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A novel approach for modelling 
vegetation distributions and 
analysing vegetation sensitivity 
through trait-climate relationships 
in China
Yanzheng Yang1,3, Qiuan Zhu1, Changhui Peng2,1, Han Wang1, Wei Xue1, Guanghui Lin3, 
Zhongming Wen1, Jie Chang4, Meng Wang1, Guobin Liu1 & Shiqing Li1

Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered 
from insufficient realism and are difficult to improve, particularly because they are built on plant 
functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, 
are urgently needed to replace PFT schemes when predicting the distribution of vegetation and 
investigating vegetation sensitivity. As an important direction towards constructing next-generation 
DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation 
distributions and analysing vegetation sensitivity through trait-climate relationships in China. The 
results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data 
combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more 
detailed parameter information regarding community structures and ecosystem functions. The new 
approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. 
Although the trait-climate relationship is not the only candidate useful for predicting vegetation 
distributions and analysing climatic sensitivity, it sheds new light on the development of next-
generation trait-based DGVMs.

Terrestrial vegetation plays a crucial role in land surface processes, carbon and nitrogen cycles, and water and 
heat fluxes via biogeochemical processes1. Dynamic global vegetation models (DGVMs) are state-of-the-art tools 
used to describe the structures and functions of the terrestrial biosphere as well as water and energy cycling on 
the land’s surface2,3. In the past decade, plant functional types (PFTs) have been widely adopted in most DGVMs 
to evaluate the response of vegetation to climate change4–6. PFTs are defined as groups of plant species that either 
exhibit similar responses to environmental conditions or display similar ecological structures and functions7,8. 
PFT schemes have performed well in simulations of global vegetation dynamics under current climate change 
conditions and have successfully reconstructed palaeo-vegetation patterns2,9,10.

DGVMs simulate and predict vegetation distributions based on the assumption that the vegetation distri-
bution is directly controlled by climatic conditions4,11. It has generally been assumed that PFT schemes are fully 
capable of simulating the dynamic process involved in the response to climate change in DGVMs; however, a PFT 
scheme is not sufficient for simulating ecological processes. In most cases, the PFTs defined in DGVMs have been 
pre-described with fixed traits and have been assumed to respond to physical and biotic factors in a static manner; 
however, these traits exhibit great variability in the real world12,13. In addition, clear divergence from real-world 
conditions arises when vegetation types are grouped into PFTs based on mean trait values, causing the variability 
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among vegetation types to be lost12. Moreover, future climates may have no analogue in present climate condi-
tions, leading to a lack of corresponding PFTs for future climate scenarios14,15.

Plant functional traits (FTs) are observed or measurable characteristics of plants that are assumed to reflect 
evolutionary responses to external environmental conditions16. FTs are defined as morphological, physiological 
and phenological traits that impact individual fitness indirectly via their effects on growth, reproduction and 
survival17. FTs vary consistently along environmental gradients and can to some extent be considered “response 
traits”, resulting from the filtering effect of climatic, disturbance and abiotic conditions18–20. Current DGVMs rely 
on earlier classifications, such as that of Box21, which is a simple scheme with explicit bioclimatic limits and PFTs 
that are not fully characterized in terms of the traits they represent22. Therefore, treating plant species as a set of 
FTs to replace fixed PFTs would greatly increase our capacity to predict an ecosystem’s structure and function20,23. 
FT-based theories are more closely related to evolutionary selection mechanisms14 and are regarded as a priority 
in the new generation of DGVM development14,24–27. Additionally, under certain scenarios of future climatic 
or land-use conditions, trait-climate approaches could help us to better understand ecosystem structures and 
processes23,28.

Vegetation change can affect the climate via feedbacks altering the surface albedo, surface energy fluxes, and 
hydrological cycling29, thereby influencing the productivity and budget patterns of an ecosystem. Evaluating and 
predicting the distribution of vegetation types is one of the principle aims of DGVMs. Recently, Van Bodegom 
et al.30 provided proof of principal with respect to the development of a trait-based approach for predicting the 
global vegetation distribution using three selected traits and Gaussian mixture density functions, paving the way 
for constructing a new generation of trait-based global vegetation models. Unfortunately, this fully trait-based 
vegetation approach correctly predicted only 42% of the observed vegetation distribution.

China is a country with abundant vegetation biomes extending across several climate zones, from tropical to 
boreal, and it exhibits the world’s largest and highest plateau31. Annual average temperatures range from − 21.0 °C 
to 26.0 °C in China and increase from north to south, while precipitation ranges from 0 to 2250 mm and decreases 
from southeast to northwest (Fig. S1). The complexity and diversity of the country’s vegetation makes China an 
ideal test bed for vegetation modelling. Many previous studies have attempted to model vegetation distributions 
using empirical vegetation-climate relationships or PFT-climate schemes32–35, but all of these studies had difficulty 
simulating the vegetation distribution in China because a small number of PFTs (commonly fewer than 12) can-
not fully represent the behaviours of all vegetation types. Therefore, there is an urgent need to develop methods 
(such as trait-based approaches) to replace PFT-climate schemes for predicting vegetation distributions under 
different climatic conditions in China. In this study, we propose a new trait-based framework for improving the 
PFT climate scheme in DGVMs based on findings from previously published studies14,27,36. The usefulness of 
vegetation models depends strongly on their ability to correctly predict the vegetation distribution under different 
climatic scenarios. Thus, the major objectives of this study were to (1) develop a new framework for modelling 
vegetation distributions based on trait-climate relationships, (2) simulate vegetation distributions across China, 
and (3) investigate the response of vegetation ecosystems to a changing climate through sensitivity analysis.

Results
Trait-climate relationships. Global linear regressions of LMA-climate and Nmass-climate data have been 
established37,38, and these regressions were updated after adding traits specific for China (Table 1). Three plant 
functional traits and MAP were approximately log-normally distributed; thus, they were log10-transformed 
according to the method described by Wright et al.39 before analysis. In general, vegetation distributions are 
sensitive to trait-climate interactions. LMA measures the leaf dry-mass investment per unit of light-intercept-
ing leaf area and is the inverse of the specific leaf area (SLA). LMA increased with increasing temperature and 
exhibited a tendency towards higher values at lower levels of precipitation. Species with high LMA commonly 
exhibit thick leaf blade, dense tissue or both40, showing adaptation to arid environments. The leaf nitrogen con-
centration (both mass-based and area-based) is integral to the proteins involved in the Rubisco complex40, and 
is essentially influenced by temperature. The potential ways in which such an influence could occur are complex 
among different functional types and different regions. Leaf Nmass decreases with increasing temperature, indi-
cating that alpine and arctic plant species display a high leaf Nmass compared with plants in warmer areas. Narea 
is defined as Nmass ×  LMA, representing adaptation to drought and water conservation26. As expected, plants 
in dry areas exhibited higher Narea. In agreement with previous publications39, Narea increased as a function of 

Traits* Observations Mean

Lower 
and upper 

boundaries#
Environmental 

factors$
R2 

adjusted P-value

Log Nmass 877 0.33 − 0.02, 0.65 − MAT 0.156 < 0.01

Log Narea 2485 0.26 − 0.15, 0.65 + RAD, − log (MAP) 0.086 < 0.01

Log LMA 3084 1.96 1.48, 2.60 + MAT, − log (MAP) 0.129 < 0.01

LAI 1337 0.79 0.00, 3.10 + MAP, − RAD 0.638 < 0.01

Table 1.  Properties of the selected trait-climate relationships. The traits are Nmass (mass-based leaf nitrogen), 
Narea (area-based leaf nitrogen), LMA (leaf mass per area) and LAI (leaf area index). Nmass, Narea and LMA were 
log10-transformed before analysis. The lower and upper boundaries were based on the 2.5 and 97.5 quantiles, 
respectively, of all individual observations. The environmental factors are MAT (mean annual temperature), 
MAP (mean annual precipitation) and RAD (solar radiation). “+ ” indicates a positive relationship, and “− ” 
indicates a negative relationship in regression analysis.
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increasing irradiance and decreasing annual precipitation. As a structural trait of plant communities, the leaf area 
index (LAI) is an indicator of canopy cover and annual leaf turnover (only for deciduous trees), and it is greatly 
influenced by the mean annual precipitation (MAP). The observed LAI was consistent with the distribution of 
MAP to some extent and showed a slightly negative relationship with RAD (Fig. 1 and Fig. S1). The constructed 
trait-climate relationships were applied in predicting trait distributions under different climatic conditions.

The spatial patterns of LMA, Narea, Nmass and LAI (Fig. 1) were predicted using the trait-climate relationships 
provided in Table 1. Log (LMA) was affected by temperature and precipitation, which were high in temperate 
deserts and low on the Qinghai- Tibet Plateau. Log (Narea) decreased from southeast to northwest in China, with 
the desert exhibiting the lowest value. Log (Nmass) was controlled by temperature, presenting a positive relation-
ship with temperature. LAI was affected by both MAP and RAD, exhibiting high values in the southeast and low 
values in high RAD areas.

Classification results using GMM methods. We tested all of the models listed in Table 2 and compared 
the results. The results demonstrated that (1) in all 11 models, the GMM trained by the Nmass-Narea-LMA combi-
nation exhibited the highest accuracy (overall accuracy =  73.46%; kappa coefficient =  0.85); and (2) the optimal 
number of traits was three, with this model showing higher accuracy than the 2-trait and 4-trait combinations. 

Figure 1. Log (LMA), Log (Narea), Log (Nmass) and LAI patterns predicted based on trait-climate 
relationships. LMA =  leaf mass per area; Narea =  area-based leaf nitrogen; Nmass =  mass-based leaf nitrogen. The 
maps were generated using ArcGIS 10.2, http://www.esri.com/.

http://www.esri.com/
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Narea and Nmass can be interconverted via LMA (i.e., Narea =  Nmass ×  LMA); thus, the Nmass-Narea-LMA combination 
shows limited predictive ability when it is integrated into DGVMs. The LMA-Nmass-LAI combination exhibited 
similar accuracy (overall accuracy =  72.82%; kappa coefficient =  0.85) (Fig. 2) and could provide more paramet-
ric information about community structure and ecosystem function. Therefore, the LMA-Nmass-LAI combina-
tion was applied in training the GMM for the analysis of vegetation-climate relationships and the response of 
vegetation patterns to climate change. The probability distribution map (Fig. 3) was consistent with the natural 
vegetation map, indicating that the trained GMM was sufficiently accurate (Table S2) for application in modelling 
vegetation distributions in China based on FTs.

At the biome level, the accuracy of 13 vegetation types exceeded 60%, exhibiting satisfactory classification 
results (Fig. 4). In the GMM classification, deserts presented the highest average accuracy, of 79.36%, followed by 
grasses (72.64%), forests (69.18%), crops (67.95%) and shrubs (33.91%). In traditional DGVMs, such as BIOME4, 
the highest average accuracy is observed for forests (60.45%), followed by tundra and desert (49.9% on average) 
and then grasses (32.5%)41. Our results improve upon previous work regarding biome accuracy. Compared with a 
fully trait-based method, this method improves the predicted accuracy from 42% to 73% and overcomes the data 
limitations of a fully trait-based method to a certain extent.

Vegetation patterns under six important scenarios. We selected six typical climate scenarios to 
describe the vegetation response to climate change. The results regarding vegetation patterns under the six climate 
scenarios are shown in Fig. 5. A 30% decrease in precipitation reduces the area occupied by forests and expands 
grassland areas (Fig. 5b). The boundaries of the temperate steppe shift eastward, and subtropical crops occupy 
most areas of the subtropical region, whereas two-crop-per-year temperate crops remain nearly unchanged. 

ID Models*
Overall 

accuracy (%)
Kappa 

coefficient (%)

1 Nmass, Narea 65.95 87.51

2 Nmass, LMA 66.24 87.38

3 Nmass, LAI 65.37 87.56

4 Narea, LMA 66.93 87.27

5 Narea, LAI 57.95 89.16

6 LMA, LAI 65.86 87.57

7 Nmass, Narea, LMA 73.46 85.69

8 Nmass, LMA, LAI 72.82 85.91

9 Nmass, Narea, LAI 70.71 86.28

10 Narea, LMA, LAI 70.80 86.17

11 Nmass, Narea, LMA, LAI 68.48 85.85

Table 2.  Results for selected traits in Gaussian mixture models (GMMs). The traits are Nmass (mass-based 
leaf nitrogen), Narea (area-based leaf nitrogen), LMA (leaf mass per area) and LAI (leaf area index). Nmass, Narea 
and LMA were log10-transformed before analysis.

Figure 2. Natural vegetation map (a) and classification results obtained using the GMM classifier (b).  
a, Tropical rain forests (TrF); b, Tropical monsoon forests (TmF); c, Subtropical forest complexes (SuF);  
d, Temperate deciduous forest complexes (TDF); e, Boreal evergreen needle-leaf forests (BEF); f, Boreal 
deciduous broadleaf forests (BDF); g, Evergreen shrublands (ES); h, Deciduous shrublands (DS); i, Temperate 
steppe (TS); j, Alpine meadow (AM); k, Alpine steppe (AS); l, Alpine desert (AD); m, Tundra (Tu); n, Desert 
(De); o, Subtropical crops (SC); p, Temperate crops (two crops per year) (TCT); q, temperate crops (one crop 
per year) (TCO). The maps were generated with ArcGIS 10.2, http://www.esri.com/.

http://www.esri.com/
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Tropical forests also remain unchanged compared with the baseline map (Fig. 5a). Desert and alpine desert 
regions show little difference under this climate scenario. Simultaneously, the alpine steppe shifts southward and 
occupies a large area of the Qinghai-Tibet Plateau.

Figure 3. Classification probability of each plant functional type. From top left to bottom right, vegetation 
“a” to “q”; the order is consistent with that in Fig. 2. The maps were generated with ArcGIS 10.2, http://www.esri.
com/.

Figure 4. Classification accuracy of each vegetation type. 

Figure 5. Projected vegetation patterns under six climatic sensitivity scenarios (increasing temperature by 
5K; changing precipitation by ±30%). The legend is the same as for Fig. 2. The vegetation baseline map was 
generated using the average meteorological data between 1987 and 2013. The maps were generated with ArcGIS 
10.2, http://www.esri.com/.

http://www.esri.com/
http://www.esri.com/
http://www.esri.com/
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Increasing precipitation by 30% expands forested lands and shrinks grasslands (Fig. 5c). In tropical regions, 
tropical forests shift northward. The subtropical region is predominantly covered by subtropical forest complexes. 
Evergreen shrublands distributed on the Yunnan-Guizhou Plateau are replaced by subtropical forests. Temperate 
forests expand to cover a larger area in temperate regions. The temperate steppe and alpine desert shrink, and the 
desert located in the north of Xinjiang is replaced by a temperate steppe. Boreal forests shrink marginally com-
pared with the baseline map. Additionally, the alpine steppe occupies most of the Qinghai-Tibet Plateau.

Increasing the temperature by 5 K shifts the predicted boundaries of most vegetation types northward and 
westward (Fig. 5d). Tropical forests shift northward, and evergreen shrublands expand to a larger area than on the 
baseline map. The North China Plain is also partially occupied by subtropical shrublands. The temperate forests 
shift northward. Two-crop-per-year temperate crops shift northward and occupy part of northeast China. The 
temperate steppe shrinks compared with its baseline area. The alpine desert also shrinks, and the tundra disap-
pears from the Qinghai-Tibet Plateau.

Under the climate scenario of a 30% decrease in precipitation and a 5 K increase in temperature by, the tem-
perate forest practically disappears and is only distributed in northeastern China (Fig. 5e). The temperate steppe 
also shrinks. In tropical and subtropical regions, evergreen shrublands occupy most of the area and they expand 
to part of northern China due to their adaptations to hot temperatures and low precipitation. Subtropical forest 
complexes shrink. The boundaries of tropical rain forests and tropical monsoon forests shift northward, with 
these forests being distributed along the Yangtze River. Deserts expand to a larger area compared with the base-
line map. Vegetation on the Qinghai-Tibet Plateau is sensitive to this climate scenario. Boreal forests disappear in 
China due to their adaptation to cold scenarios.

Under the climate scenario of a 30% increase in precipitation and a 5 K increase in temperature, the bounda-
ries of vegetation communities shift northward and westward (Fig. 5f). Tropical forests shift northward and are 
distributed along the Yangtze River. The Yunnan-Guizhou Plateau is also occupied by tropical forest complexes. 
In subtropical regions, subtropical crops are distributed throughout a larger area, without consideration of topog-
raphy. In temperate regions, temperate forest complexes appear to the north of the Loess Plateau, and the bound-
aries of temperate crops (i.e., both two-crop–per-year and one-crop–per-year systems) shift northward. Boreal 
deciduous forests disappear. Deserts shrink compared with the baseline map. The temperate steppe shifts west-
ward and shows a slightly decrease in area. On the Qinghai-Tibet Plateau, the boundaries of the alpine meadow 
shift northward, occupying most of this region. As expected, alpine deserts and tundra disappear or decline under 
this climate scenario.

Sensitivity analysis. An increasing temperature shifts most forest boundaries northward and westward 
and expands the evergreen shrublands habitat to a larger area compared with the baseline (Fig. 5d–f). With the 
exception of tropical forests and subtropical forest complexes, forest biomes exhibit a decreasing trend as the 
temperature increases (Fig. 6c–f). Evergreen shrublands and deciduous shrublands are sensitive to increasing 

Figure 6. Sensitivity analysis of the distribution areas of 17 vegetation biomes under different climate 
scenarios. The seventeen frames from the upper left to lower right correspond to the vegetation types from 
“a” to “q”; the order is consistent with that in Fig. 2. MAT =  mean annual temperature; MAP =  mean annual 
precipitation. The maps were generated with ArcGIS 10.2, http://www.esri.com/.

http://www.esri.com/
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temperature (Fig. 6g,h) and expand to a larger region when the temperature increases compared with the baseline 
(Fig. 5a). Alpine steppe and alpine desert regions exhibit a decreasing trend with increasing temperature, whereas 
alpine meadows increase, indicating that the Qinghai-Tibet Plateau region is sensitive to a changing temperature. 
As expected, the area of temperate desert increases when the temperature rises, and precipitation decreases or 
remains unchanged (Fig. 6n). Subtropical crops increase initially and then decrease as the temperature increases 
(Fig. 6o). By contrast, two-crop-per-year temperate crops first decrease and then increase as the temperature 
rises (Fig. 6p). One-crop-per-year temperate crops show only small changes under increasing climate conditions 
(Fig. 6q).

Increasing precipitation expands most forest biomes to a larger area than the baseline. An exception to this 
relationship is that boreal forests exhibit only small changes, first increasing in area and then decreasing (Fig. 6e,f). 
Evergreen shrublands and deciduous shrublands display a decreasing trend when precipitation increases 
(Fig. 6g,h). The temperate steppe shrinks and is replaced by one-crop-per-year temperate crops (Fig. 5c,f). On the 
Qinghai-Tibet Plateau, the alpine meadow shrinks when precipitation decreases; however, it increases slightly as 
precipitation increases. Unexpectedly, the alpine steppe increases when precipitation increases. As expected, both 
alpine desert and tundra decrease as precipitation increases, and temperate deserts present a similar response to 
precipitation. Under unchanged temperature conditions, subtropical crops increase as precipitation decreases 
and decrease as precipitation increases; however, these crops exhibit positive behaviour when the temperature 
increase is greater than 3 K. Two-crop-per-year temperate crops decrease as precipitation increases; however, 
one-crop-per-year temperate crops exhibit a positive relationship with increasing temperature.

Discussion
This study applied trait-climate relationships to classify vegetation with the aid of a GMM classifier for the first 
time in China. Compared with the natural vegetation distribution, the kappa coefficient obtained in this study 
(0.85) is broadly consistent with the results of Yuan et al.34 and Wang et al.35, who obtained kappa coefficients of 
0.76 and 0.75, respectively. Trait-climate relationships enable detailed information about agricultural vegetation 
and the vegetation of the Qinghai-Tibet Plateau to be presented. Human activities generally make it difficult to 
simulate agricultural vegetation in DGVMs. However, this study incorporated three types of agricultural vege-
tation in the simulations. Although topographical factors and human activities were not considered, this study 
revealed the most suitable growth area and its response to a changing climate. The Qinghai-Tibet Plateau is a 
region of interest due to its unique location, elevation and climate. In the present study, we divided the vegetation 
in this region into three types according to different climatic conditions, which allowed greater sensitivity and 
detail to be obtained regarding the response of the alpine vegetation to climate change, and the results supported 
the hypothesis that this region is vulnerable to climate change.

GMMs have been successfully accepted and applied for the prediction of global vegetation distributions 
through an FT-based approach27,30. A fully trait-based vegetation map predicted 42% of the observed vegetation 
distribution correctly30. In the present study, we improved the prediction accuracy to 73% based on an FT model. 
The difference between the two studies lies in the training dataset used for the GMM classifier. Calibration traits 
and vegetation types were used to train GMMs in a study by Van Bodegom et al.30; by contrast, calibrated vegeta-
tion types and predicted traits were used as training samples in our study. This method can overcome insufficient 
trait data and effectively improve prediction accuracy. Moreover, in the study by Van Bodegom et al.30, only 9 
vegetation types were considered for global vegetation, which may be insufficient to capture the complexity and 
diversity of Chinese vegetation and appears to be too coarse for modelling the spatial distribution of Chinese 
vegetation at regional or national scales10.

The regression coefficients of LMA-climate and Nmass-climate relationships were still low in this study, show-
ing little improvement compared with previous studies38–40. More effective trait-climate relationships should be 
developed in the future. CO2 has direct physiological effects on plant productivity and water-use efficiency, and 
heterotrophic respiration will increase as temperature increases42; this factor was also not sufficiently considered 
in this study. The quality of the collected data will also have a strong effect on the accuracy of trait-climate rela-
tionships and the training accuracy of GMMs.

Narea, Nmass, LMA and LAI were adopted in this paper because they are easy to measure and exhibit high cor-
relations with ecosystem processes. However, they may not be the best candidates for similar studies. The leaf 
carbon isotope ratio (δ 13C) of C3 plants is inversely related to the drawdown of CO2 during photosynthesis43, and 
leaf δ 13C shows a close relationship with water use efficiency (WUE)44. The ratio between the leaf-internal (Ci) 
and ambient (Ca) molar fractions of CO2 (Ci/Ca) regulates the balance between carbon gain and water loss, which 
is lower in dry or cold conditions than in wet or hot conditions26. Wood density is correlated with mechanical 
support, water transport and the storage capacity of woody tissues45. The maximum carboxylation rate at 25 °C is 
the key parameter for calculating photosynthesis46. These FTs are related to the important role of photosynthesis 
and reflect the most important functions driving plant establishment, growth, dispersal and competition, which 
constitute the basic and indispensable structure and function parameters of DGVMs. Future work should con-
sider incorporating these FTs when constructing the next generation of DGVMs. Along with the development of 
trait-based theories, ecologists have proposed a series of conceptual model frameworks for the next generation of 
DGVMs based on FTs13,25,47.

Although there are many available results for the prediction of vegetation distributions and ecosystem func-
tions using trait-based methods, there is still a long way to go to integrate these methods into an LSM or EMS. 
Sakschewski et al.48 used vegetation individuals with unique key trait combinations to form possible life strategies. 
These trait combinations varied with climatic factors, which were provided by an LSM or EMS. Another approach 
is to randomly establish hypothetical growth strategies associated with traits, as in the Jena Diversity-Dynamic 
Global Vegetation Model (JeDi-DGVM)13, and these random traits are affected or filtered using an LSM or EMS. 
Additionally, a trait-based method should be linked to observations via a model-data fusion approach and should 
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consider the linkage between plant traits and ecosystem functional properties, such as water-use efficiency 
(WUE), nitrogen-use efficiency (NUE), radiation-use efficiency (RUE), and carbon-use efficiency (CUE), when 
upscaling to the ecosystem level49.

Representing plant species as a set of plant functional traits instead of PFTs provides a new path for analysing 
ecosystem functions. New trait-based vegetation models can simulate ecosystem functions such as water and car-
bon cycles better than traditional vegetation models. For this purpose, there are two types of available approaches. 
The first involves a trait- and individual-based model, such as LPJmL- flexible individual traits (LPJmL-FIT)48 or 
a trait- and individual-based vegetation model (aDGVMs)25, which groups individual plants with a number of 
variable traits. All possible trait combinations represent corresponding growth strategies, with individual plants 
competing for light and water within the study area. Carbon outputs are calculated by averaging the amount of 
carbon across all surviving individuals. The second approach is based on the “biomass-ratio” hypothesis, using 
JeDi-DGVM13, and this method links community-aggregated functional traits (i.e., the weight-based mean trait 
values of all species in a community) and ecosystem functions (i.e., net primary productivity). However, they have 
been criticized as “not being measurable”50 and “not being variable with climate”. Although these methods are still 
in their early stages, they appear promising, and additional research is needed.

Materials and Methods
Selected traits and climate data. In this study, three FTs (leaf mass per area (LMA, g/m2), area-based 
leaf nitrogen (Narea, g/m2), and mass-based leaf nitrogen (Nmass, %)) and one structural trait of plant communities 
(leaf area index, LAI) were selected for analysis. In total, we collected 1294 observations (from 1993 to 2013), 
and each record included at least one of the three FTs (LMA, Narea or Nmass) from the literature published prior 
to 2014 (Fig. S2, Table S1). We attempted to minimize the uncertainty due to different measurement methods by 
filtering or correcting data when possible. LAI data were derived from remote sensing products. (More details 
about trait selection are presented in the Supplementary Information). To remain consistent with global linear 
trait-climate regressions38,40,51, the mean annual temperature (MAT, °C), mean annual precipitation (MAP, mm) 
and annual solar radiance (RAD, w/m2) were used in this study, which are three of the most important, common 
climatic variables that cannot be derived from other variables (Fig. S1). Between 1987 and 2013, MAT and MAP 
were derived from 756 meteorological stations and were interpolated at a 10-km resolution using the software 
package ANUSPLIN51. RAD was calculated using a land-surface-transfer scheme (LSX)52,53, which was integrated 
in IBIS DGVM, and temperature, precipitation, relative humidity, wind speed and solar hours were used as input 
variables.

An FT- based model: development and simulation strategies. The core of our approach is to build 
a relationship between climate factors and FTs and to predict vegetation distributions. An earlier conceptual 
FT-based framework proposed by Douma et al.27 was modified and improved upon in the present study. Four 
steps were conducted (Fig. S3): (1) Mathematical models were built to represent the relationships between 
selected traits and climate variables. (2) FTs and their corresponding observed vegetation types were used in 
training a GMM, and the trait space was then divided into different sub-spaces in N-dimensional space, belong-
ing to different vegetation types; (3) as inputs of the GMM, the predicted traits under different climatic scenar-
ios were classified into different vegetation types according to the location of the traits in N-dimensional space 
(expressed as classification probability); (4) as outputs of the GMM, the predicted distribution of vegetation was 
validated via comparison with natural vegetation maps or observations.

For model training and validation, we randomly divided the data into two parts: half of the data (i.e., 65,657 
points) were used for the training of a GMM and the other half were used for model validation. We used different 
trait combinations (Table 1) to train the GMM and calculate the classification accuracy, after which the opti-
mal combination was applied for a sensitivity analysis (more details of the model evaluations are shown in the 
Supplementary Information). Finally, the optimal GMM was applied to analyse the sensitivity of vegetation in 
China under different climate scenarios.

Classifications with a Gaussian mixture model (GMM). Gaussian functions are widely applied in sta-
tistics for describing normal distributions54,55. In discriminant analysis, if Gaussian density distributions have 
been confirmed, the probability associated with each class is easy to obtain. Bensmail and Celeux54 applied a 
Gaussian mixture model (GMM) in discriminant analysis but included only a single Gaussian component for 
each class. A more flexible alternative is to use multiple Gaussian components in classification55,56. A GMM is a 
combination of several individual Gaussian components: a 1-dimensional Gaussian mixture (Equation1) can be 
represented in 2-dimensional space, and a 2-dimensional Gaussian mixture (Equation 2) can be represented in 
3-dimensional Gaussian space (Fig. S4).
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In Eq. 1, f(x) is the occurrence probability function of a 1-dimensional trait belonging to a specific vegetation 
type, which is also known as a 1-dimensional Gaussian function; x is the independent variable (i.e., trait); and μ is 
the mean value of the trait sample for a specific vegetation type. σ  represents the standard deviation of the sample. 
In Eq. 2, f(x, y) is the occurrence probability function of 2-dimensional traits belonging to a specific vegetation 
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type, also known as a 2-dimensional Gaussian function. x and y are independent variables (i.e., traits). μ1 refers to 
the mean of the first trait dimension, and μ2 refers to the mean of the second dimension. σ 1 and σ 2 are the stand-
ard deviations of the sampled traits. r2 is the correlation coefficient between x and y.

An attractive property of GMMs is that they do not require any arbitrary and potentially restrictive assump-
tions in the form of probability density functions (PDFs)55. GMMs are regarded as an important approach 
contributing to the construction of the next generation of DGVM based FTs27. A GMM can be expressed as 
in Eq. 3.

∑ θ=
=

p C w f j( ) ( , )
(3)

k
j

J

j
1

c

where p(Ck) is the Gaussian density of traits belonging to the Ck class; Jc is the number of components; and wj 
represents the components’ weights, such that wj >  0, and ∑ wj =  1. f (θ, j) represents the jth Gaussian component. 
MCLUST, an R package, was applied in this study57.

Sensitivity analysis. Sensitivity analysis was performed to investigate the response of the predicted vegeta-
tion patterns by using the GMM to model the combined effects of changing temperatures and precipitation. Two 
approaches were adopted in the sensitivity analysis. In the first approach, following the strategy of Wang et al.58, 
we designed 56 climate change scenarios that incorporated a uniform increase in temperature up to warming of 
5 K. We used 0.5 K intervals from the baseline condition (i.e., the average climate conditions from 1987 to 2013 in 
China) to 2 K and 1 K intervals, from 2 K to 5 K. Precipitation was both increased and decreased uniformly by up 
to 30% in 10% increments. The other approach analysed the vegetation distribution under different representa-
tive concentration pathways (RCPs); the results are presented in the Supplementary Information (the vegetation 
sensitivity under future climate change scenarios).
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