day

GY B3 8.11 ± 0.06d 1.41 ± 0.05a 1.07 ± 0.09a SY B3 1.343 ± 0.006b 0.27 ± 0.02c 1.21 ± 0.02a

GMB3 (6 h) 8.48 ± 0.06c 1.3 ± 0.2a 1.09 ± 0.08a GMB3 (6 h) 1.47 ± 0.02a 0.31 ± 0.05bc 0.8 ± 0.1b

GMB3 (12 h) 8. 60 ± 0.04b 1.2 ± 0.2a 1.0 ± 0.1a GMB3 (12 h) 1.455 ± 0.004a 0.38 ± 0.06ab 0.8 ± 0.1b

GMB3 (48 h) 8.75 ± 0.01a 1.25 ± 0.08a 1.2 ± 0.2a GMB3 (48 h) 1.47 ± 0.01a 0.43 ± 0.06a 0.70 ± 0.03b

B4 7.96 ± 0.06c 1.31 ± 0.03a 1.15 ± 0.06a B4 1.31 ± 0.02b 0.27 ± 0.06ab 1.2 ± 0.2b

GMB4 (6 h) 8.37 ± 0.08b 1.20 ± 0.08a 1.10 ± 0.09a GMB4 (6 h) 1.46 ± 0.01a 0.31 ± 0.02a 1.40 ± 0.09ab

GMB4 (12 h) 8.54 ± 0.02a 1.2 ± 0.5a 0.94 ± 0.05a GMB4 (12 h) 1.47 ± 0.02a 0.278 ± 0.003ab 1.5 ± 0.2ab

GMB4 (48 h) 8.6 ± 0.1a 1.09 ± 0.13a 1.0 ± 0.3a GMB4 (48 h) 1.453 ± 0.006a 0.226 ± 0.002b 1.9 ± 0.4a

B5 8.0 ± 0.2b 1.28 ± 0.04a 1.16 ± 0.08a B5 1.26 ± 0.02b 0.25 ± 0.03a 1.4 ± 0.1a

GMB5 (6 h) 8.16 ± 0.09b 1.26 ± 0.06a 1.1 ± 0.4a GMB5 (6 h) 1.45 ± 0.02a 0.31 ± 0.03a 1.4 ± 0.1a

GMB5 (12 h) 8.4 ± 0.2a 1.21 ± 0.06a 1.1 ± 0.1a GMB5 (12 h) 1.46 ± 0.01a 0.34 ± 0.05a 1.5 ± 0.2a

GMB5 (48 h) 8.43 ± 0.02a 1.2 ± 0.2a 1.1 ± 0.2a GMB5 (48 h) 1.44 ± 0.03a 0.3 ± 0.1a 1.8 ± 0.4a

Different letters indicate significant differences among treatments with the same particle size but different modification times at p < 0.05. The coefficient
of determination values ranged from 0.948 to 0.992, revealing that it was well fitted with the logistic equation to simulate the kinetics of variations in
Fe(II) concentration

GMB3, GMB4, and GMB5: modified biochars with particle size of B3 (0.5–1.0 mm), B4 (1.0–2.0 mm), and B5 (2.0–3.0 mm), respectively; 6 h, 12 h,
and 48 h: modification times of glucose to biochar for 6, 12, and 48 h, respectively
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Fig. 2 Changes of pH during Fe(III) reduction process with different
particle size fractions of biochar modified with glucose (GMBs) in
paddy soils. Soil samples were collected from Guiyang municipality,
Guizhou Province (GY) and Songyuan municipality, Jilin Province (SY).

GMB3, GMB4, andGMB5: modified biochars with particle size B3 (0.5–
1.0 mm), B4 (1.0–2.0 mm), and B5 (2.0–3.0 mm). Six, 12, and 48 h are
modification times of glucose to biochar for 6, 12, and 48 h, respectively
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Variation in pH with GMBs during soil microbial
inoculation incubation

As shown in Fig. 3, with the addition of UMBs, a slow in-
crease in pH occurred during the first few days of microbial
inoculation incubation, which was followed by a stable level
of 7.7 in the GY treatment and 8.0 in the SY treatment.
However, after the addition of GMBs, pHmarkedly decreased

at the beginning of the incubation period and reached its min-
imum on day 5 because of the fermentation of glucose
adsorbed onto the GMBs. The pH then increased to a stable
value until the end of the experiment (Fig. 3). On the other
hand, because of differences in the fermentative ability of the
microbial community between GYand SYpaddy soil, the pH
of the GY treatment decreased of 0.3 units, while that of the
SY treatment decreased of 0.6 units.

Table 5 Kinetic parameters of Fe(III) reduction in microbial inoculation incubations after addition of biochar modified with glucose (GMBs) at
different particle sizes

Soils Treatments Logistic model parameters Reduction
rate/%

Soils Treatments Logistic model parameters Reduction
rate/%

a/mg g−1 Vmax/
mg (L day)−1

TVmax/day a/mg g−1 Vmax/
mg (L day)−1

TVmax/day

GY B3 258 ± 12b 17 ± 1bc 5.3 ± 0.4a 76 ± 3b SY B3 222 ± 7b 10.4 ± 0.4d 8.6 ± 0.5a 65 ± 2c
GMB3 (6 h) 329 ± 78a 16 ± 2c 5.7 ± 0.5a 96 ± 2a GMB3 (6 h) 323 ± 3a 19 ± 2c 8.7 ± 0.2a 94.7 ± 0.9b
GMB3

(12 h)
332.5 ± 4a 23 ± 4ab 4.2 ± 0.2b 97 ± 1a GMB3

(12 h)
332 ± 3a 22 ± 1b 7.1 ± 0.2b 97.1 ± 0.9ab

GMB3
(48 h)

326 ± 8a 27 ± 6a 3.6 ± 0.5b 96 ± 2a GMB3
(48 h)

335 ± 4a 25 ± 1a 7.1 ± 0.2b 98 ± 1a

B4 222 ± 10c 8 ± 2c 8.2 ± 1.7a 65 ± 3c B4 190 ± 5b 6.7 ± 0.3c 9 ± 1b 56 ± 1b
GMB4 (6 h) 264 ± 10b 17 ± 2b 5.1 ± 0.2b 78 ± 3b GMB4 (6 h) 295 ± 12a 11.4 ± 0.7b 11.3 ± 0.8a 86 ± 3a
GMB4

(12 h)
295 ± 13a 23 ± 2a 5.2 ± 0.4b 86 ± 4a GMB4

(12 h)
302 ± 10a 14.1 ± 0.5a 9.8 ± 0.6ab 88 ± 3a

GMB4
(48 h)

298 ± 6a 21 ± 3a 5.4 ± 0.1b 87 ± 2a GMB4
(48 h)

310 ± 7a 14 ± 1a 9.5 ± 0.8b 91 ± 2a

B5 171 ± 5b 5.6 ± 0.3b 9.3 ± 0.6a 50 ± 1b B5 156 ± 7c 5.7 ± 0.5c 10.11 ± 1.3a 46 ± 2c
GMB5 (6 h) 221 ± 9a 20.4 ± 0.8a 4.5 ± 0.5b 65 ± 3a GMB5 (6 h) 237 ± 7b 8.96 ± 0.09b 10.4 ± 0.4a 70 ± 2b
GMB5

(12 h)
220 ± 3a 21 ± 1a 4.1 ± 0.3b 65 ± 1a GMB5

(12 h)
267 ± 5a 11.2 ± 0.9a 9.5 ± 0.8a 78 ± 1a

GMB5
(48 h)

214 ± 7a 20 ± 5a 3.7 ± 0.3b 63 ± 2a GMB5
(48 h)

2599 ± 2a 10.6 ± 0.9a 9.2 ± 0.3a 75.8 ± 0.4a

Different letters indicate significant differences among treatments with the same particle size but different modification times at p < 0.05. The coefficient
of determination values ranged from 0.951 to 0.996

GMB3, GMB4, and GMB5: modified biochars with particle size of B3 (0.5–1.0 mm), B4 (1.0–2.0 mm), and B5 (2.0–3.0 mm), respectively; 6 h, 12 h,
and 48 h: modification times of glucose to biochar for 6, 12, and 48 h, respectively
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Fig. 3 Changes of pH during Fe(III) reduction process with different
particle size fractions of biochar modified with glucose (GMBs) in
microbial inoculation incubation. Soil microbial inoculations were
extracted from soils which sampled from Guiyang municipality,

Guizhou Province (GY) and Songyuan municipality, Jilin Province (SY).
GMB3, GMB4, andGMB5: modified biochars with particle size B3 (0.5–
1.0 mm), B4 (1.0–2.0 mm), and B5 (2.0–3.0 mm). Six, 12 and 48 h are
modification times of glucose to biochar for 6, 12, and 48 h, respectively
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Discussion

Mechanism of stimulated Fe(III) reduction with UMBs
addition

Biochar is abundant in highly aromatic compounds, among
which quinones account for 15–21% (Heymann et al. 2011).
Quinones have been reported to act as electron shuttles and are
of significance to biochemistry cycles in soils and sediments
(Chen et al. 2012; Klupfel et al. 2014; Myers and Myers 1993;
Newman and Kolter 2000). Kappler et al. (2014) confirmed that
5 and 10 g L−1 biochar could accelerate the rate and extent of
Fe(III) reduction by Shewanella oneidensis MR-1 as quinones in
biochar transferredmore electrons to Fe(III). In the present study,
154–261mgL−1 Fe(II) accumulated in themicrobial inoculation
assay when there was no electron donor other than the UMBs
(equal to 14–23 μmol Fe(III); Table 5 and Online Resource 3).
In addition, the electrons donated by DOC of UMBs were 7.2–
20 μmol (based on 1 mol of carbon thoroughly oxidized to CO2

being able to transfer 4 mol of electron; Fig. 1). Namely, the
DOC of UMBs was considered as electron donor and shuttle
and responsible for the majority of the reducing capacity and
presumably 20% increase of Fe(II) accumulation in paddy soils
(Fe(II) accumulation during the 40-day incubation period in-
creased by 0–105 μmol with UMBs addition in paddy soils.
These results are in agreement with those of Graber et al. (2014).

CCA revealed that organic matter (OM) and amorphous Fe
content (Ox-Fe) (the longest arrows closely related to axis 1 in
Fig. 4) were the dominant factors contributing to Fe(III) re-
duction in paddy soils. However, UMB addition enhanced the
contribution of free Fe content (DCB-Fe) to FeRC to as an
important parameter together with OM and Ox-Fe (Fig. 4).
While arrow of AP was shortened dramatically following
the addition of UMBs, this indicated a reduced contribution
of soil original available phosphorus content to Fe(III) reduc-
tion (Fig. 4). It has been reported that rice straw-derived bio-
char application to paddy soil could increase the phosphorus
availability by decreasing phosphate adsorbed on ferrihydrite
(Cui et al. 2011). As a result, more Fe(III) was available to be
readily reduced. Furthermore, biochar and amorphous iron
oxide could mitigate the emission of nitrous oxide, which
competed intensely with Fe(III) for electron donors in
denitrifying environments (Easton et al. 2015), resulting in
more electron transport to Fe(III). These findings were in
agreement with the enhanced contribution of nitrate nitrogen
(NN) to FeRC in CCA analysis (Fig. 3).

Most studies conducted to date have demonstrated that
microbial activity in paddy soils increased as a result of bio-
char addition (Lehmann et al. 2011), which might also explain
the enhancedmicrobial- mediated Fe(III) reduction.Microbial
community abundance and structures related to Fe(III) reduc-
tion should be further explored to clarify the variations in soil
microorganisms induced by biochar addition.

Effect of biochar particle size on Fe(III) reduction

The difference in biochar particle size can influence its func-
tion in soil. For instance, larger biochar particles with less ash
are less efficient in increasing soil pH, while smaller biochar
particles are better for glucose adsorption and transport
(Online resource 2; Table 2). In particular, the content of
DOC was related to biochar particle size (Fig. 1). Namely,
the number of electrons donated and shuttled by DOC of
biochar was increased with the decrease of biochar particle
size. That is why, the increase in Fe(III) reduction potential
was significantly correlated with the decrease of biochar par-
ticle size. Obviously, in the present study, the rate at which
glucose adsorbed to biochar varied with biochar particle size
(Table 2). Small particle size is effective in the sorption of
organic carbon and attachment of microorganisms (Ameloot
et al. 2013; Lehmann et al. 2011). Liang et al. (2016) con-
firmed that the use of amendments with finer biochar particles
resulted in an increase in soil enzyme activity as compared to
coarser particles. In the present study, the promotion effect of
biochar on Fe(II) accumulation was greater, occurring in the
order GMB3 > GMB4 > GMB5 in both the soil slurry assay
and microbial inoculation assay. Additionally, a larger particle
was associated with a shorter time needed for adsorption sat-
uration. Thus, the effect of GMBs modification time on
Fe(III) reduction was less sensitive as GMB particle size
increased.

Advantage of GMBs addition over UMBs to Fe(III)
reduction and soil pH

Following the addition of UMBs to paddy soils, despite
DOC being responsible for Fe(III) reduction, part of the
DOC may participate in the reduction of other electron
acceptors more readily reduced than Fe(III). Thus, the
promotion of Fe(III) reduction by UMBs might be less
significant than the theoretical one as estimated in the
BMechanism of stimulated Fe(III) reduction with UMBs
addition^ section. Based on the pore structure, surface
area, and adsorption capacity of biochar, we modified
biochar with glucose to increase the DOC content of
biochar. Quilliam et al. (2013) calculated that 14C-labeled
glucose on biochar could diffuse into soil at 0.48 cm day−1

and that it further enhanced the microbial activity in soil
surrounding the biochar. Our results demonstrated that,
with the addition of GMBs, the Fe(III) reducing potential
and maximum Fe(III) reduction rate were remarkably in-
creased or remained stable relative to UMBs in both the
soil slurry assay and the microbial inoculation assay.
These findings revealed that glucose modification of bio-
char was important to simulate Fe(III) reduction in paddy
soil. Moreover, it is widely believed that biochar addition
could lead to positive priming effects on soil organic
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matter mineralization by increasing soil microbial
biomass and activities. Quilliam et al. (2013) indicated
that the mineralization rate of glucose by microorganisms
on the biochar surface was significantly enhanced com-
pared to that in soil without biochar addition. Chen et al.
(2012) found that the Fe(III) reducing and dechlorinating
bacteria were enriched by the additional presence of elec-
tron donors of lactate and electron shuttles of 2,6-anthra-
quinone disulfonate. Hence, changes in microbial biomass
and organic matter turnover could be additional causes for
the enhanced Fe(III) reduction after GMBs addition.

For pH, similarly to previous studies (Joseph et al. 2010;
Xu et al. 2012), the addition of UMBs resulted in an increase
in pH during the paddy soil slurry incubation and the micro-
bial inoculation incubation. This can be explained by the basic
groups of biochar, such as –COO– and –O-functional groups
and carbonate, which contributed greatly to the alkalinity
(Yuan et al. 2011). However, the pH was lower in response
to GMBs throughout the anaerobic incubation period in

comparison to the UMBs and CK treatments, which was at-
tributed to the production of organic acids by microbial fer-
mentation of the glucose adsorbed on biochar (Lovley 1987;
Takai et al. 1963).

Recent studies have demonstrated that fermentative bacte-
ria play a supporting and important role during the Fe(III)
reduction in paddy soils with intermediate metabolites (such
as low-molecular-weight organic acids and hydrogen) serving
as electron donors (Lehours et al. 2010; Lehours et al. 2009;
Lentini et al. 2012). Trchounian et al. (2012) indicated that H2

production or uptake by microorganisms was correlated with
the activity and function of hydrogenase, as well as the
environmental pH. Jia et al. (2015) further reported that fer-
mentative dehydrogenation and hydrogen production were
responsible for microbial Fe(III) reduction. In the soil slurry
assay with GMBs addition, the decrease in pH in GY soil was
lower, which was coincident with remarkable Fe(II) accumu-
lation, revealing a considerable H2 uptake of Fe(III)-reducing
bacteria relying on Hyd-2. Nevertheless, the continuous

Fig. 4 Biplots based on a canonical correspondence analysis (CCA) of
Fe(III) reducing capacity (FeRC) of different paddy soils (stars) in
relation to soil environmental factors (arrows) after the addition of
biochar at different particle sizes (B1–B5). B1 to B5 is the biochar particle
size at 0–0.25, 0.25–0.5, 0.5–1.0, 1.0–2.0, 2.0–3.0, and 3.0–5.0 mm,
respectively. OM soil organic matter, AN ammoniacal nitrogen,

NN nitrate nitrogen, AP available phosphorus, AK available potassium,
DCB-Fe sodium hydrosulfite-sodium citrate-sodium bicarbonate-
extractable Fe (Free Fe), Ox-Fe oxalate-extractable Fe (amorphous Fe),
pH soil intial pH. Variance of data, explained by axes 1, ranged from 92.4
to 95.8% in the paddy soils with or without unmodified biochar (UMBs)
addition
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decrease in pH in SY soil was higher than that in GY soil,
corresponding to a slight increase of Fe(II) accumulation. This
result may be attributed to the suppression of hydrogenase
activity under strongly alkaline conditions. Moreover, 12-h
GMB and 48-h GMB, which had a similar glucose adsorption,
presented similar FeRC kinetic parameters in both the soil
slurry and the microbial inoculation assay. This is a further
indirect evidence that the decrease of pH was caused by mi-
crobial fermentation.

Studies have also confirmed that Fe(III) reduction could
compete with methanogenesis for electrons in paddy fields.
Our finding that biochar addition-simulated Fe(III) reduction
provides new insight that may help to explain the mechanism
by which methane emissions are mitigated in response to bio-
char application. Specifically, the application of glucose-
modified biochar to paddy fields may enable alleviation of
the increase in pH and salinity that is caused by basic groups
of biochar in alkaline soil (Bongoua-Devisme et al. 2012).
Future studies should be conducted to improve our under-
standing of the mechanisms involved in biochar-microbe-
biochemical process in paddy soils and providing new valu-
able information for the assessment of productive and strate-
gic biochar application.

Conclusion

Biochar (unmodified biochars; UMBs) of different particle
sizes and glucose-modified biochar (GMBs) were added to
paddy soils. Soil original organic matter and amorphous Fe
content were responsible for the dominant contribution to
Fe(III) reducing capacity (FeRC). The addition of UMBs pro-
moted Fe(III) reduction potential, which was negatively cor-
related to the UMBs particle size. UMBs addition enhanced
the contribution of soil original free Fe content and nitrite
nitrogen to FeRC, while it reduced that of available phospho-
rus. Dissolved organic carbon of biochar was redox active and
responsible for a 20% increase in Fe(II) formation. Although
UMBs enhanced or had no effect on Fe(III) reduction, GMBs
with the same particle size had a much greater effect in com-
parison to pristine biochar. The decrease in pH during anaer-
obic incubation following GMBs addition was attributed to
the organic carbon fermentation by microorganisms. The pre-
treatment of biochar with glucose can be used to prepare high-
efficiency biochars for the stimulation of Fe(III) reduction and
alleviation of soil pH increase caused by the basic groups in
the biochar.
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