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The significance of arbuscular mycorrhizal fungi (AMF) in soil remediation has been widely recognized
because of their ability to promote plant growth and increase phytoremediation efficiency in heavy metal
(HM) polluted soils by improving plant nutrient absorption and by influencing the fate of the metals in
the plant and soil. However, the symbiotic functions of AMF in remediation of polluted soils depend on
plant—fungus—soil combinations and are greatly influenced by environmental conditions. To better
understand the adaptation of plants and the related mycorrhizae to extreme environmental conditions,
AMF colonization, spore density and community structure were analyzed in roots or rhizosphere soils of
Robinia pseudoacacia. Mycorrhization was compared between uncontaminated soil and heavy metal
contaminated soil from a lead—zinc mining region of northwest China. Samples were analyzed by re-
striction fragment length polymorphism (RFLP) screening with AMF-specific primers (NS31 and AM1),
and sequencing of rRNA small subunit (SSU). The phylogenetic analysis revealed 28 AMF group types,
including six AMF families: Glomeraceae, Claroideoglomeraceae, Diversisporaceae, Acaulosporaceae,
Pacisporaceae, and Gigasporaceae. Of all AMF group types, six (21%) were detected based on spore
samples alone, four (14%) based on root samples alone, and five (18%) based on samples from root, soil
and spore. Glo9 (Rhizophagus intraradices), Glo17 (Funneliformis mosseae) and Acau3 (Acaulospora sp.)
were the three most abundant AMF group types in the current study. Soil Pb and Zn concentrations, pH,
organic matter content, and phosphorus levels all showed significant correlations with the AMF species
compositions in root and soil samples. Overall, the uncontaminated sites had higher species diversity
than sites with heavy metal contamination. The study highlights the effects of different soil chemical
parameters on AMF colonization, spore density and community structure in contaminated and uncon-
taminated sites. The tolerant AMF species isolated and identified from this study have potential for
application in phytoremediation of heavy metal contaminated areas.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Soil contamination with toxic heavy metals is a serious and
widespread issue resulting from both natural and anthropogenic
activities. Mining, agriculture, smelting, electroplating, and other
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human activities are the major anthropogenic sources of heavy
metals found in soils (Gomez-Sagasti et al., 2012). Heavy metals
cannot be degraded easily like organic pollutants and can therefore
constitute a persistent environmental hazard. Long-term impacts of
heavy metal accumulation in soils include adverse effects on mi-
crobial biomass, activity, and diversity (Alguacil et al., 2011;
Margesin et al., 2011). In most terrestrial ecosystems, soil micro-
organisms play a critical role in mineral cycling and organic ma-
terial decomposition. Therefore, any adverse change in the
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environment impacting soil microbial communities can greatly
affect ecosystem functions (Wang et al., 2010).

The arbuscular mycorrhizal fungi (AMF), belonging to the
phylum Glomeromycota (SchiiBler et al., 2001), form mutualistic
symbioses with most terrestrial plants (Smith and Read, 2008). It
is well established that mycorrhizal plants take up water and
mineral nutrients, especially phosphorus (P), more efficiently than
non-mycorrhizal plants (Smith and Read, 2008). In addition, AMF
protect host plants against diverse biotic and abiotic stresses, such
as heavy metals, because of their beneficial role in enhancing
metal tolerance and nutrient acquisition (Doubkova et al., 2012;
Lehmann et al.,, 2014). However, the symbiotic functions of AMF
are diverse on the level of AMF species, host plants species, soil
properties and even AMF ecotypes (Hildebrandt et al., 2007;
Hempel et al., 2009; Zarei et al., 2010). Distributions of AMF are
also affected by many environmental parameters. Among them,
mineral nutrients, especially phosphorus, seem to be more
important than other environmental factors. Generally, higher
content of phosphorus in soils is associated with lower mycor-
rhizal root colonization rates and lower AMF diversity (Cheng
et al., 2013). Moebius-Clune et al. (2013) suggested that soil
texture rather than phosphorus or pH may have an influence on
AMF community structure. Although several studies on the effect
of heavy metals on abundance and diversity of AMF have been
conducted, we still have a poor understanding of the factors that
determine AMF community structure, symbiotic functioning and
adaptive evolution (Antunes et al., 2012). Therefore, a better un-
derstanding of AMF communities in heavy metal contaminated
areas is important to fully evaluate the plant-AMF (Konig et al.,
2010; Thoms and Gleixner, 2013), AMF—AMF (Jansa et al., 2008)
and AMF-soil (Bedini et al., 2010) interactions. The effects of heavy
metals on soil environments are complex because of the complex
array of parameters (Wang et al., 2010), and therefore it is crucial
to identify specific phylotypes or ecotypes of AMF and their rela-
tionship with specific soil environments (Zarei et al, 2010).
Consequently, a comparative analysis of AMF community structure
in polluted soils with different heavy metal concentrations is
essential for identification of metal-tolerant AMF isolates and
ecotypes to develop efficient phytoremediation techniques (Zarei
et al., 2010; Hassan et al., 2011).

A variety of methods have been designed to analyze the di-
versity of AMF in field soils and plant roots (Sanders, 2004). Most
current studies are based on spore counts and on morphological
identification of AMF spores extracted directly from the field (Gai
et al., 2006; Symanczik et al, 2014; Wetzel et al, 2014; de
Oliveira Freitas et al., 2014). A limitation of this method is that
spore density assessed in soils does not necessarily reflect the AMF
population that is actually colonizing the plant roots (Clapp et al.,
1995; Hempel et al., 2007). In fact, some AMF species may not be
detected at all because they sporulate only infrequently or not at all
in the field (Clapp et al., 1995; Sanders, 2004). Recently developed
molecular tools for detection of AMF species directly in plant roots
and soils result in a better understanding of the abundance and
diversity in this group of fungi (SchiiBler et al., 2001; Chen et al.,
2014; Krishnamoorthy et al, 2014). Helgason et al. (1998)
designed the primer AM1 to match all small subunit ribosomal
RNA (SSU) sequences known at that time from the Glomales. In
combination with the universal eukaryotic primer NS31 (Simon
et al., 1992), the AM1 primer can amplify partial 18S rRNA se-
quences (approximately 550 bp) from the three traditional families
of Glomales. Compared to other regions, AMF SSU sequences have
relatively low variability, which makes phylogenetic analysis more
convenient (Kohout et al., 2014). However, the primers for the SSU
rRNA gene cannot cover the whole range of AMF, and usually co-
amplify DNA from plants (Alguacil et al., 2011; Hazard et al.,

2014) or non-target fungal groups (Borriello et al., 2012; Chen
et al., 2014).

Nowadays, the use of molecular methods may provide a more
detailed analysis of root or soil AMF communities compared with
spore-based morphological approach. However, undoubtedly,
sporulation is a key part of the AMF life-cycle, and therefore, the
analysis of AMF diversity based on spore 18S rRNA can reflect an
important life history strategy of AMF for surviving in abiotic en-
vironments. In order to obtain a more dynamic and more complete
picture of the AMF abundance and diversity actually present in
rhizosphere soils and roots, we have combined the sequence
analysis based on the SSU region of rRNA genes of AMF in rhizo-
sphere soil, root and spore samples extracted directly from study
sites. In the present study, we compared AMF status and commu-
nity structure in the root and rhizosphere of a metal tolerant tree,
black locust (Robinia pseudoacacia L.), among study sites contami-
nated or uncontaminated with Pb, Zn, Cu or Cd. Black locust is a
commonly planted legume tree in China with high drought toler-
ance (Yang et al., 2014) and has been extensively used for refores-
tation to control soil erosion in the Loess Plateau. Black locust can
form symbiotic associations with both nitrogen-fixing rhizobia and
phosphorus-acquiring AMF. As a pioneer species, R. pseudoacacia
appeared to be a promising woody legume for phytoremediation in
heavy metal polluted areas due to its fast growth, deep root system,
heavy metal tolerance and ability to fix atmospheric nitrogen
(Vlachodimos et al., 2013). In our previous investigation, we re-
ported that R. pseudoacacia was frequently found in heavy metal
polluted areas and commonly colonized by AMF (will be published
separately). However, a detailed knowledge of AMF status in these
bacteria-AMF-plant interactions under heavy metal polluted con-
ditions is still lacking. The objectives of the present study was to (1)
compare different experimental methods to analyze AMF com-
munity structure by molecular analysis of root, soil and spore
samples collected directly from study sites; (2) evaluate the toxic
effect of heavy metals (Pb, Zn, Cu and Cd) on AMF status, abundance
and community structure; and (3) identify environmental factors
controlling status, abundance and species compositions of AMF in
forest soils. We hypothesize that (1) AMF status, richness and di-
versity would differ between heavy metal polluted and unpolluted
areas due to different disturbance tolerance among AMF species;
and (2) AMF community structures present in root, soil and spore
samples in different study sites would differ because of different
ecological preferences and life history strategies among AMF
species.

2. Materials and methods
2.1. Study sites

The study sites are located in Qiandongshan lead and zinc re-
gion, Feng County, northwest part of China. Qiandongshan lead and
zinc region is the largest and the most typical of five national
nonferrous metal planning mines, and accounts for 25% of the total
reserves of Feng County (Yao et al., 2004). The predominant
pollution sources in this region are mine wastewater, beneficiation
wastewater, and mine tailings (Hou et al., 2003). The region has a
warm temperate semiarid climate with an annual average tem-
perature of 11.4 °C. The annual average rainfall and frost-free period
of Feng County are 613.2 mm and 188 days, respectively. The main
soil type is cinnamon and brunisolic soil according to the traditional
soil genesis classification in China, and the soil texture is from light
to heavy (Xu et al., 2012). The mineral resources are very abundant
and mining industry has become an important economic mainstay
in Shaanxi Province. Specifically, mineral resources of lead and zinc
are mostly distributed in this region and its annual output accounts
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for 72% of the entire provincial output. Feng County, with an annual
production capacity of 100,000 tons of zinc (Zn) concentrates,
30,000 tons of lead (Pb) concentrates, 10,000 tons of electrolytic
lead, and 5000 tons of lead alloy, has become one of the four largest
Pb—Zn bases in China. However, due to the traditional development
model, which focuses more on economic growth using less
advanced technologies and neglecting environmental protection, a
large amount of waste from factories has caused serious environ-
mental pollution.

The heavy metal polluted area was divided into sites of high (S9,
33°51.288'N, 106°39.429'E; S10, 33°51.290’N, 106°39.438'E), me-
dium (S8, 33°51.034’N, 106°38.647'E), low (S6, 33°51.972'N,
106°39.312’E; S7, 33°49.810'N, 106°39.054'E), and non-polluted
(S1-S5, 34°03'54"N—34°04'20"N, 106°46'30"E—106°48'38"E)
levels. The separation between polluted and non-polluted soils was
based on recommendation of environmental quality standard
(Grade II) in soils of China (GB 15618-1995). The division of polluted
soils into levels of high, medium, and low pollution was based on
the variations of Pb and Zn concentrations in the study area.

2.2. Sampling and analysis

Sampling was conducted from August to September (rainy
season), 2012. At each site, three healthy, similarly-sized R. pseu-
doacacia were randomly selected. The plants were young trees of
7—12 years old with 4—7 m height and 3.5-8.0 cm diameter at
breast height (DBH). The soil samples were collected beneath each
tree from at least three directions. In each direction, the top 3-cm
was removed to eliminate part of the leaf litter and one large
hole (diameter, 50 cm; depth, 30 cm) was excavated in order to
collect enough root fragments. The large hole was within 100 cm of
the trunk to ensure that the collected root samples belonged to the
correct species. The roots were carefully excavated and traced from
the originating tree to ensure identity. The soils loosely and tightly
bound to the surface of roots were removed by clean tweezers and
brush, and defined as rhizosphere soil samples for DNA extraction
and spore density determination. The zone we studied here was
sometimes more than 1 mm wide from the surface of the roots
(rhizosphere soil) due to the moist soil during the rainy season, but
this zone of soil was still influenced by root secretions and associ-
ated soil microorganisms to a certain extent. The remaining
extracted soils from the hole at different directions were homog-
enized and then approximately 500—1000 g soil was placed in
plastic bags for determination of soil physical—chemical properties.
The soil samples were sieved (2 mm mesh size) to remove stones,
coarse roots and other litter. In some sites heavily polluted by heavy
metals, additional large-diameter excavations were necessary to
collect adequate quantities of fine roots for DNA extraction and
measurement of mycorrhizal colonization. For each tree, portions
of each composite root sample were contained in 50 ml centrifuge
tubes filled with formaldehyde-acetic acid alcohol (FAA) for
determining mycorrhizal colonization; the remaining root samples
and rhizosphere soil samples were kept in cooling boxes with ice
cartridges during transport to the laboratory and were stored at
4 °C prior to DNA extraction.

2.3. Soil chemical properties

The soil samples were air dried at room temperature, ground to
a fine powder in an agate mortar, and then sieved through a 10
mesh (<2 mm) and an 80 mesh (<180 pum). The finely ground
powder (<180 pm) was used to determine the chemical properties
and the coarse powder (<2 mm) was used to measure pH and
electrical conductivity (EC). Soil chemical and physical analysis was
conducted in the College of Natural Resources and Environment,

Northwest A&F University, Yangling, P.R. China. The soil pH was
determined using a combination glass electrode (Leici PHS-3D,
Shanghai, China) according to the international analysis method
of ISO 10390: 2005 (soil/water, 1:5). The air dried soil samples were
shaken with deionized water (soil:solution ratio, 1:5) for 3 min and
the EC of the supernatant was determined with a conductivity
meter (DDSJ-308A, Zhejiang, China). Soil organic matter (OM)
content was measured by dichromate oxidation and titration with
ferrous sulfate (Nelson and Sommers, 1982). Total nitrogen (TN)
content was determined according to the semi-micro Kjeldahl
method (Bremner and Mulvaney, 1982). Soils were treated with HF-
HClOy4, and then the total phosphorus (TP) content was measured
colorimetrically after wet digestion with HF-HClIO4 (Jackson, 1958).
Available nitrogen (AN) was determined with a micro-diffusion
technique after alkaline hydrolysis (Page, 1982). Available phos-
phorus (AP) was determined by extraction with a buffered alkaline
solution of 0.5 M sodium bicarbonate (pH = 8.5). The product was
quantified colorimetrically in a spectrophotometer (Hitachi,
UV2300) at 660 nm (Page, 1982). The total and DTPA-extractable
heavy metal concentrations were determined by flame atomic ab-
sorption spectrometry (FAAS, Hitachi Z-2000, Tokyo, Japan),
following the dissolution of a 0.5 g soil sample with aqua regia
(HNO3/HCl = 1:3) and HClO4, DTPA solution (0.005 M diethylene
triamine penta-acetic acid (DTPA), 0.01 M CaCl,0.1 M triethanol-
amine, pH = 7.3). The blank reagent and standard reference soils
were analyzed for quality assurance and quality control. All of the
results were calculated from triplicate analytical data.

2.4. Mycorrhizal colonization analysis

To evaluate mycorrhizal colonization, the root samples were
washed with tap water, and then cut into about 1-cm length seg-
ments. The method modified from Koske and Gemma (1989) was
used to clean and stain root samples. The segments were first
softened in 2.5% KOH at 90 °C for 1 h, bleached in alkaline hydrogen
peroxide at room temperature for 30 min, acidified in 1% HCI at
room temperature for 1 h, and then stained with trypan blue
(0.05%) at 90 °C for 20 min. The mycorrhizal colonization was
estimated according to Trouvelot et al. (1986). More than two
hundred root fragments per site were used to measure the
mycorrhizal colonization (MC) under a light microscope (Olympus
Bx51, Japan) at 200x magnification. The percentage of mycorrhizal
structures in each 1 cm root fragment was assessed as 0, 10, 20 ...
100%. The intensity of MC was measured as follows (Liu and Li,
2000):

57(0% x No +10% x Nyg +20% x Nag + -+ +100% x N19)

MC%=
(No+N1g+Npo+---+N1go)

Where N is the number of root fragments.
2.5. Spore isolation

AMF spores were isolated from soil samples using wet sieving
and sucrose density gradient centrifugation (Daniels and Skipper,
1982). Briefly, distilled water was added to 30 g of soil and the
solution passed through a sequence of sieves (2000, 500 and
32 pm). The soil fraction in the last sieve was collected into plastic
tubes. Spore suspensions (25 mL) were transferred to 50 mL
centrifugation tubes, and another 25 mL of a 70% sucrose solution
were added at the bottom of the tubes, which were then centri-
fuged for 2 min at 3000 rpm. Spores were collected from the
water—sucrose interface, washed and transferred to Petri dishes
with filter paper for sorting and quantification under a dissection
microscope at up to x400 magnification. Only spores that appeared
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to be viable (based on color, shape, surface condition and exami-
nation of spore contents) were counted (Eom et al., 2001). AMF
spore density was expressed as number of spores in one gram of
dry soil. Spores from soil samples from each site were pooled and
then grouped according to spore morphology and color using a
dissecting microscope. Spore number of each morphotype in each
pooled sample was counted, and the spore morphotypes were
further identified using the molecular method as described below.

2.6. Molecular analysis

Fine roots and rhizosphere soil were homogenized in liquid
nitrogen using ceramic mortar and pestle. Root DNA was extracted
from approximately 100 mg lyophilized roots using the Plant DNA
Extraction Kit (Tiangen Biotech, China) following the manufac-
turer's instructions. Soil DNA was extracted from approximately
500 mg lyophilized soils using the E.Z.N.A. Soil DNA Kit (Omega,
USA) following the protocol of the manufacturer. A total of 60
samples, consisting of 30 soil samples and 30 root samples, were
subjected for DNA extraction. The purity and the concentration of
the DNA were measured by Smartspec™ Plus Spectrophotometer
(Bio-Rad, USA), and the quality was checked by agarose gel elec-
trophoresis (Invitrogen, USA) with ethidium bromide staining
(Sigma, USA). The DNA samples were then diluted 1: 10 with ddH,0
to be used as PCR template. For spore samples, up to four clean and
healthy-looking spores of each morphotype per pooled sample
were transferred into microcentrifuge tubes and vortexed at
maximum speed. Spores were further rinsed four times with ster-
ilized distilled water. Single spores were transferred into tubes with
10 pL ddH,0, and crushed with forceps under the dissecting
microscope.

Partial AMF 18S ribosomal RNA (about 550 bp) was amplified
from soil, root and spore DNA extracts with the universal eukaryotic
primer NS31 (Simon et al.,, 1992) and primer AM1, designed to
amplify AMF 18S ribosomal RNA sequences but not plant sequences
(Helgason et al., 1998). The PCR reactions were carried out in a final
volume of 25 puL, containing 12.5 uL 2 x Taq Master Mix (Beijing
CoWin Biotech Co., Ltd), 0.5 pL each primer (10 pM, Invitrogen), 1 uL
template and 10.5 pL RNase-Free Water with the following cycling
conditions: 94 °C for 4 min, followed by 30 cycles of 94 °C for 50 s,
56 °C for 60 s, 72 °C for 70 s and extension at 72 °C for 10 min. All
the PCR reactions were run in BioRad PCR cycler (USA). PCR prod-
ucts were examined on a 1.5% (w/v) agarose gel with ethidium
bromide staining in the presence of DL2000 DNA ladder. PCR
products were purified using Universal DNA Purification Kit
(Tiangen Biotech CO., LTD, Beijing, China). Purified PCR products
were cloned into the plasmid pGEM-T vector following the manu-
facturer's instructions of the pGEM-T Cloning Kit (Tiangen Biotech
CO., LTD, Beijing, China), and then the ligation products were
transformed into DH5a competent cells. Totally, 60 clone libraries
were constructed (30 clone libraries for root samples and soil
samples). Within each clone library, 40 positive clones were
selected and restriction digested using Hinfl and Hsp92Il enzymes
according to the manufacturer's advice (Takara, Kyoto, Japan).
Digested products were examined on a 2.0% (w/v) agarose gel.
Representatives of each RFLP type detected were sequenced with
primer T7 by GenScript Corporation (Nanjing, China).

2.7. Data analysis

All glomeromycotan sequences were aligned using DNAMAN
version 6.0 (Lynnon Biosoft, USA), and clustered to species-level
groups according to 97% sequence similarity. Each species-level
group was regarded as an AMF group type. The AMF group types
found in this study and the GenBank sequences most similar to

clone sequences were included in the phylogenetic tree construc-
tion. Phylogenetic analysis was performed using MEGA version 5.0,
and the neighbor-joining tree was constructed by performing 1000
replicates to produce bootstrap values. The 54 sequences obtained
in this study had been deposited in the GenBank database with
accession numbers KM233891-KM233916 and KM659233—
KM659260.

The sequence group data were imported into SPSS v16.0 (Chi-
cago, USA) to calculate the Shannon—Wiener index (H'), Margalef
(dma), Evenness (Ey) and Simpson index (D) as follows:

S .
H =-> P, InP, P, :%
i=1

1
dpa = InN
H/
E —
" Hmax
s

where N is the total number of clones selected from each clone li-
brary, S is the total number of AMF sequence groups detected in
each site, n; is the number of the ith sequence group present in each
clone library.

Redundancy analyses (RDA) were conducted to determine the
multivariate relationships between AMF community compositions
and environment variables using the software Canoco (version 4.5,
Centre for Biometry, Wageningen, The Netherlands). Pearson's
correlation coefficients were calculated to determine the relation-
ships among environmental factors, mycorrhizal colonization,
spore density and the biodiversity indices by using SPSS software
version 16.0 (P < 0.05). Significant differences were detected by
employing a one-way analysis of variance (ANOVA) (P < 0.05) and
significant differences between means were determined by Dun-
can's test (P < 0.05). Principal component analysis (PCA) was per-
formed to compare the AMF communities from root, soil and spore
samples at family level. In this analysis, the presence or absence of
each family was scored as “1” or “0”, respectively.

3. Results
3.1. Soil properties and AMF status

The main characteristics of the soil samples collected from ten
study sites are presented in Table 1. The soil samples were all
slightly alkaline with pH of the ten study sites ranging from 7.45
(S9) to 8.36 (S2). S10 had the highest EC (0.94 dS/m), TP (0.85 g/kg),
TN (1.50 g/kg), AP (15.6 mg/kg) and AN (25.5 mg/kg), whereas the
highest OM was found at S9 (12.2 g/kg). The values of pH, OM, EC,
TP, TN, TP, AP and AN showed small but significant differences
among study sites, but no obvious difference of AN could be found
among the five study sites located in uncontaminated area
(P > 0.05). The concentrations of heavy metals showed a large
variability among the five study sites selected from contaminated
area (Table 1). S10 had the most serious heavy metal pollution and
the total concentrations of Pb and Zn at this site were 16.9 and 2.7
times higher than the environmental quality standard (Grade II) in
soils of China (GB 15618-1995), whereas S6 was only slightly
polluted by Pb (65.4 mg/kg), Zn (136 mg/kg), Cu (29.0 mg/kg) and
Cd (0.32 mg/kg). The DTPA-extractable Pb, Zn, Cu and Cd presented
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Fig. 1. Phylogenetic tree showing AMF sequences isolated from roots, spores and rhizosphere soils of Robinia pseudoacacia based on partial small subunit sequences (SSU). The tree
was obtained by neighbor joining method. Numbers above branches denote bootstrap values from 1000 replications. Bootstrap values >70% were shown. Sequences obtained in the
present study were labeled with the database accession number and the internal identification number.
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The remaining groups clustered with sequences of uncultured AMF
species (Fig. 1).

3.2.1. AMF communities in roots of R. pseudoacacia

The AMF communities in roots of R. pseudoacacia in all 30
samples were determined based on the percentages of clones of the
28 AMF sequence types (Fig. 1). Among the AMF group types
detected by the RFLP analysis of root samples, 15 were found in
roots of plants growing on uncontaminated sites, with an average of
1.0 group types per sample, while 14 group types were detected in
roots of plants growing on contaminated sites, with an average 0.9
group types per sample. In root samples collected from uncon-
taminated sites, the most frequent group type was Glo9 (33.2%),
followed by Glo17 (27.2%). In addition, five group types of Glo2
(0.67%), Glo4 (0.67%), Glo12 (0.67%), and Glo14 (1.33%) were only
recorded in roots from uncontaminated sites. In contrast, the
abundant AMF group types in root samples collected from HM
contaminated sites were Glo9 (35.8%) and Glo17 (37.7%). The third
most common group was Acau3, which could not be assigned to
any morphologically described species. Acau3 was present in 16.5%
of all clones in uncontaminated sites, but was significantly less
common in HM contaminated sites (13.8%). Three group types of
Glo6 (0.50%), Glo8 (0.17%) and Divel (0.67%) were only detected
from roots in HM contaminated sites. Eleven AMF group types of
Glo3, Glo5, Glo7, Glo9, Glo10, Glo13, Glo15, Glo17, Clar1, Acau3 and
Entr1 were found in roots of plants growing on both HM contam-
inated and uncontaminated sites (Fig. 2).

3.2.2. AMF communities in rhizosphere soils of R. pseudoacacia
Rhizosphere soils of R. pseudoacacia had a characteristic AMF
community that was clearly different from these of the roots. Sig-
nificant differences were found in the relative frequencies of two
sequence groups. Sequence group Glo17 is of particular interest
since it was found more frequently in soil compared with root
samples, accounting for 41.0% of all clones in uncontaminated sites.
However, Glo9 was seldom found in soil samples, and only 4.2% of
all clones had this sequence group in uncontaminated sites. Soil
samples contained more sequence groups (22 types) than root
samples (18 types). In soil, 22 AMF group types were detected in
samples from uncontaminated sites, with up to 4.4 group types per
site. Nineteen AMF group types were detected in HM contaminated
soil samples, with an average of 3.8 group types per site. Glo17 and
Acau3 were the two most dominant AMF group types in soils
contaminated or uncontaminated by heavy metal (Fig. 2).
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3.2.3. AMF community structure based on molecular identification
of spores

In our study, only 14 out of 36 single spores were successfully
amplified and then subjected to RFLP analysis. One representative
of each spore-derived RFLP type was sequenced and a total of 11
sequence groups were detected. A BLAST search showed that five
sequence groups belonged to Glomeromycota, two groups belonged
to Acaulosporaceae, two groups belonged to Diversisporaceae, and
two groups were related to Gigasporaceae, partly representing AMF
community in spore level (Fig. 1). The two most common AMF
sequence groups were Glo17 and Acaul both in contaminated
(44.8% for Glo17 and 16.0% for Acaul) and uncontaminated sites
(41.0% for Glo17 and 12.7% for Acaul) when all the spores identified
by both molecular and morphological methods were taken into
consideration (Fig. 2).

3.3. Ecological measures of diversity

The Species richness (S), Shannon—Wiener index (H'), Margalef
(dmax), and Evenness (Ep), Simpson index (D) were calculated for
each study site (Supplementary Table S2). Species richness (S) were
8.5 for root samples, 11.4 for soil samples, and 5.2 for spore samples
(molecular identification) collected from contaminated and un-
contaminated sites. The diversity indices of S, H' and dj;4x showed
significant differences between uncontaminated and contaminated
sites for soil samples, whereas no differences could be found for
root and spore samples (P > 0.05). Significant differences were
showed in diversity indices of E; and D for root samples between
uncontaminated and contaminated sites; however, they did not
show differences for soil and spore samples (P > 0.05, Fig. 3).

Linear correlation analysis was used to determine the relation-
ship between diversity indices of AMF communities and soil
properties (Table 2). For root and soil samples, the results showed
that Species Richness index (S) and Margalef index (dpqx) had
significantly negative correlations with soil available P content,
total Pb, Zn, Cd and DTPA-extractable Zn concentrations (P < 0.05),
while the Shannon—Wiener index (H’) index had obviously nega-
tive correlation with soil OM content, total and DTPA extractable Pb
and Zn concentrations (P < 0.05). For root samples, Evenness index
(Ep) and Simpson index (D) had significantly positive correlations
with soil pH, but negative correlations with soil OM content, total
Pb, Zn, Cd and DTPA-extractable Pb, Zn and Cu concentrations
(P < 0.05). On the contrary, Evenness index (Ep) and Simpson index
(D) of soil samples only had significantly negative correlations with
soil EC, total Pb, Zn and DTPA-extractable Zn concentrations
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Fig. 2. AMF communities in root, soil and spore samples collected from different study sites. AMF communities are represented by the percentages of total clones belonging to each
AMF sequence group. Each color corresponds to a sequence group. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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significant differences according to Duncan's test (P < 0.05).

(P < 0.05). For spore samples, the Species Richness index (S) and
Margalef index (dpqx) showed significantly negative correlations
with soil OM content, total Zn, Cu and DTPA-extractable Pb and Zn
concentrations (P < 0.05), while the Shannon—Wiener index (H')
index only had negative correlations with soil total P content
(P < 0.01). However, no correlation could be found between
Evenness index (Ep), Simpson index (D) and soil properties
(P > 0.05).

3.4. Redundancy analysis (RDA)

To further resolve the effects of environmental variables on the
AMF communities, fifteen environmental factors were analyzed by
using Redundancy analysis (RDA). RDA analysis was conducted on
each type of samples separately, due to the differences in AMF
community structure between root and soil samples (Fig. 2). Spore
samples were removed from the analysis because most of the single
spores failed to amplify in this study. Results from RDA are shown
in Fig. 4. The length of the arrows indicate the relative importance
of each environmental factor in explaining variation of community
structures, while the angle between the arrows or axis indicate the
degree to which they are correlated (Fig. 4). In root samples, more
than 84.2% of the variance in AMF communities could be explained

by the two canonical axes. The first canonical axis explained 71.1%
of the detected AMF diversity and was negatively correlated with
soil pH. The second axis represented 13.1% of variance and was
positively correlated with soil OM content, total/DTPA-extractable
Cu and Cd concentrations. Soil properties related to pH, EC, OM
content, total/DTPA-extractable Cd and Zn concentrations had a
strong influence on the AMF composition structure in root samples
as indicated by the length of their arrows in the RDA plots, but still a
large proportion of the variance remained unexplained. Soil total
Cu and DTPA-extractable Cd concentrations were positively asso-
ciated with Glo6, Glo8 and Divel, but showed negative correlation
with Glo14 in root samples (Fig. 4a). Glo9 was significantly asso-
ciated with soil EC, total N and available P contents, while Glo17
was abundant within roots of R. pseudoacacia growing in soils
polluted by Pb, Cu and Cd. Glo4, Glo10, Glo12 and Glo15 were
positively related to soil pH, but negatively correlated with soil OM
content, DTPA-extractable Pb and Cu concentrations. AMF groups
Glo2, Glo3, Glo5, Acau3 and Clar1 found in the upper left part of the
graph were negatively correlated with soil total Pb, Zn and DTPA-
extractable Zn concentrations, and Entrl was only negatively
correlated with EC and available P (Fig. 4a). Eight of the fifteen
environmental variables fitted as vectors onto the RDA plot were
significantly correlated with the AMF community structure in root

Table 2
Correlation coefficients among soil properties and biodiversity indices.
Biodiversity index pH oM EC TP N AP AN TPb TZn TCu TCd DPb DZn DCu DCd
Root samples S NS NS - NS NS (=) NS (- * NS (- NS (=) NS NS
H (+» (=) NS NS NS NS NS (- -y NS (= (- (= (=) NS
dMax NS NS (=) NS NS (=) NS (=) - NS (=) NS (=) NS NS
Eh (+» (= NS NS NS NS NS (=) R G L G A G A C B G B CO
D (+)y (=) NS NS NS NS NS (=) -y* NS (= (-) [ NS
Soil samples S (+)* (=) NS NS NS (=) NS (=) (=) NS (=) (=) (=) (=) NS
H NS (- (- NS NS NS NS ()™ (=)™ NS (-y (- (—)* NS NS
dMax (+) (=) NS NS NS (=) NS (=) (=) NS (=) (=) (=) (=) NS
Eh NS NS (=)* NS NS NS NS (=) (= NS NS NS (=)* NS NS
D NS (—)* (-)* NS NS (—)* NS (=) (=) NS NS (—)* (=) NS NS
Spore samples S NS (=) NS NS NS NS NS NS (-)* (=) NS (=) (=) NS NS
H NS NS NS (=) NS NS NS NS NS NS NS NS NS NS NS
dMax NS (- NS NS NS NS NS NS (-)* (- NS (- (- NS NS
Eh NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS
D NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

Abbreviations: S, Species richness; H’, Shannon—Wiener index; dyqx, Margalef; E,, Evenness; D, Simpson index; OM, organic matter; EC, electrical conductivity; TP, total
phosphorus; TN, total nitrogen; AP, available phosphorus; AN, available nitrogen; TPb, total Pb; TZn, total Zn; TCu, total Cu; TCd, total Cd; DPb, DTPA-extractable Pb; DZn,
DTPA-extractable Zn; DCu, DTPA-extractable Cu; DCd, DTPA-extractable Cd; (—), negative correlation; (+), positive correlation; *P < 0.05, **P < 0.01, NS, no significance.
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samples; of these, soil pH, OM, total/DTPA-extractable Zn concen-
trations were most strongly related to the AMF community
composition (Supplementary Table S3).

In the soil samples, a total of 70.0% of the cumulative variance in
the AMF community data set was explained by the first two ca-
nonical RDA axes (Fig. 4b). The first canonical axis explained 51.9%
of AMF composition in soil samples and was negatively correlated
with soil pH, while, the second axis explained 18.1% of variance and
was positively correlated with soil pH and EC. Soil available P, DTPA-
extractable Zn and total Pb, Zn and Cd concentrations showed
positive correlations with Glo7 and Acau3, but were negatively
related to Glo2, Glo3, Glo5 and Paci2. Glo4 was associated with soil
total Cu concentration, however, AMF group Glo6, Glo8, Glo9,
Glo12, Glo15, Clar1, Divel and Entr1 were represented in the bot-
tom left part of the graph without clear associations with envi-
ronmental parameters (Fig. 4b). Glo10, Glo13 and Glo14 were
negatively associated with Cu and Cd contaminations, and AMF
groups Glo1, Glo7 and Glo16 found in the upper right part of the
graph were influenced by both soil pH and EC. Five of the fifteen
environmental variables fitted as vectors onto the RDA plot were
significantly correlated with the AMF community structure in soil
samples; of these, soil total Pb, Zn and DTPA-extractable Zn con-
centrations were most strongly related to the AMF community
composition (Supplementary Table S4).

4. Discussion

Under natural conditions, 80%—90% of plants are colonized by
AMF leading to mutualistic associations that have been found in
most vegetative systems and climates, including some aquatic
ecosystems (Gamalero et al., 2009). The extensive extraradical hy-
phal network produced by AMF allows the plants to access a greater
volume of the soil, resulting in the enhancement of plant nutrient
absorption and translocation (Fellbaum et al., 2014). The first step
of our current study was to analyze the mycorrhizal structures such
as hyphae, arbuscules (Arum-type and Paris-type) and vesicles in
the inner root parenchyma cells where most of these fungal
structures reside (Hildebrandt et al., 2007). Intracellular hyphae,
arbuscules and vesicles were commonly found in all study sites and
Arum-type was the dominant structure (Supplementary Fig. S1a, b,
d and e). A few roots forming mycorrhizal structures of Paris-type
could be also observed in our investigation (Supplementary
Fig. S1c). Higher percentage of arbuscules was observed at the
sites heavily polluted by Pb, Zn, Cu and Cd (Supplementary

Fig. S1e), which may be attributed to alleviation of heavy metal
toxicity in R. pseudoacacia. The previous studies conducted by our
lab in the Pb and Zn mining area showed a negative effect of Pb
concentration on mycorrhizal colonization (Xu et al., 2012). With
the present analysis, we extended the focus of our work by taking
additional environmental factors into account. The correlation
analysis showed that MC had a significantly positive relationship
with soil pH (P = 0.038), but was negatively associated with soil OM
content (P = 0.019), total P content (P = 0.033) and strongly
inhibited by Zn and Pb contaminations (Supplementary Table S1).
These results are in agreement with Vogel-Mikus et al. (2005) who
reported that mycorrhizal colonization levels were significantly
lower or absent on the most Pb, Zn and Cd polluted plots. Wu et al.
(2010) indicated that elevated concentrations of As, Pb, Zn, Cd and
Cu exerted harmful effects on spore numbers of AMF in abandoned
As/Pb/Zn mines. However, our results did not support that and no
significant difference could be found between AMF spore density
and Pb, Zn, Cu, Cd concentrations or with any of the other studied
environmental factors (Supplementary Table S1). The inhibition of
mycorrhizal colonization in the contaminated soil could be partly
due to the high availability of metals caused by low pH (Table 1),
inhibition of fungal spread in the soil (Pawlowska and Charvat,
2004), disturbance of vegetation and erosion of the locations (Liu
et al., 2011). Heavy metals have been reported to reduce, delay, or
even eliminate AMF colonization and spore density (Lingua et al.,
2008; Wei et al., 2014). However, in our study, AMF propagules
never disappeared completely even in soils contaminated by high
concentrations of heavy metals (Supplementary Fig. S1) and other
studies have likewise found positive, negative or neutral effects on
mycorrhizal colonization and spore density in Pb—Zn mining area
(Zarei et al., 2008a; Khade and Adholeya, 2009; Wu et al., 2010).
These conflicting observations indicated that the effects of heavy
metals on the extent of AMF colonization may depend on other
environmental factors, such as AMF species, host plants, season of
the year, stage of plant development, plant nutritional status and
environmental conditions (Bever et al., 2001; Oehl et al., 2003;
Pande and Tarafdar, 2004).

The phylogenetic analysis revealed that 17 out of 28 AMF groups
belonged to Glomus, suggesting that it was the most dominant
genus in the AMF community associated with R. pseudoacacia at all
study sites. The dominance of Glomus species has been commonly
found in surveys on AMF diversity in various habitats, such as
Mediterranean soils (Alguacil et al., 2014), tropical forest soils
(Husband et al., 2002), agricultural soils (Dai et al., 2014), grassland
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soils (Birgander et al., 2014), and heavy metal contaminated soils
(Zarei et al., 2008a, 2008b). Yang et al. (2010) found that all the
sequences detected in the roots of Elsholtzia splendens growing in
Cu-contaminated soil were related to Glomus species. Similar to our
results, Hassan et al. (2011) indicated that Glomus was one of the
most common AMF genera detected in trace metal polluted soils.
The Acaulospora group was the second most dominant genus in our
study (Fig. 2), although only 3 out of 28 AMF groups belonging to
this genus were found (Fig. 1). Prevalence of Acaulospora species in
some Chinese natural ecosystems was widely reported (Li et al.,
2004). Our results are also in accordance with a study that detec-
ted Glomus and Acaulospora abundantly distributed in heavy metal
polluted soils (Ortega-Larrocea et al., 2001). Three possible reasons
could explain why Glomus and Acaulospora groups became the
most dominant genera in our study. Firstly, Glomus and Acaulospora
species have the ability to propagate by mycelial fragments and
mycorrhizal root fragments, unlike other AMF species that require
spore germination (Klironomos and Hart, 2002; Hassan et al., 2011).
Secondly, as predominance genera (Daniell et al., 2001), Glomus and
Acaulospora species already adapted to the local environment, and
it became much easier for them to develop their own ability to
survive in heavily disturbed environments compared with other
AMF species. Thirdly, it is quite common for Glomus to form anas-
tomoses between mycelia, which may therefore have the ability to
re-establish an interconnected network in disrupted environments
(de la Providencia et al., 2005).

The large differences in the diversity of AMF among root, soil
and spore samples collected from ten study sites were observed in
the present investigation (Fig. 2). Of particular note was the dis-
tribution of Glo9, Glo17 and Acau3. Glo9, showing a high similarity
to Rhizophagus intraradices, is known as a generalist fungal species
since it has been found in diverse environments (Opik et al., 2003)
and host species (Helgason et al., 2007). In the current study, Glo9
was found primarily in root samples (>30%), but only 4% abundance
of this group type was observed in soil samples and it was almost
not detected in spore samples. Glo17, which showed a high ho-
mology with F mosseae, can also be considered a generalist fungal
species because it is very frequent in diverse ecosystems (Jansa
et al., 2014). However, this group species presented an almost
opposite pattern in distribution among root, soil and spore samples
compared with Glo9. Glo17 was found to be 32% of all clones in root
samples, but this value increased to 42% of all clones in soil samples
(Fig. 2). AMF group Acau3, showing a high homology with Acau-
lospora sp. has been commonly found in China (Zhang et al., 2004).
Similarly, the percentage of all clones for this group increased from
15% in root samples to 30% in soil samples (Fig. 2). Our results were
supported by previous studies conducted by Chen et al. (2014) and
Hempel et al. (2007) who reported large differences in the AMF
community among root, soil and even spore samples at AMF spe-
cies level. Wilde et al. (2009) observed that R. intraradices occurred
abundantly in roots of host plants but could hardly be retrieved in
batches of spores and not at all in single spores of soil samples by
molecular analyses. Hempel et al. (2007) suggested that this type of
group may generally extend short distances in soils relative to its
abundance in roots. Another important aspect that needs to be
considered is the properties of the host plant (R. pseudoacacia).
Black locust can form symbiotic associations with both nitrogen-
fixing rhizobia and phosphorus-acquiring AMF. The fixed nitrogen
provides legumes with an additional nitrogen source, but at the
same time, they require large amounts of energy and phosphorus to
balance the nutrients. Black locust may preferentially associate
with specific AMF species that are particularly efficient in supplying
phosphorus (Scheublin et al., 2004). It is a reasonable assumption
that R. intraradices, F. mosseae and Acaulospora sp. might be good

candidates for this role, although research on the differences in P
acquisition efficiency among AMF species is lacking.

The principal component analysis (PCA) revealed a distinct
clustering of the AMF communities in root, soil and spore samples
at family level (Fig. 5). The AMF diversity in soil samples showed a
much wider distribution in the PCA plot, suggesting the heteroge-
neity of the soils in our study sites (Table 1). This result was
consistent with Martinez-Garcia et al. (2011) who found much
higher AMF genetic diversity in soils compared with that in roots. A
strong overlap among the community structure of AMF in root, soil
and spore samples was noticed in the current study (Fig. 5), sug-
gesting that the plant, AMF and soil formed a unified whole, with
each component influencing one another.

Although distinct patterns of heavy metal tolerance among AMF
groups were found, redundancy analysis (RDA) showed that heavy
metal contamination were not the only soil parameters influencing
AMEF sequence group type distribution (Fig. 4). In root samples, the
multivariate analysis showed that, apart from the total Pb, Zn, Cd
and DTPA-extractable Pb and Zn concentrations, soil pH, organic
matter content (OM) and electrical conductivity (EC) greatly
influenced the AMF community structure (Fig. 4a, Supplementary
Table S3). Detailed information showed that, in soil samples, the
AMF composition was highly associated with soil EC, AP, total Pb, Zn
and DTPA-extractable Zn concentrations (Fig. 4b, Supplementary
Table S4). Although factors influencing AMF community structure
are varied (Zarei et al., 2010), some studies have found heavy metal
contaminations (Pb, Zn, Cu and Cd) to be the dominant parameters
influencing AMF community structure (Del Val et al., 1999; Zarei
et al, 2008b). In addition to understanding how AMF commu-
nities are influenced by soil factors, we need to determine the re-
lationships among soil parameters in the local heavy metal polluted
area with unique and special geological and climate conditions.
Generally, the effects of heavy metals on plants and soil microor-
ganisms are dependent both on chemical speciation and mobili-
zation of the metal available for uptake (Krishnamurti et al., 2013).
It has been widely noted that the availability and toxicity of heavy
metals to plants and AMF were associated with soil P content, soil

o

- Dive-tisp 4p 4

Scut-HIP Entr-HR
Paci-NS\  Dive-NSP DivetIR Glo-HS
Acau-NS ive-

° Paci-HS Dive-NS ’ Clar-HR
O\ A Acau-HR Entr-NS
™ Entr-NR

: Acau-NR A
© Entr-HS
AN Glo-HSP
.. A Clar-NR
(9]
< Glo-NSP
O Clar-NS

Acau-NSP Clar-HS
o i Glo-HR DiveHS
Acau-HS A e
Scut-NSP Glo-NR
e Acau-HSP Glo-NS
)

10 PCA1:49.9% 18

Fig. 5. Principal component analysis (PCA) of AMF communities in root (R, red sym-
bols), soil (S, green symbols) and spore (SP, blue symbols) samples in response to
different environmental factors. The percentages in the axes show the percentage of
variation explained by the analysis. Triangle represents uncontaminated soils (N);
diamond represents heavy metal contaminated soils (H). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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pH and organic matter content (OM) (Cao et al., 2003; Meharg,
2003; Antoniadis et al., 2008). Among these factors, soil pH plays
the most important role in determining metal speciation, solubility
from mineral surfaces, movement, and eventual bioavailability of
metals, due to its strong effects on solubility and speciation of
metals both in the soil as a whole and particularly in the soil so-
lution (Zeng et al., 2011). Our data also provide evidence that soil
pH was negatively correlated with DTPA-extractable Pb (P < 0.01),
Zn (P < 0.05), Cu (P < 0.01), Cd (P < 0.01) concentrations, but no
correlation was found between soil pH and total Pb or Zn concen-
trations (P > 0.05) (Supplementary Table S5). Apart from soil pH,
organic matter content (OM) is also one of the most important soil
properties affecting heavy metal availability. The current study
found that organic matter content (OM) was positively correlated
with soil DTPA-extractable Pb (P < 0.01), Zn (P < 0.05), Cu (P < 0.01)
and Cd (P < 0.01) (Supplementary Table S5). Similar results were
demonstrated by Dai et al. (2004) who estimated DTPA-extractable
Pb, Zn and Cd concentrations in heavy metal contaminated soils
and found that the concentrations of these metals were positively
correlated with organic matter content (OM) in soils. Bending et al.
(2002) reported that soil organic matter content could influence
the function of the soil microbial community by impacting soil
structural properties and types of nutritional substrates available.
Soil EC provides an evaluation of soil stress level and is typically
correlated with pH. In agreement with our findings, Bainard et al.
(2014) reported that soil pH or pH-driven changes in soil chemis-
try and EC were highly correlated with the composition of the AMF
community in both soils and crop roots. In natural and agricultural
ecosystems, the variability in soil pH has been shown to be one of
the most important factors influencing the structure and compo-
sition of AMF communities (An et al., 2008; Dumbrell et al., 2011). A
high P level is another factor that is known to reduce AMF diversity
(Gosling et al., 2013). The explanation for this is that the relation-
ship between AMF and host plant was greatly regulated by soil P
level, which could directly or indirectly affect AMF status in plant
roots and soils (Sheng et al., 2013). However, more studies are still
required to get a better understanding of the detailed relationship
among soil factors and their specific impacts on R. pseudoacacia
growth and AMF community structure in heavy metal contami-
nated areas.

5. Conclusion

The current study described the local AMF community compo-
sition and structure in heavy metal contaminated and uncontam-
inated regions. The results showed that R. intraradices, F. mosseae
and Acaulospora sp. were the three most dominant AMF group
types associated with R. pseudoacacia in the study sites. Soil Pb and
Zn concentrations were found to be the most important soil factors,
which severely affected AMF abundance and community structure.
However, other soil chemical parameters, such as soil pH, OM, EC
and P level, which showed variation among the sampling sites in
the study area, also greatly contributed to soil feedbacks on AMF
diversity, as detected by redundancy analysis (RDA). It can be
concluded from the current study that several AMF group types
presented in the lead—zinc mining region were able to survive and
overcome heavy metal polluted conditions and possessed some
degree of adaptation to heavy metal stress. Further studies are
required to explore the phytoremediation potential of the domi-
nant AMF isolates (E mosseae, R. intraradices and Acaulospora sp.)
associated with R. pseudoacacia in both pot culture and field
studies.
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