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Abstract
To evaluate the process of nitrate accumulation and leaching in surface and ground water,

we conducted simulated rainfall experiments. The experiments were performed in areas

of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high

(22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with.

From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uni-

formly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied

for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the

surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a

low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily

occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments,

the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L

before the 5th experiment, and after the 7th experiment, these nitrate concentrations were

greater than 10 mg/L throughout the process. The time-series process of the changing con-

centration in the groundwater flow exhibited the same parabolic trend for each fertilizer

experiment. However, the time at which the nitrate concentration began to change lagged

behind the start time of groundwater flow by approximately 0.94 hours on average. The

experiments were also performed with no fertilizer. In these experiments, the mean nitrate

concentration of groundwater initially increased continuously, and then, the process exhib-

ited the same parabolic trend as the results of the fertilization experiments. The nitrate con-

centration decreased in the subsequent experiments. Eight days after the 12 rainfall

experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate

residues mainly existed at the surface and in the bottom soil layers, which represents a

potentially more dangerous pollution scenario for surface and ground water. The surface

and subsurface flow would enter into and contaminate water bodies, thus threatening the

water environment.
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Introduction
Nitrate is a common contaminant of surface water and groundwater and it can cause health
problems in infants and animals as well as eutrophication of water bodies [1–7]. The World
Health Organization and the U.S. Environmental Protection Agency have established a maxi-
mum contaminant level for nitrate of 10 mg/L as NO3

-–N in drinking water [8–10]. Many
studies have shown that agricultural activities are a significant source of surface and ground
water pollution due to long-term and excessive fertilizer use [7, 11–16].

Non-point source pollution caused by nitrogen from agro-ecosystems is a serious threat to
water environments and has received increasing attention regionally and globally [12, 16–20].
Agricultural activities contributed to approximately 75% of non-point pollution, which
accounted for approximately two-thirds of the total pollution, in the US [21]. Agriculture is a
primary source of river and groundwater pollution in rural areas of the UK [22, 23]. The total
nitrogen provided by agricultural non-point sources reached approximately 60% of the total
water pollution in the Netherlands [24]. Approximately 94% of the nitrogen loading in 270 riv-
ers was caused by non-point source pollution in Denmark [25]. Since the 1980s, nitrogen fertil-
izer consumption in China has substantially increased, and nitrate pollution of drinking water
has become a serious problem [26]. Fan and Hao [27] summarized the primary factors for the
accumulation and leaching of NO3

-–N in a soil profile and its potential contamination in sur-
face and underground water in northern China.

A number of studies have shown that nitrate-nitrogen (NO3
-–N) loss through subsurface

drainage is a major source of pollution for surface and groundwater bodies, thus threatening
the water environment [28–31]. Nitrate is both soluble and mobile, it is prone to leaching
through soil with infiltrating water, and it can persist in shallow groundwater for years [32].
Moreover, the hydrogeological settings, seasonal trends and anthropogenic activities are major
factors that influence the mobility and accumulation of nitrates [33]. Under rainfall or irriga-
tion conditions, high levels of soluble nitrates (NO3

-–N) leak through soil and into groundwa-
ter and then drain away with the groundwater flow. In the Weihe River Basin, groundwater is a
streamflow recharge source in the upper reaches; in the middle reaches, one side of the river
flow supplies the groundwater, and on the other side, the groundwater supplies the flow [34].
Therefore, nitrate leakage can cause nitrate pollution of groundwater; subsequently, the con-
taminated groundwater is likely to drain into rivers, resulting in further environmental damage
to surface water [35].

Monitoring and modeling approaches have been used to study nitrate contamination in sur-
face water and groundwater. Feng et al. [36] studied the effects of different levels of rainfall and
fertilization on the soil nitrate distribution and the cumulative amount of nitrate in maize
through simulated rainfall field experiments in Shunyi of Beijing, China. Chen et al. [37] stud-
ied the nitrate vertical transport rule in farmland soil through soil column and field experi-
ments. Huang et al. [38] investigated the transforming behaviors and removal efficiencies of
NO3

-–N in river bank filtration using two soil-body filtration experiments. The SWAP and
ANIMOmodels were used to simulate the transport of water, nitrate and phosphorus nutri-
ents, during intense rainfall events generated by a simulator, and during natural rainfall [39].
The HYDRUS-1D model was used to simulate the movement of Br. as a tracer of surface-
applied N fertilizer, and nitrate remaining in the soil profile under conditions of heavy rainfall
and high-intensity irrigation [40]. Based on the results and analysis of the soil water atmo-
sphere plant model (SWAP) or DRAINMOD (DM) models, Wang et al. [35] developed a
mechanistic model of nitrogen transport and transformation in farmland soil that was suitable
for organic and inorganic fertilizer application. The soil and water assessment tool (SWAT)
has also been used to simulate the land phase of the hydrological cycle, as well as to obtain
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streamflows, groundwater recharge, and nitrate (NO3
-) load distributions in various compo-

nents of runoff [41]. Wriedt and Spindler [42] simulated the steady state, transient flow andni-
trate transport using MODFLOW and MT3DMS, driven by average and monthly lysimeter
data of recharge and nitrate leaching. The hydrological SWAT model was integrated with the
modular finite difference groundwater flow model (MODFLOW) and the modular 3-
dimensional multi-species transport model (MT3DMS) to obtain groundwater flow and
NO3

-–N transport [41]. The monitoring approach can more directly estimate the effects of
nitrate contamination on surface and soil, but it is difficult to study the effect on groundwater
pollution. Therefore, the the use of modeling approaches to study groundwater pollution or the
interaction between surface water and groundwater has become a trend. However, the accuracy
of the modeling results greatly depends on the accuracy of the information and on the magni-
tude and distribution of aquifer permeability [43].

Based on an independently developed experimental system that integrates surface water,
soil infiltration and groundwater experimental equipment, this study conducted simulated
rainfall experiments to evaluate nitrate accumulation and the leaching process in surface water
and groundwater.

Materials and Methods

Experimental equipment and conditions
The simulated rainfall experiments were performed in the Rainfall Simulation Hall of the State
Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau of China in 2013.
The experimental equipment consisted of 10 systems (Fig 1). From the top to the bottom, the
equipment configuration consisted of the rainfall system, surface flow system, infiltration flow
system, groundwater flow system and slope adjustment system. From left to right, the configu-
ration was the groundwater level control system, soil water monitoring system, groundwater
level monitoring system, surface water collection system and groundwater collection system.

Fig 1. Experimental equipment.

doi:10.1371/journal.pone.0136274.g001
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The soil box was 5.3 m long, 1 m wide and 1 m deep. Soil water was monitored using a neutron
probe (Diviner 2000) [44], and the slope was 3° in this study.

The rainfall system had an automatic simulation device consisting of an under-sprinkler
providing uniform rainfall conditions. The nozzles in the system were located approximately
16.5 meters above the underlying surface. They could be set to any preselected rainfall intensity
from 15 to 180 mm/h. The average rainfall intensities of each experiment are shown in Table 1,
and the mean rainfall intensity of the twelve experiments was 65.7 mm/h. The rainfall duration
was 2 hours for each experiment, and the cumulative rainfall was 1576.4 mm.

Raindrop size distribution and kinetic energy are two important factors for rainfall infiltra-
tion and groundwater recharge [45–49]. The stain method [45, 50, 51] was used in this study to
measure the sizes and distributions of the raindrops [52]. CorelDRAW software was used to
measure the horizontal and longitudinal diameters of the stains with the crossing method, and
the results from the experiment with a rainfall intensity 75 mm/h are presented in Fig 2. Then,
the stain diameters were measured as the average value of the horizontal and longitudinal
diameters. Based on the relationship (Eq 1) between the drop size and stain size [51], the

Table 1. Average rainfall intensity of each experiment (mm/h).

Number 1 2 3 4 5 6 7 8 9 10 11 12

Rainfall Intensity 75.4 84.6 80.3 60.8 55.6 56.5 56.0 63.8 65.0 66.0 63.1 61.1

doi:10.1371/journal.pone.0136274.t001

Fig 2. Measurement of the stain diameters based on the crossingmethod (75 mm/h).

doi:10.1371/journal.pone.0136274.g002
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raindrop diameters were calculated as follows:

d ¼ 0:36D0:73 ð1Þ

where d is the raindrop diameter (mm), and D is the stain diameter (mm). A histogram of the
raindrop diameter (d) vs the frequency and the mid-values of the raindrop diameters (d50)
obtained from the relationship between the accumulated volume and raindrop diameter were
analyzed to determine the raindrop size distribution (Fig 3). Subsequently, the fall velocities of
the raindrops were calculated using different formulas according to the raindrop sizes. When
the raindrop diameter was less than 1.9 mm, the improved Sha Yuqing formula [53, 54] was
used to calculate the velocity (Eq 2):

v ¼ 0:496� 10½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28:32þ6:524lg0:1 d�ðlg0:1dÞ2

p
�3:665� ð2Þ

where v is the fall velocity of the raindrop (m/s).
When the raindrop diameter was equal to or greater than 1.9 mm, the fall velocity of the

raindrops was calculated using the improved Newton formula [55] (Eq 3):

v ¼ ð17:20� 0:844dÞ
ffiffiffiffiffiffiffiffiffi
0:1d

p
ð3Þ

The total kinetic energy of the raindrops on the filter paper can be calculated using the fol-
lowing formula (Eq 4):

e ¼
Xi

1

ei ¼
Xi

1

1

2
miv

2
i ¼

1

12

Xi

1

pd3
i rv

2
i ð4Þ

where e is the total kinetic energy of the filter paper (J), i is the number of the raindrop, ei is the
kinetic energy of the raindrop (J),mi is the quality of the raindrop (J), vi is the velocity of the
raindrop (m/s), di is the raindrop diameter (mm), and ρ is the density of water (g/cm3).

Fig 3. Raindrop diameter vs. frequency and the relationship between the accumulated volume and raindrop diameters.

doi:10.1371/journal.pone.0136274.g003
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Based on the total kinetic energy of the filter paper (e), the raindrop kinetic energy for every
millimeter of rainfall per unit area can be calculated using the following formula (Eq 5):

E ¼ ðe
S
Þ=ðMrSÞ ¼

er
M

¼ er
Xi

l

mi

¼ er
Xi

l

1
6
pd3

i r

¼ e
Xi

l

1
6
pd3

i

ð5Þ

where E is the raindrop kinetic energy of every millimeter of rainfall per unit area (J/m2/mm),
and S is the area of the filter paper (m2). The value of E was 16.37 J/m2/mm under a rainfall
intensity of 75 mm/h. The mid-value of the raindrop diameters (d50) was 1.5 mm, and 91.55%
of the diameters were less than 1 mm. These results indicated that the simulated rainfall system
could ensure that the kinetic energy of the simulated rainfall was maintained close to that of
natural rainfall.

Experimental materials and monitoring methods
The experiment materials included river sand and Lou soil. The river sand samples were col-
lected from the middle and lower reaches of the Wei River bank in the Yangling District, and
the Lou soil was also collected from Yangling District, Shaanxi Province, China [56]. The col-
lected soil was air-dried and sieved through a series of corresponding opening sieves. The sedi-
ment bed for the experiment was composed of three layers, from bottom to top, of medium
sand, fine sand and mixed soil. The layer thicknesses were 98.5, 1 and 0.5 cm, respectively. The
bottom layer consisted of medium sand, and its bulk density was 1.4~1.5 g/cm3. The middle
layer consisted of fine sand with a particle size of less than 0.25 mm, and the average soil bulk
density was approximately 1.6 g/cm3. The top layer consisted of a mixture of Lou soil and fine
sand, with a weight ratio of approximately 2:5 and a soil bulk density that was also approxi-
mately 1.6 g/cm3. The nitrogen fertilizer treatments in this study included two rates of fertilizer
input: high (225 kg/ha NH4NO3) and control (no fertilizer input). The high rate was selected
based on the internationally recognized safe limit of chemical fertilizer application (225 kg/ha).
Ten minutes prior to rainfall onset in each fertilizer experiment, 112.5 g NH4NO3 was mixed
with approximately 750 g surface soil and uniformly applied to the surface soil.

The primary parameters used to monitor water quantity were the amount of surface runoff,
the time series surface flow, the groundwater flow, the groundwater level and the soil moisture,
as described in detail in the literature [56]. The primary parameters used to monitor water
quality were the nitrate concentrations in the surface flow and groundwater flow. Samples (50
ml) of the surface and ground water were collected at 10-min intervals during the experiments.
A portable spectrophotometer (DR 2800, Hach, Loveland, Colorado) was used to measure the
nitrate concentrations via the cadmium reduction method [57]. After the rainfall experiments,
separate soil samples were collected using an earth drill at points of 0, 1, 2, 3, 4 and 5 m across
the entire profile, and the measuring depths were 0–5, 5–20, 20–40, 40–60, 60–80 and 80–100
cm, respectively. The samples were analyzed by flow injection analysis (FIA STAR 5000) to
determine the nitrate residues in the experimental soil.

Ethics Statement
No specific permissions were required for these sampling activities because the location (as
shown in Fig 4) is not privately owned or protected, and because the field activities did not
involve endangered or protected species.
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Results and Discussion

Time-series trend of surface and groundwater flow
During the experiments, most of the rainfall flowed out of the system as surface water, and the
remainder of the rainfall infiltrated into the soil. The infiltrate was drained away primarily in
the form of groundwater, and the remainder of the infiltrate was intercepted by the sediment
bed. The amounts of cumulative surface and ground water for all twelve experiments were
869.75 mm and 450.44 mm, respectively. The results of the water balance of all twelve experi-
ments showed that approximately 55.2% of the rainfall was lost through surface flow, approxi-
mately 28.6% recharged into groundwater, and the sediment bed retained approximately
16.2% of the water at the end of the last experiment.

Fig 5 shows the time-series process of surface flow for all twelve experiments. As shown in
this figure, all of the processes exhibited similar trends: they quickly increased in the first 10
minutes and then gradually stabilized, particularly after 50 minutes of rainfall. However, the
ranges of increase were different due to the differences in the rainfall intensities. There were
also significant differences in the magnitude of groundwater flow among the 12 experiments;
however, all of the time-series processes of groundwater flow exhibited similar trends: they ini-
tially increased sharply with the rainfall duration but then gradually decreased after the rainfall
terminates (Fig 6, S1 Table).

Fig 4. Location of the study site.

doi:10.1371/journal.pone.0136274.g004
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Nitrate accumulation and leaching in surface and ground water
Nitrate loss with surface flow. Fig 7 shows the changes in nitrate concentration in surface

water during the experiment (S2 Table). As shown in Fig 7, the the nitrate concentration
increased quickly and then it rapidly decreased and gradually stabilized at a low value during
every fertilization experiment. The nitrate fertilizer lost in with the surface water and the con-
centration peaked at about 19 minutes of rainfall, except for the 2nd and 4th experiments. The
highest nitrate concentration was 89.7 mg/L, and the average maximum value for all 7 fertiliza-
tion experiments was 80.3 mg/L. NO3

-–N was mainly present in the infiltrated water. Its loss
depended mainly on the amount of runoff, the rainfall intensity and the amount of interaction
time between the surface runoff and soil particles [58]. This was in agreement with the nitrate
fertilizer loss with groundwater and different from its loss with surface water in our study. Pos-
sibly because the nitrate fertilizer loss in surface water mainly occurred during the earlier stage
of rainfall and there were no statistical significances among rainfall intensities during our
experiments. Under simulated rainfall conditions, the water-soluble nitrogen loss with surface
water flow has been reported to account for approximately 50% ~ 60% of the total nitrogen
loss in the case of heavy rain after nitrogen application [59]. Under our simulated rainfall con-
ditions, about 50.53% of the nitrate-nitrogen of the total fertilizer application was ramined in
the experimental soil. Farmland nitrogen was transported into surface water by surface flow,
which caused a substantial loss of soil nitrogen and was then drained away [35]. Contaminated
water flowed into the field and entered into the river, which gradually transported nonpoint

Fig 5. Time-series process of surface flow.

doi:10.1371/journal.pone.0136274.g005
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source pollution to the water body. Rainfall runoff is a mainly driving force of soil nitrogen
loss. When no fertilizer was applied to the underlying surface, the nitrate was nearly undetect-
able in the surface runoff. As shown in Fig 7, the nitrate concentrations in the 8th experiment
without fertilization were close to zero. The reduction of surface runoff and the available

Fig 6. Time-series process of groundwater flow.

doi:10.1371/journal.pone.0136274.g006

Fig 7. Time-series nitrate concentration in surface water.

doi:10.1371/journal.pone.0136274.g007
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nitrogen in topsoil is a key to decreasing the loss of farmland nitrogen fertilizer. The nitrate
concentrations quickly decreased to low values or even to zero during the rainfall process.
Therefore, the earlier stage of rainfall was a crucial period for preventing nonpoint source pol-
lution. Nonpoint sources follow a wide range of routes to aquatic environments and depend on
the hydrological balance of overland flow, through flow and base flow [60].

Time-series trend of nitrate concentration in groundwater. Under rainfall conditions,
high levels of soluble nitrates (NO3

-–N) leak through soil and into groundwater with infiltra-
tion flow and then drain off with groundwater flow [35]. Our rainfall experiments also showed
that only a small part of nitrates lost with surface water and high levels of soluble nitrates leak
with infiltration flow. As shown in Fig 8, the average nitrate concentrations of groundwater
increased continuously from 1st to the 8th experiments (0~300 hours), and then they began to
decrease from the 9th experiment (S3 Table). None of the values during the 1st experiment
exceeded the limit of nitrate concentration potability (10 mg/L) [8–10]. The nitrate concentra-
tions increased as the experiments progressed. The mean values and most of the measured val-
ues remained below 10 mg/L prior to the 5th experiment. In contrast,as the experiments
progressed, the mean concentrations were greater than 10 mg/L, and this value increased with
time. Prior to the 7th experiment, all of the concentrations were greater than 10 mg/L. Next,
experiments without fertilization were performed starting from the 8th experiment. However,
the concentrations in the 8th experiment increased continually, and this experiment presented
the maximum concentration of all of the experiments, with an average value of 14.75 mg/L.
This result indicated that a reduction in fertilizer application would not lead to a rapid decrease
of nitrate concentrations in groundwater. Because nitrate accumulation is the premise of leach-
ing, a substantial amount of nitrate must have accumulated in the soil in the prior experiments.
Then, the infiltration flow provides a carrier for the accumulated NO3

-–N in the soil profiles to
move down, finally presenting the possibility of contaminating the groundwater [27, 61].

The nitrate concentrations thenbegan to decrease with the progression of the experiments
with no fertilization. The rate of decrease in the mean concentration remained relatively

Fig 8. Time-series nitrate concentration in groundwater.

doi:10.1371/journal.pone.0136274.g008
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constant at approximately 2 mg/L for every experiment. The average concentrations varied
between 4.6 and 12.2 mg/L during the fertilization experiments, whereas they ranged from 2.9
to 8.6 mg/L for the experiments with no fertilization. Two conditions must be met for nitrate
leaching. The first condition is nitrate accumulation in soil and the second condition is infiltra-
tion flow [35, 61]. Nitrate accumulation in soil increases as the nitrogen rate increases and is
the premise of leaching. Rainfall and runoff are two primary driving forces of soil nitrogen loss.

Cumulative effects of nitrate in groundwater. Fig 9 shows the time-series nitrate concen-
tration of groundwater under fertilization, rainfall and groundwater runoff conditions. The
nitrate concentration showed a general increasing trend throughout the process. The average
concentration ranged from 4.63 mg/L—12.13 mg/L, which represented a 2.62-fold increase. As
shown in Fig 9, there was a positive correlation between rainfall intensity and groundwater
flow. When the rainfall intensity was larger and the runoff was higher, the added nitrate con-
centration was greater. From the 1st experiment to the 2nd experiment, the concentration
increased by 3.36 mg/L, and the rate of increase remained relatively constant at approximately
1.13 mg/L for the other experiments. The second experiment had the largest rainfall intensity,
which offered the strongest driving force for soil nitrogen loss. These results demonstrated that
deep percolation and nitrate leaching most likely occurred following a heavy precipitation
event [62]. Furthermore, high precipitation increasedboth the amount of nitrate N in runoff
and could increase the negative impact on water quality [63].

In contrast to the overall trend of nitrate concentration, the time series of groundwater flow
increased until the rainfall stopped, followed by a gradual decrease during one experiment. The
nitrate concentrations also exhibited the same parabolic trend. Initially, the nitrate concentra-
tion increased as the groundwater flow increased because the large infiltration flow provided
support for the highly mobile nitrate [7, 64, 65]. Then, the nitrate concentration decreased
because the infiltration flow for NO3

- transportation had been decreasing for a while [66]. The
delay time in which the groundwater runoff and nitrate concentrations decreased was approxi-
mately 0.94 hours. The change in the nitrate concentration lagged behind the flow for nitrate
accumulation. The difference between the highest and the lowest concentrations recorded in
one experiment greater than 5.2 mg/L.

Fig 9. Time-series nitrate concentration in groundwater with fertilization.

doi:10.1371/journal.pone.0136274.g009
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A positive relationship between the accumulative groundwater runoff and the accumulative
nitrate content was obtained as follows (Fig 10, i S4 Table):

M ¼ 8:68m1:26 ð6Þ

where M and m denote the loss amount of nitrate in groundwater (g) and groundwater runoff
(kg), respectively. The nitrate content was low for small runoff and increased relatively rapidly
for high runoff. M and m were described by a positive power function, with a correlation coeffi-
cient of 0.9996. These findings further confirmed that groundwater recharge aided nitrate
leaching. Many studies have also shown that the nitrate concentration in groundwater
increased as the groundwater recharge increased in shallow aquifers [12, 15, 42, 67]. It could be
concluded that groundwater recharge should be controlled in areas of high rainfall to minimize
nitrate leaching, thus reducing the risk of groundwater contamination.

Leaching effects of nitrate in groundwater. Fig 11 shows the time-series nitrate concen-
trations of groundwater with no fertilization under rainfall and groundwater runoff conditions.
The nitrate concentration exhibited a general decreasing trend throughout the experimental
process. The average concentration range was 14.75 mg/L—2.97 mg/L, which represented a
4.97-fold decrease. The concentrations steadily decreased at a mean rate of 2 mg/L in every
experiment. The time-series concentration of the 8th experiment in which no fertilizer was
applied, had the same parabolic trend as the results of the fertilization experiments. These
results indicated that large amounts of accumulated NO3

-–N in the soil profiles continuously
moved down with the flow, ultimately causing more serious groundwater contamination.

Fig 10. Relationship between nitrate concentrations and groundwater runoff.

doi:10.1371/journal.pone.0136274.g010
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Then, the groundwater flow remained high, but the nitrate concentration changed to a decreas-
ing trend in the subsequent experiments with no fertilization because the soil nitrate was virtu-
ally moved after several successive rainfalls and was limited in its ability to produce a high rate
of nitrate leaching to groundwater. The concentration of groundwater nitrate stabilized at low
values throughout the entire process. Therefore, without considering microorganisms and
nitrification / denitrification processes, nitrate leaching requires two primary conditions: a sig-
nificant concentration of nitrate in soil water and sufficient rainfall or irrigation [17, 66].
When soil moisture is not a limiting factor, the excessive application of nitrogen fertilizer
might lead to significant nitrate leaching [61, 68–70].

Nitrate residues in experimental soil
Eight days after the rainfall experiments, the nitrate residues in the experimental soil were sepa-
rately determined at points of 0, 1, 2, 3, 4, and 5 m across the entire profile, and the measuring

Fig 11. Time-series nitrate concentration and flow of groundwater with no fertilization.

doi:10.1371/journal.pone.0136274.g011

Fig 12. Nitrate residues in each layer of experimental soil.

doi:10.1371/journal.pone.0136274.g012

The Nitrate Accumulation and Leaching in Surface and GroundWater

PLOS ONE | DOI:10.1371/journal.pone.0136274 August 20, 2015 13 / 18

http
://

ir.
isw

c.a
c.c

n



depths were 0–5, 5–20, 20–40, 40–60, 60–80 and 80–100 cm, respectively. Based on this deter-
mination, the residues of nitrate-nitrogen content in the experimental soil were calculated. The
result was 69.64 g, accounting for 50.53% of the nitrate-nitrogen of the total fertilizer applica-
tion. Fig 12 shows the measurement results of nitrate-nitrogen in each soil layer. As shown in
this figure, the content of nitrate = nitrogen initially increased and then decreased from the soil
surface downward. The derived percentage distribution of the NO3-N residue in the soil for
each layer can be obtained based on the results of the stratified statistics of the nitrate-nitrogen
content, as shown in Table 2. The minimum residual of the soil nitrogen content was at a
depth of 20–40 cm, accounting for only 4.65%, and the highest residual was at a depth of
80~100 cm, accounting for 35.12%.

Conclusions
Globally, nitrate is one of the most common groundwater contaminants and is primarily intro-
duced into the environment from agricultural activities related to excessive use of nitrate-con-
taining fertilizers and manure [71]. The effects of fertilizer application on the accumulation
and leaching of nitrate with water flow were studied through simulated rainfall experiments
under the following conditions: land use was a 3° bare slope and the soil layers consisted of
medium sand, fine sand and mixed soil from bottom to top. For the water quantity, approxi-
mately 55.2% of the rainfall was lost through surface runoff, and approximately 28.6% was
recharged into groundwater during one experiment. The surface flow quickly increased in the
first 10 minutes and then gradually stabilized, particularly after 50 minutes of rainfall. The
groundwater flow initially increased sharply but then gradually decreased after rainfall
termination.

Regarding water quality, the nitrate concentration in the surface flow initially increased
quickly, and then it rapidly decreased rapidly and stabilized at a low value. The nitrogen loss
primarily occurred during the first 18.6 minutes of rainfall, and the rainfall runoff was the
main driving force for soil nitrogen loss. The nitrate concentrations in the groundwater accu-
mulated, and they were greater than 10 mg/L throughout the process until the 7th experiment.
The nitrate concentration in the 8th experiment continually increased, although no fertilizer
was applied from the 8th to 12th experiments. The nitrate concentration decreased in the sub-
sequent experiments.

In terms of soil quality, 8 days after the 12 rainfall experiments, the nitrate residues in the
experimental soil accounted for 50.53% of the nitrate-nitrogen of the total fertilizer application.
The minimum residual of the soil nitrogen content was at a depth of 20–40 cm of soil layer.

It could be concluded that the earlier stage of rainfall is a crucial period for controlling the
loss of farmland nitrogen fertilizer. The nitrate in groundwater accumulated quickly, and most
of it remained in the soil, even after leaching by copious amounts of rain. Most of the nitrate

Table 2. Distribution of NO3-N residues in the soil for the non-uniform soil layer.

Depth (cm) Nitrate nitrogen content %

0–5 7.41

5–20 5.16

20–40 4.65

40–60 17.70

60–80 30.61

80–100 35.12

doi:10.1371/journal.pone.0136274.t002
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residues existed at the surface and the bottom layers of the soil, presenting potentially more
dangerous pollution for surface and ground water.
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