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The effects of climate change and human activities on grassland degradation and soil carbon stocks have
become a focus of both research and policy. However, lack of research on appropriate sampling design
prevents accurate assessment of soil carbon stocks and stock changes at community and regional scales.
Here, we conducted an intensive survey with 1196 sampling sites over an area of 190 km? of degraded
alpine meadow. Compared to lightly degraded meadow, soil organic carbon (SOC) stocks in moderately,
heavily and extremely degraded meadow were reduced by 11.0%, 13.5% and 17.9%, respectively. Our field
survey sampling design was overly intensive to estimate SOC status with a tolerable uncertainty of 10%.
Power analysis showed that the optimal sampling density to achieve the desired accuracy would be 2, 3,
5 and 7 sites per 10 km? for lightly, moderately, heavily and extremely degraded meadows, respectively.
If a subsequent paired sampling design with the optimum sample size were performed, assuming stock
change rates predicted by experimental and modeling results, we estimate that about 5—10 years would
be necessary to detect expected trends in SOC in the top 20 cm soil layer. Our results highlight the utility
of conducting preliminary surveys to estimate the appropriate sampling density and avoid wasting re-
sources due to over-sampling, and to estimate the sampling interval required to detect an expected
sequestration rate. Future studies will be needed to evaluate spatial and temporal patterns of SOC
variability.
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1. Introduction

Monitoring natural resources over space and time is expected to
promote a better understanding of ecosystem processes, and to
provide information to inform decision making for resource
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protection and management (Lark, 2009). Soil organic carbon (SOC)
is of particular importance in building soil fertility for sustainable
development and in reducing atmospheric CO; concentration
through carbon (C) sequestration (Lal, 2004). However, due to
typically large spatial and small temporal variability relative to SOC
stocks, efficient estimation of SOC stocks and their change remains
a challenge in monitoring programs (Allen et al., 2010). Research
can inform the design of cost-effective sampling schemes to ach-
ieve monitoring objectives.

Generally, sampling schemes are based on one of two
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contrasting philosophies of statistical investigation: the design-
and the model-based approach (Allen et al., 2010; de Gruijter et al.,
2006). The essential difference between the two approaches is
whether locations are chosen at random or purposively (Brus and
de Gruijter, 2012; de Gruijter et al., 2006). Studies estimating the
global or regional mean status of SOC stocks often select design-
based sampling, as fewer observations and fewer strong assump-
tions are required (Brus and de Gruijter, 2012; Lark, 2009). For
estimating the mean C stock and monitoring its change, sampling
design must consider both space and time dimensions (Brus and de
Gruijter, 2011). de Gruijter et al. (2006) distinguished and evaluated
several types of space-time designs for monitoring regional trends.
None of these designs scored best on both status and trend mea-
sures (Allen et al., 2010; Brus and de Gruijter, 2013). The applica-
bility of these designs depends on the aim of soil monitoring. Heim
et al. (2009) demonstrated that stratified sampling of parent ma-
terials reduced the error of SOC estimates in a forest site. Theo-
retical considerations and empirical studies indicate that a paired
sampling scheme is likely to be the most efficient for estimating
change in a soil variable (Heim et al., 2009; Lark, 2009).

The Tibetan plateau is a large C reservoir (Yang et al., 2008).
Significant warming and anthropogenic disturbance due to over-
grazing have led to widespread grassland degradation on the
plateau in the past five decades, which has caused rapid C loss
(Chen et al., 2013). On the other hand, ecological restoration pro-
grams can significantly promote grassland recovery and increase C
sequestration (Wang et al., 2011). Policy makers and environmental
managers have a pressing need for detailed information about the
status of and change in SOC stocks on the plateau. Unfortunately,
existing SOC inventories are characterized by large uncertainties
that stem from insufficient sample size or lack of a suitable sam-
pling design (Chang et al., 2014a; Yang et al., 2008).

In this study, we conducted an intensive sampling campaign in
two communities on the eastern Tibetan plateau. We investigated
the variability of SOC in grasslands at different levels of degrada-
tion. Our objectives were to: (1) estimate the optimum sample size
to meet a desired SOC stock estimate with an uncertainty of 10%,
and (2) estimate the minimum detectable change in C stock with
the optimum sample size. We then predicted the time interval
between soil inventories for detecting a specific sequestration rate
with the desired statistical confidence (95%) and power (0.80). On
the basis of this analysis, we recommend a sampling framework for
estimating the status of and trend in SOC stocks on the community
scale.

2. Materials and methods
2.1. Study area

The study area is located in Tangde and Xiala villages in Zeku
County, Qinghai province, China (Fig. 1). It covers roughly 190 km?,
with elevations ranging between 3400 and 4100 m above sea level.
The site is characterized by a continental plateau climate. The mean
annual temperature is —2 to 2.3 °C and mean annual precipitation
is 460 mm. Under-developed gravel soils are relatively uniform,
which are classified as Typic Cryoboroll in the US soil taxonomy.
Alpine meadow occupies over 90% of the study area, which is
dominated by Kobresia pygmaea, Kobresia humilis and Kobresia
tibetica. Grassland degradation has taken place across the study
area due to overgrazing in past decades. Degraded alpine meadows
have native vegetation coverage of less than 85%, and can be further
characterized as lightly degraded (70—85% cover), moderately
degraded (50—70% cover), heavily degraded (30—50% cover) or
extremely degraded (<30% cover) (Ma et al., 2002). According to an
unpublished vegetation survey, lightly, moderately, heavily and

extremely degraded grasslands account for 41.6, 31.4, 13.5 and
13.5% of the study area, respectively.

2.2. Field sampling and analysis

Our intensive sampling survey was stratified by degradation
status. A total of 1196 sites were sampled between August—Sep-
tember 2009 and 2010, with 591, 204, 121 and 280 sampling sites
for lightly, moderately, heavily and extremely degraded grasslands,
respectively. At each site, five 20 cm deep soil cores were taken
within a 25 m? sampling plot and bulked to form a composite soil
sample. Bulk density was sampled with a 100 cm? (5.04 cm in
diameter) metal core. When rock fragments prevented the inser-
tion of the core in soil, another position within the sampling plot
was chosen. Aboveground biomass at each site was measured by
clipping in one 0.25 m? quadrat located at the center of each
sampling plot. One soil core (8 cm in diameter) was sampled to
determine root biomass. Root samples were then carefully washed
through a 0.25 mm mesh sieve. All plant tissue was dried at 60 °C
until a constant mass was achieved.

Composite soil samples were air-dried, sieved (2 mm mesh),
handpicked to remove fine roots, and then ground in a ball mill.
SOC concentration was determined by dry combustion analysis
with a Shimadzu carbon analyzer (TOC-5000, Shimadzu Corp.,
Kyoto, Japan). Soil texture was determined by a particle size
analyzer (MasterSizer, 2000) after removal of organic matter and
calcium carbonates. Samples for bulk density determination were
dried at 105 °C for 48 h, and passed through a 2 mm sieve to obtain
the fine earth fraction. Soil rock content was measured by dry
sieving the stones and measuring the dry weights of stones. For
each site, SOC density was determined as the product of SOC con-
centration, bulk density, and sampling depth, and corrected for rock
fragments.

2.3. Statistical analysis

The distribution of SOC densities was tested for normality by the
Kolmogorov-Smirnov test. One-way ANOVA was used to compare
soil and plant variables of different degradation strata using SPSS
version 16.0 (SPSS Inc. Chicago, Illinois, USA). To explore the role of
elevation, we additionally analyzed SOC in relation to elevation.

2.3.1. Statistical power for SOC stock estimates

We evaluated the efficacy of the current sampling scheme, i.e.
whether the number of sampling sites was sufficient or not. Pre-
vious studies have presented detailed descriptions of procedures
for power analysis (Allen et al., 2010; Kravchenko and Robertson,
2011). Here we summarize the key points relevant to the power
analysis conducted in this study. First, we calculated the individual
mean and variance for each degradation stratum. Then, we set a
tolerable uncertainty of 10% above and below the sample mean.
Once those parameters are specified, the probability (statistical
power) to detect a deviation greater than the tolerable uncertainty
with 95% confidence (using a two-tailed test) can be calculated for
different sample sizes. In our experience, the mean and variance of
the light degradation (591 samples) were u = 9.75 kg C m~2 and
s> = 1.32 (kg C m~2)% respectively. A significant deviation lies
outside the interval u + 1.96 s, which corresponds to u < 7.50 and
u > 12.01. The mean at the limit of tolerance was u + 0.1u = 10.73.
For u = 12.01 the normal deviate is z, = (12.01-10.73)/s = 1.11. For
u = 7.50 the normal deviate is z; = (7.50—10.73)/s = —2.81. The
probability associated with these deviates are P(z) < zl = 0
and P(z,) > z, = 0.999. These quantities are summed to yield the
statistical power to detect a deviation greater than the tolerable
uncertainty with 95% confidence (two-tailed test). Power analysis
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Fig. 1. (a) Location of the study area on the eastern Tibetan plateau and the location of sampling sites. (b) Distribution by elevation (m.a.s.l.) of lightly, moderately, heavily and
extremely degraded sites. Boxes have lines at the medians (50th), lower (25th), and upper (75th) quartiles, with the whiskers extended to 0.5 times the interquartile ranges. Outliers

are displayed as black dots.

was conducted using the PROC MIXED procedure of SAS software
version 9.2 (SAS Institute, 2008).

2.3.2. Estimation of minimum detectable difference

The minimum detectable difference (MDD) represents the
smallest detectable difference between the two most different
means (Zar, 1999). In the present study, the estimate of the MDD was
based on the assumption of a paired sampling design, i.e. a repeated
inventory at exactly the same sampling locations as previous sam-
ples. In this case, because the future SOC stock change is not known,
variance in the estimate of the difference in SOC stocks between
paired samples (i.e., baseline and resampling observations at the

same site) was assumed to equal the variability of current (baseline)
SOC stocks. The MDD of SOC stock for each degradation stratum was
determined for various sample sizes as follows (Zar, 1999):

MDD = \/f(ta(Z),V + tﬁ(l)#)

where s? is the degradation stratum variance, n is the number of
samples, t is the t-statistic at a given significance level («) and
power (1-8) (using « = 0.05 and = 0.20), considering a two-sided
(2) test with v degrees of freedom.
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3. Results
3.1. Change in plant biomass and soil properties

Plant biomass decreased significantly with increasing degrada-
tion level (Table 1). Compared to lightly degraded meadow,
aboveground biomass in the moderately, heavily and extremely
degraded strata were 18.6%, 39.3% and 37.2% lower, respectively.
The decrease in belowground biomass was greater than that of
aboveground biomass. Soil texture was significantly different be-
tween different degradation strata. Specifically, a higher degree of
degradation was associated with increased soil sand content, and
with lower clay content. Soil bulk density was lower for lightly and
moderately degraded strata than for heavily and extremely
degradation strata. Grassland degradation also decreased both SOC
concentration and stocks. Although sampling sites varied widely in
elevation (Fig. 1b), the spatial distribution of SOC was unrelated to
elevation (Fig. 2). Overall, spatial variability was particularly high
for plant biomass, while soil properties exhibited a low spatial
variability (Table 1).

3.2. Estimation of sample size

In our field survey campaign, the sample sizes for each degra-
dation stratum levels were more than the optimum sizes to obtain
the desired accuracy with an uncertainty of 10% in SOC stocks.
Power analysis showed that 14, 19, 12 and 17 sites are required for
lightly, moderately, heavily and extremely degraded alpine
meadows, respectively (Fig. 3). To account for the different pro-
portions of the total study area covered by each degradation stra-
tum, we calculated the sampling density by dividing the required
sample size by the area of each degradation stratum. Results indi-
cate that the required sampling density is 2, 3, 5 and 7 sampling
sites per 10 km? for lightly, moderately, heavily and extremely
degraded alpine meadows, respectively.

3.3. Minimum detectable differences

If using a paired sampling regime is implemented with the
current survey and resampling sites at the same locations, MDD
values of 0.10, 0.21, 0.19 and 0.18 kg C m~2 were obtained for lightly,
moderately, heavily and extremely degraded strata, respectively,
which represent about a 1-3% change in C stock with a statistical
power of 0.80 and a 0.05 level of significance. Compared to lightly
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Fig. 3. Statistical power to detect a deviation within 10% of the sample mean of SOC

stocks with a 95% confidence (two-tailed test) for grassland at different degrees of
degradation. The dotted line represents a statistical power of 0.8.

degraded grassland, the MDD in moderately, heavily and extremely

Grassland degradation in the study area, the distribution of sampling sites, plant biomass and soil properties. Values represent means with standard error in parentheses. A
different letter indicates that the means are significantly different (P < 0.05) between degradation levels.

Light Moderate Heavy Extreme

Sampling sites 591 204 121 280

Aboveground biomass Mean (g m—2) 134.8 (75.6)* 109.1 (58.1)° 81.4 (43.0)° 84.2 (43.6)°
CV (%) 56.1 53.3 52.8 51.8

Belowground biomass Mean (g m—2) 2625.0 (781.7) 1626.5 (205.1)° 908.8 (169.6)° 4234 (770.5)¢
CV (%) 29.8 12,6 18.7 182.0

Clay Mean (%) 323 (2.3 29.2 (1.9)° 21.2 (2.3)° 16.3 (3.9)¢
CV (%) 7.1 6.5 10.8 23.9

Silt Mean (%) 39.9 (4.0)° 439 (4.8)* 416 (3.3)° 27.3 (6.3)¢
CV (%) 10.0 109 7.9 23.1

Sand Mean (%) 27.8 (4.0)° 26.8 (5.4)° 37.2 (4.3)° 56.5 (9.8)*
CV (%) 144 20.1 11.6 173

Bulk density Mean (g m~3) 0.88 (0.07)° 0.86 (0.10)¢ 0.91 (0.08)* 0.91 (0.09)*
CV (%) 8.0 116 8.8 9.9

SOC concentration Mean (g C kg™ ") 55.1 (4.3) 50.3 (3.6)° 46.1 (3.9)° 44,0 (4.1)°
CV (%) 7.8 7.2 8.5 9.3

SOC stock Mean (kg C m2) 9.75 (1.15) 8.68 (1.28)° 8.43 (0.94)° 8.00 (1.09)°
CV (%) 11.8 14.7 11.2 13.6
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degraded strata were almost twice as high, which illustrates that
the ability of the paired sampling approach to detect statistically
significant change in C stocks in lightly degraded meadows is
relatively low. If we assume that the average change in SOC in each
degradation stratum is 10% of its initial SOC stock, sample sizes of
10—20 sites per degradation stratum would be required to detect
such a change with a paired sampling design (Fig. 4).

4. Discussion
4.1. SOC loss in grassland degradation

The observed decrease in SOC stocks in degraded grasslands was
consistent with commonly observed patterns (Huang et al., 2010),
even when using equivalent soil mass correction. We found that
changes in SOC stock due to soil compaction were negligible (-2 to
3%), as there were only slight differences in bulk density between
different degradation strata (Table 1). Therefore, the observed dif-
ferences in soil C stocks among degradation states appear to be
primarily driven by the negative effects of overgrazing. Overgrazing
often results in vegetation degradation and consequent soil C loss.
Studies have demonstrated that overgrazing reduces graminoids
and palatable legumes (Wang et al., 2012), and lowers plant pro-
duction and consequent C inputs to alpine meadows on the Tibetan
plateau (Bagchi and Ritchie, 2010; Wang et al., 2012). In addition, a
decrease in vegetation cover is accompanied by an increase in bare
ground, thereby accelerating soil erosion (Golluscio et al., 2009;
Steffens et al.,, 2008). Deterioration of soil physical properties
with grassland degradation (i.e. coarsening of the soil) can poten-
tially further decrease soil infiltrability and nutrient availability
(Golluscio et al., 2009) and reduce grassland capacity to accumulate
and store SOC (McSherry and Ritchie, 2013).

4.2. Implications for SOC sampling design

Spatial heterogeneity is an important issue affecting soil C stock
inventories. In addition, SOC stock changes are usually expected to
be small compared to the size of SOC stocks (Allen et al., 2010).
Therefore, an intensive sampling effort is often necessary to attain a
meaningful level of precision. Our survey sample sizes were about
fifteen times more than the optimum sample sizes required to
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Fig. 4. Relationship between sampling size and minimum detectable difference (MDD)
in SOC stocks with a 95% confidence level and a statistical power of 0.80 for grassland
at different degrees of degradation using a paired sampling approach. Sample size
requirements to detect a 10% change in carbon stocks are plotted by grey lines.

detect a deviation of 10% from the sample mean of SOC stocks. The
intensive sampling undertaken was sufficient, but is not recom-
mended when the labour and financial costs required for such an
inventory are considered. For monitoring programs, besides sample
size, choice of sampling design in space and time i.e. deciding
where and when to make observations, is a key issue (Brus and de
Gruijter, 2011, 2013). Studies have provided evidence that a paired
sampling scheme is more efficient than independent random
sampling for estimating change in SOC (Lark, 2009). If the optimal
sample sizes and locations for measuring baseline SOC status were
revisited for resampling, the MDD would be 0.89, 0.85, 0.83 and
0.79 kg C m~2 for lightly, moderately, heavily and extremely
degraded soils, respectively. Wang et al. (2011) estimated that
exclosure of degraded grasslands from grazing over 3—28 years
leads to an annual average C sequestration of 80.1 g Cm 2 yr ! in
northern China's grassland soils (0—20 cm). About 10 years would
be needed to detect such a sequestration rate of this magnitude.
Chang et al. (2014b) modelled C stocks and stock changes for
degraded grasslands in the same study area as the present study,
and predicted annual C sequestration rates of 60—107, 192—200,
188 and 193 g C m~2 yr ! in lightly, moderately, heavy and
extremely degraded soils, respectively. These expected changes
could be detected after 9—15 years for lightly degraded soils, and
about 5 years for soils at higher levels of degradation.

When quantifying long-term SOC changes over decades, several
sampling rounds would need to be planned. The costs of repeat
sampling and analysis can make it difficult to revisit all sites in
every round, which might reduce feasibility of the paired sampling
design. Based on the results of extensive simulations, Brus and de
Gruijter (2013) provide insight into the performance of alterna-
tive space-time designs and make recommendations in situations
with and without the persistence of strong spatial patterns. How-
ever, identifying the persistence of spatial patterns is itself
complicated. On the one hand, it may be assumed that since the
passing of the revised Grassland Law in 2002, relatively uniform
restoration strategies and practices have been adopted and pro-
moted on the Tibetan plateau. Following this assumption, a smaller
variance of SOC could occur at resampling, and sampling schemes
based on baseline variance alone may underestimate the true
ability to detect statistically significant change in C stocks. On the
other hand, at community scale, there may be high variability in the
adoption of management practices by herder households, which
may increase the variance in SOC at resampling. Moreover, SOC
stock and SOC stock change are different variables, and their vari-
ability may differ (Lark, 2009). So, assuming identical variance of
the baseline and resampled data is hazardous. Further research on
variability in SOC stock changes over time at the landscape scale is
required.

4.3. Limitations and the way forward

It must be emphasized that application of our results to field
sampling should be treated with caution. Poor road networks and
difficult terrain in the study area constrained the ability of field
survey teams to conduct a perfectly random sampling, which led to
undersampling in some spatial locations (Fig. 1). So, inference for
the sample population is a challenge. Demarcating the geographic
area containing the sampled population should be useful to prop-
erly extrapolate results from a random sample of sites. Second,
unaccounted within-site variance increased uncertainty in the
evaluation of SOC (Chappell and Rossel, 2013). Degraded grassland
is characterized by areas of greater fertility interspersed with bare,
infertile soil, which increases landscape spatial variability. In our
study, the sampling support of a 25 m? sampling plot in degraded
grasslands most likely only captured a small portion of within-site
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SOC variance, leaving a considerable proportion of SOC variance
unaccounted for. This unaccounted site uncertainty would
contribute significantly to noise in the explanation of SOC stock
change. Exploring the spatial extent of a local support based on
adequate information on the variogram of SOC at the small scale
would be needed (Chappell and Rossel, 2013; Lark, 2009). This
would require an approach such as nested sampling or transect
sampling (Liu et al., 2010; Hoffmann et al., 2014). Third, standards
and methods for determining degradation status are contested
(Harris, 2010). Quantifying degradation through SOC status rather
than changes in vegetation provides a direct way to assess the
status and trend of soil C (De Baets et al., 2013).

5. Conclusions

Grassland degradation is a geographically extensive phenome-
non that has the potential to significantly deplete SOC stocks.
Evaluation of SOC stock changes requires exploring an effective
sampling design for heterogeneous degraded grasslands that con-
siders sample effort, statistical power and the ability to detect
temporal trends in SOC. This study estimated the necessary sample
size to obtain a desired level of precision and the soil monitoring
interval to detect SOC trends when implementing a paired sam-
pling design on the community scale. Further work is needed to
determine the appropriate support area to represent within-site
variability in SOC, and to understand variability in stock changes
over time at the landscape level.
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