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Abstract Flood, drought, hail, low temperature and frost disasters from low temperature

and frost (DLTF), and snowstorm are the five main meteorological disasters (MDs) in

China. Based on the collection of historical documents during 1950–2013 and official

records between 2012 and 2013, this paper analyzed the temporal trends of affected area

induced by MDs during 1950–2013 and the spatiotemporal characteristics of disaster

frequency in recent 2 years in China. Besides, the direct economic losses and deaths

caused by MDs were further discussed at a provincial level. Results showed that the

affected area of MDs, especially flood, drought and DLTF significantly increased during

the past 60 years. Flood was the most frequent disaster in China during 2012 and 2013,

followed by hail. Spatial patterns of disaster frequency showed that there were more

frequent floods in the middle and lower reaches of the Yellow River and the Yangtze River

basin, droughts in central and southwest China, hails in north, northwest and southwest

China, DLTFs and snowstorms in north, northwest China and individual areas in south

China. However, the economic losses caused by MDs were higher in economically

developed provinces, and the deaths were higher in mountain regions. Additionally, flood

was the major disasters type that contributing to the most losses in most regions of China.

These results play an important theoretical guiding role in meteorological disaster pre-

diction, disaster prevention and reduction in the future.
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1 Introduction

Meteorological disaster (MD) is one of the most deadly and costly natural disasters in the

world (Xie et al. 2004; Liu and Yan 2011). In recent years, most of the Asian countries are

experiencing more frequent MDs (e.g., floods, droughts, hurricanes, extreme heat or cold,

snowstorms, etc.) as consequences of climate change and intensified human activities

(Alcántara-Ayala 2002; Tall et al. 2013; Xu et al. 2013; Yang et al. 2013; Zhang et al.

2014b, c). These disasters greatly threatened people’s lives, agricultural production, water

resources and ecosystems (Salinger et al. 2000; Crompton and John McAneney 2008; Piao

et al. 2010; Su et al. 2011; Tall et al. 2013; Yang et al. 2013; Zhang et al. 2014c).

Being located in the southeastern Eurasian Continent, the greatest continent in the

world, and on the west shore of the Pacific Ocean, the world’s largest ocean, China is

affected by a typical monsoon climate. The annual precipitation varies from 25 mm in

northwest China to more than 2,000 mm in southeast China (Wang and Fu 2013). Further,

along with the dense population and explosive economic development, China is therefore

one of the most severely affected countries by MDs in the world (Liu and Yan 2011; Zhang

et al. 2014c). According to statistics, the economic losses resulted from MDs accounted for

1–3 % of the gross domestic production (GDP) (Liu and Yan 2011). Over the past several

decades, China has experienced some devastating meteorological hazards. For instance, the

great flood of 1998 inundated 21 9 106 ha of land and destroyed five million houses in the

Yangtze River Basin, causing an economic loss of more than Chinese Yuan (CNY)

120 billion and at least 3,000 deaths (Piao et al. 2010; Xu et al. 2011). The unprecedented

ice freezing and snow disasters of southern China in 2008, the worst in the past 50 years,

resulted in direct economic loss up to CNY 160 billion and took away 162 lives (Gao

2009; Yang et al. 2013). Major recent catastrophic events, such as the severe rainstorm

with a 100-year return period in North China on July 21, 2012 (The China Meteorological

Administration 2012), the winter–spring continuous drought in southwest China during

2009–2013 (The China Meteorological Administration 2013a), and the strongest hot spells

since 1951 in south China during summer 2013 (The China Meteorological Administration

2013b) had aroused great concern on MDs from various circles of society. Therefore, it is

highly significant and urgent to analyze the characteristics of MDs in China.

Over the past several decades, there are many Chinese researchers or communities

engaged in research into MDs. In 2005, the China Meteorological Administration started to

publish ‘‘Yearbook of Meteorological Disasters in China’’, in which the main disasters and

their losses were recorded. Additionally, some researchers conducted related studies on

disaster-forming environment analysis (Yin et al. 2009; Su et al. 2011), disaster risk

assessment (Zhang 2004) and the impacts of MDs (Liu et al. 2013). Moreover, the economic

loss evaluation (Liu and Yan 2011) and spatiotemporal characteristics of MDs (Xie et al.

2004; Zhao et al. 2010; Li et al. 2011; Wang et al. 2013; Yu et al. 2013; Zhang et al. 2014c) had

been extensively discussed in many literatures. However, these studies were limited either on

provincial or larger scales (Xie et al. 2004; Yu et al. 2013; Zhang et al. 2014b), or a specific

disaster such as flood (Li et al. 2011), drought (Zhao et al. 2010; Yu et al. 2013), or thun-

derstorm (Wang et al. 2013). There are still very few comprehensive studies reported on MDs

in the whole China. For example, whether the MD events have increasing trend, decreasing

trend, or remaining stable under the background of climate change? How does the disaster

distribute in space and time recently, what is the most vulnerable and sensitive area to MDs

and what is the most devastating hazard type in different regions of China? These problems

are all the most pressing problems in disaster risk assessment. To solve these problems, our

main objectives are therefore as follows: (1) to analyze the temporal trends of MDs during
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1950–2013; (2) to explore the spatiotemporal characteristics of MDs in 2012 and 2013; and

(3) to identify the specific regions where MDs have a greater impact, and the major disaster

type that contributing most to MD losses in different parts of China. Surely, our results will

provide a scientific basis for governmental decision makers and local farmers to prevent and

mitigate meteorological hazards in order to protect vulnerable ecosystems and to ensure

agricultural security in China.

2 Data and methodology

Flood, drought, hail, DLTF (disasters from low temperature and frost) and snowstorm are

the five main meteorological disaster types in China (Fang et al. 2011; Liu and Yan 2011;

Guan et al. 2014). Typhoon was attributed to flood owing to its causing heavy storm.

Therefore, this study was focused on the above-mentioned five disasters (flood, drought,

hail, DLTF and snowstorm).

Based on the different research purposes, there are two categories of dataset used in this

study. One is the long-term historical dataset, only including the affected areas of flood and

drought during 1950–2013 and the affected area of hail and DLTF during 1978–2013 (the

dataset did not contain information about snowstorm). They were, respectively, collected

from the Bulletin of Flood and Drought Disasters in China (The Ministry of Water

Resources of the People’s Republic of China 2013), and the Chinese Statistical Yearbook

(National Bureau of Statistics of China 2013). The rough dataset was used to detect the

long-term trends of the affected area of MDs during the past several decades.

The other dataset is the very detailed records of all MD events and its secondary

disasters between 2012 and 2013, including disaster name, date, place, direct economic

losses, affected population, deaths (including the missing persons), affected cropland area,

failed cropland area, collapsed houses and damaged houses. They were collected from the

official website of the Disaster Relief Division of Ministry of Civil Affairs of the People’s

Republic of China (http://preview.jzs.mca.gov.cn/article/zqkb/). This dataset was used to

investigate the spatiotemporal characteristics of MDs in recent 2 years. Such knowledge is

essential for establishing the early warning system of meteorological hazards to reduce its

economic losses and the number of deaths from disasters. Usually, the frequency, direct

economic losses and deaths inflicted by disasters are the first priority to be considered for

the assessment of natural hazards (Alcántara-Ayala 2002; Wei et al. 2004). Thus, we

summarized the disaster frequencies at a city or county-level city and in each month during

2012 and 2013 to analyze the spatiotemporal distribution of MD frequencies. Besides, the

direct economic losses and deaths were further investigated at the provincial level to

identify the most severely affected areas by MDs and the major disaster type in different

regions of China. It should be noted that Taiwan province (TW), Tibet Autonomous

Region (XZ), Hong Kong (HK) and Macao (MC) were not included in analysis due to

incomplete data.

3 Results and discussion

3.1 Trends of meteorological disasters during 1950–2013

Agriculture is inherently sensitive to climate conditions (Parry and Carter 1989). Annually,

the MDs would cause a large number of crops to fail, seriously affecting the normal
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production of agriculture which has a central role in ensuring the food security and welfare

of 1.3 billion people in China (Piao et al. 2010). Therefore, the affected area of cropland

was chosen as the major indicator to analyze the temporal trends of MDs during the past

several years in this section.

Figure 1 shows the changing trends of affected area of flood, drought, hail and DLTF.

Obviously, the affected area of flood and drought showed a statistically significant

increasing trend (p \ 0.001, p = 0.026) during 1950–2013 in China, but with large

interannual variability. The increasing trend for that of flood became more pronounced

since mid 1960s (p \ 0.001). This was consistent with the finding of Fang et al. (2011).

Many previous studies also indicated that some types of the extreme events, such as flood

and drought, might be expected to occur more frequently in the future owing to the

continuously global warming (Kharin and Zwiers 2000; Hegerl et al. 2004; Vincent et al.

2005; IPCC 2013). In contrast, the affected area of hail decreased significantly (p = 0.002)

during 1978–2013. As global mean temperatures increase, there would be more frequent

hot and fewer cold temperature extremes over most land areas (IPCC 2013). In addition,

the number of frost days has been observed or projected in an obvious decreasing trend in

most parts of China (Qian and Lin 2004; You et al. 2011). However, the affected area of

DLTF did not show a decreasing trend correspondingly, but displayed a significant

increasing trend (p = 0.005). This is because the total cultivated area of crop in China

increased as climate warms (Fang et al. 2011). The affected area induced by DLTF was

accordingly increasing. In summary, the impacts of MDs, especially flood, drought and

DLTF on agriculture became worsening in China during the past several decades. Zhang

et al. (2014c) suggested that it would become more possible for more types of disasters to

occur, or several disasters occurring simultaneously in an individual area in the future.

Therefore, developing strategies for disaster prevention and mitigation in the context of

climate change is urgently demanded.

3.2 The main meteorological disasters and its losses in 2012 and 2013

During 2012 and 2013, China suffered from a succession of meteorological disaster events.

For instance, southwestern China was seriously affected by drought in early 2012, but

several rainstorms in rainy season (Guan et al. 2014). In May 10, 2012, a severe flash flood

and mudslide burst across Min County, Gansu Province, resulting in more than 70 deaths

(Guan et al. 2014). In July 21, 2012, Beijing was subjected to an unprecedented storm. The

total economic losses were estimated at CNY 11 billion and more than 79 people lost their

lives (The China Meteorological Administration 2012). And then, six typhoons named

‘‘Vicente’’, ‘‘Sura’’, ‘‘Davi’’, ‘‘Haikui’’, ‘‘Qide’’ and ‘‘Libra’’ successively landed in coastal

China during July 24 and August 24, 2012, which was exceedingly rare in the historical

records since 1949 (Guan et al. 2014). During June 1 and July 11, 2013, heavy rainfall

successively attacked Sichuan province five times altogether, claiming at least 200 lives.

The accumulated rainfall in Dujiang Dam reached up to 1,151 mm during July 1 and 11

(The China Meteorological Administration 2013c). In summer 2013, the strongest hot

spells since 1951 swept across south China. Regional average rainfall from July 1 to Aug.

21 was 135.2 mm, the lowest for the same period in recent 60 years. Persistent heat wave

and lack of rain resulted in severe droughts, which caused a direct economic loss of over

CNY 48 billion (The China Meteorological Administration 2013b). During November 16

and 20, 2013, northeast China was hit by a severe snowstorm. The snow depth reached up

to 10–40 mm in east-central Heilongjiang and Jilin province, with the maximum of 64 mm

in Shangzhi city (The China Meteorological Administration 2013d). The above-mentioned
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events were comparatively typical disasters in recent 2 years. The detailed information of

MDs and its related losses during 2012 and 2013 are summarized in Table 1.

In total, there were 676 reported MD events in China during 2012, causing a direct

economic loss of about CNY 217 billion and 1,472 deaths (Table 1). The affected popu-

lation was approximately 248 million, equivalent to 20 % of China’s total population. The

affected area of crops was 2,086 9 104 ha, accounting for 12.8 % of the total cultivated

area in China (National Bureau of Statistics of China 2013). Flood was the most frequent

and severe disaster among all disaster types in 2012, with the frequencies, economic losses

and deaths accounting for 53, 74 and 79 % of the totals. The second-ranked was hail.

Drought had the lowest frequency, only representing 4 % of the totals. But its losses far

exceeded those of DLTF and snowstorm owing to the long duration, widespread affected

area and far-reaching consequences of drought.

In 2013, the impacts of MDs were more severe than those in 2012 (Table 1). The total

frequencies decreased, but the affected population, losses from crops and houses as well as

economy all increased compared with 2012. Flood was still the most common and

deadliest disasters in 2013 and followed by drought. The losses induced by hail were

significantly alleviated. Overall, flood, drought and hail were the top three disasters in

China in recent 2 years.

3.3 Spatiotemporal distribution of meteorological disaster frequencies in 2012

and 2013

3.3.1 Spatial distribution of meteorological disaster frequencies

Figures 2 and 3 showed the spatial distribution of MD frequencies in 2012 and 2013,

respectively. It clearly indicated that different types of disasters had unique spatial
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Fig. 1 Changing trends of affected area of flood (a), drought (b), Hail (c), and DLTF (d) during
1950–2013. DLTF means disaster from low temperature and frost. The regression line was obtained by the
least square method
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characteristics. Flood was the most widely distributed disaster in China among the five

types (Figs. 2a, 3a). The middle and lower reaches of the Yellow River and the Yangtze

River basin usually suffered more frequent floods. This finding confirmed that of Su et al.

Fig. 2 Spatial distribution of flood (a), drought (b), Hail (c), DLTF (d) and snowstorm (e) frequency in
China within 2012
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(2008) who indicated that flood disaster might be aggravated in the incoming decade of the

twenty-first century in the Yangtze River basin. The maximum 5-day precipitation, an

indicator of flood-producing events, was also projected to increase over the Yangtze River

Fig. 3 Spatial distribution of flood (a), drought (b), Hail (c), DLTF (d) and snowstorm (e) frequency in
China within 2013
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basin in the twenty-first century (Xu et al. 2009). In the Yellow River basin, many studies

found that the total precipitation showed a declining trend during the past several decades,

but the extreme precipitation intensity increased from west to east (Liu et al. 2008; Huang

et al. 2009; Zhang et al. 2014a). This implies that the total precipitation during one single

rainfall event increased. Such precipitation patterns could explain why the middle and

lower Yellow River also suffered more frequent floods in China, indicating the strong

association between climatic condition and MD frequencies.

Drought occurred sporadically in north, central and southwest China, and the west of

northwest China in 2012, with the highest frequency in Hubei province (Fig. 2b). But in

2013, the most frequent drought occurred in southwest and central China, while, surpris-

ingly, northwest China has enjoyed less droughts (Fig. 3b). It is predicted that wetter

northwest China may further intensify under the IPCC A1B scenario (Piao et al. 2010).

Southwest China was a moist area in the past, but since 2009 most parts of southwest China
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China during 2012 and 2013
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suffered from sustained drought from autumn to next spring. Many researchers ascribed

this phenomenon to the variations of precipitation patterns (Zhang et al. 2014a). In

southwest China, the decrease in annual number of raindays is coincident with an increase

in annual precipitation (Piao et al. 2010; Li et al. 2012), implying more extreme flood or

drought. Yu et al. (2013) found that the chances of regional drought in Yunnan province

significantly increased with warming temperatures, but the interaction mechanism remains

unexplained.

Hail was also a disaster that occurred frequently in China, especially in north, northwest

and southwest China (Figs. 2c, 3c). This is in line with the distribution of two big hail

zones in China (Guan et al. 2014). The southern hail zone includes southwest and central

China. The northern hail zone consists of northwest, north and northeast China, which is

the widest and longest hail zone.

Compared with the above-mentioned disasters, DLTF and snowstorm had relatively

lower frequency in China, and the affected areas were much smaller. In 2012, both DLTF

and snowstorm occurred principally in northeast, north and northwest China (Fig. 2d, e).

However, in 2013, some regions in southern China also suffered DLTF, especially Yunnan

province (Fig. 3d). And snowstorm was mainly distributed in central and east China

(Fig. 3e). The completely different spatial patterns of snowstorm in 2012 and 2013

reflected the instability of climatic change (Moonen et al. 2002; Vergni and Todisco 2010).

Such climate instability would in turn lead to an increase in meteorological disaster events

such as rainstorm, drought and hail.

3.3.2 Monthly variations of meteorological disaster frequencies

Figure 4 shows the monthly distribution of MDs in 2012 and 2013. As shown in Fig. 4a,

flood happened almost in every month, but the frequencies were not uniformly distributed

throughout the year. After April, the flood frequency was of a clear upward trend in both

2012 and 2013 and reached a peak in July. There were in total 234 (218) floods during

June, July and August in 2012 (2013), accounting for 65 % of the total frequency in a year,

implying the obvious seasonality of precipitation in China (Wang and Zhou 2005; Zhang

et al. 2009). As for drought (Fig. 4b), the most prominent characteristic was long duration,

with roughly the same frequency from January to August. This disaster usually had a

greater impact on agriculture during March–July because this period is crucial for agri-

cultural production activities due to crops being susceptible to drought (Yu et al. 2013;

Guan et al. 2014). In 2012, hail was more frequent from April to June, and mainly

concentrated in June (Fig. 4c). In 2013, the frequency exhibited a relatively stable state

from January to June, but the highest frequency also occurred in June. As for DLTF, the

monthly distribution between the 2 years was very different (Fig. 4d). The most frequent

DLTF in 2012 and 2013 occurred in September and April, respectively. Snowstorm

occurred mainly in November, December, January and April in both 2012 and 2013

(Fig. 4e).

3.4 Spatial distribution of meteorological disasters losses in 2012 and 2013

It is clearly that the ability of local people or communities to cope with and recover from

disasters varies from region to region (IPCC 2012). Therefore, the losses induced by MDs

b Fig. 5 Spatial distribution of economic losses and structure of meteorological disasters in China within
2012 (a) and 2013 (b)

Nat Hazards (2015) 75:2607–2623 2617

123



are obviously different across different geographical areas. In this section, the total direct

economic losses and deaths were investigated at a provincial level to identify the most

severely affected area by MDs. In addition, we classified the economic losses and deaths

by disaster type to find the major disaster type that contributing most to the total losses.

Table 2 Abbreviation of prov-
inces, autonomous regions,
municipalities and special
administrative regions in China

Name (in alphabetical order) Abbreviation

Province

Anhui AH

Fujian FJ

Gansu GS

Guangdong GD

Guizhou GZ

Hainan HI

Hebei HE

Henan HA

Heilongjiang HL

Hubei HB

Hunan HN

Jilin JL

Jiangsu JS

Jiangxi JX

Liaoning LN

Qinghai QH

Shandong SD

Shanxi SX

Shaanxi SN

Sichuan SC

Taiwan TW

Yunnan YN

Zhejiang ZJ

Autonomous region

Ningxia Hui autonomous region NX

Xizang autonomous region XZ

Xinjiang Uygur autonomous region XJ
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Fig. 6 Spatial distribution of deaths and structure of meteorological disasters in China within 2012 (a) and 2013 (b)

Nat Hazards (2015) 75:2607–2623 2619

123



From Fig. 5, it can be seen that the economic losses showed different characteristic

among different provinces. In 2012, the most serious province affected by MDs was

Sichuan (SC, see Table 2 for the abbreviations) province, with a direct economic loss of

CNY 39.09 billion, followed by Hebei and Hunan (HE and HN) province (Fig. 5a). By

contrast, the northwest and southeast coastal provinces suffered less economic losses. In

2013, Zhejiang (ZJ) province suffered the greatest economic loss of CNY 42.26 billion

owing to the typhoon named ‘‘Fitter’’ (Fig. 5b). According to statistics, the heavy rainfall

induced by ‘‘Fitter’’ caused economic losses of CNY 37.89 billion in ZJ province,

accounting for 90 % of the total losses in a year (The Ministry of Civil Affairs of the

People’s Republic of China 2013). Guangdong (GD) and SC province came in second and

third position, respectively. Additionally, different types of disasters had different con-

tributions to the total economic losses among different regions of China (Fig. 5). In

general, the economic losses induced by flood accounted for a substantial part of the totals

in most provinces of China during the 2 years. However, in Xinjiang Uygur Autonomous

Region (XJ) and Gansu (GS) province, the economic losses caused by hail were the highest

among five types of disasters in 2012, accounting for 64 and 73 % of the totals, respec-

tively (Fig. 5a). In central and southwest China, such as Yunnan (YN), Guizhou (GZ), HN,

HB, Jiangxi (JX) and Anhui (AH) provinces, the economic losses were mainly attributed to

drought in 2013 (Fig. 5b). Besides, DLTF contributed to the most economic losses in

Shanxi (SX) province.

The deaths caused by MD in 2012 were mainly distributed in central and west China

(Fig. 6a). Regionally, the highest number of fatalities was in SC province with at least 260

deaths, followed by Yunnan (YN), GS, Shaanxi (SN) and HN province. The deaths of

above five provinces accounted for 50 % of the total deaths in China. In 2013, the deaths in

SC province were still the most, with an amount of 358 deaths, while those in YN and

Liaoning (LN) province were ranked second and third place, respectively (Fig. 6b). The

results also showed that flood was without doubt the deadliest disaster in most provinces in

2012 and 2013 (Fig. 6). It is noteworthy that hail contributed to the most deaths in GS, AH,

Jiangsu (JS) and Jilin (JL) provinces in 2012 (Fig. 6a). The percentage in these provinces

was 57, 83, 86 and 95 %, respectively. Similar situation also occurred in AH and JS

provinces in 2013 (Fig. 6b).

In general, the economic losses caused by MDs were higher in economically developed

provinces, e.g., SC ZJ, GD, HE and HN (Fig. 5). However, the deaths were higher in

mountain regions, e.g., SC and YN province where topography is complex and population

is unevenly distributed (Fig. 6). Therefore, the severity of meteorological hazards depends

not only on the disaster frequency but also strongly on the region’s geographical features,

population distribution and the socioeconomic development—that is the level of the

exposure and vulnerability to these disasters.

4 Concluding remarks

The temporal trends of affected area resulting from MDs in China during 1951–2013,

spatiotemporal characteristics of MD frequencies and spatial distribution of disaster losses

and deaths in 2012 and 2013 were analyzed in this study. The affected area of flood,

drought and DLTF showed a significant upward trend during 1951–2013, while that of hail

showed a significant downward trend. The frequencies of different disasters had unique

spatiotemporal characteristics. Geographically, flood mainly occurred in the middle and

lower reaches of the Yellow River and the Yangtze River basin; drought was observed at a
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higher frequency in central and southwest China; hail was principally distributed in north,

northwest and southwest China; DLTF and snowstorm were more frequent in north,

northwest China and individual areas in south China. On temporal scale, there were more

frequent floods in June–August, droughts in January–August, hails in April–June, DLTFs

in April and September, and Snowstorms in November–February. The results also dem-

onstrated that MDs had a greater impact in provinces such as SC, YN, GD, HN, GS, ZJ and

HE in terms of the direct economic losses and deaths. Besides, flood was the major

disasters type that contributing to the most losses and deaths in most regions of China.

Sometimes drought also accounted for a substantial part of the total losses in YN, GZ, HN,

HB, JX and AH province, and so did hail in XJ, GS, AH, JS and JL province.

The results will have some certain directive significance for meteorological disaster

prediction, disaster prevention and reduction further in the future. Among the five MD

types, flood prevention and mitigation is of uppermost priority almost in the whole China.

Besides, more attention and effort should be paid to cope with not only flood but also

drought in these provinces such as YN, GZ, HN, HB, JX and AH. Additionally, we should

attach primary importance to both flood and hail in provinces such as XJ, GS, AN, JS and

JL. Consequently, it is critical and necessary for the development of different strategies and

practices to prevent and mitigate meteorological hazards according to its latest charac-

teristics in different parts of China. Our future research focuses on establishing the early

warning management system of MDs at the national level under the background of climate

change.
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