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a b s t r a c t

Topology optimization of a continuum with bimodulus material under multiple load cases (MLC) is
investigated by using material replacement method. Using traditional methods to solve such a problem
will encounter two difficulties for the sake of the stress-dependent behavior of bimodulus material. One
is the nonlinear behavior of bimodulus material. The other is the definition of local material property
under MLC. The present method can overcome the difficulties easily. It contains three major aspects.
Firstly, the bimodulus material is replaced with two isotropic materials in optimization. Secondly, the
local stiffness is modified according to the stress states because of material replacement. Meanwhile,
which one of the isotropic materials to be adopted for each element in the next structural analysis in
optimization is determined by the replacement criterion underMLC, i.e., comparing the local CSED (strain
energy density (SED) caused by compression stresses) and the TSED (SED caused by tension stresses),
the isotropic material which modulus equal to the compression modulus of bimodulus material is used
as the material properties of the element if the CSED is greater than the TSED, or vice versa. Finally,
the relative densities of elements as the design variables are updated using a gradient-based method.
As the reanalysis with respect to material properties for obtaining the accurate deformation is merged
into the global iterations of optimization, the efficiency of optimization is highly improved. Numerical
examples are given to express the validity and high efficiency of the present method. Results also show
that the difference between tension modulus and compression modulus influences the optimal topology
of a structure with bimodulus material under MLC, obviously.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The design optimization of a structure can be classified as
the detailed designs (e.g., size and shape optimization) and the
conceptual designs (e.g., topography and topological optimization
(firstly envisioned by Maier [1])). In a size/shape optimization,
only structural geometry is modified and the material layout
stays unchanged. But, in topology optimization, which is utilized
in the stage of conceptual design, the material layout changes
in the design domain to obtain an optimal design for loadings.
Around theworld, the first popular software for solving large-scale
continuum topology optimization is ‘‘SHAPE’’ [2,3]. In a practical
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engineering, the computational cost of topology optimization is
usually much heavy. In the past 20 years, with the development
of computer technology and computational methods [4–10],
structural topology optimization in nowadays is becoming a
powerful tool to find novel designs in various design fields [11,12],
e.g., MEMS [13,14], laminated composites [15–18], acoustics [19],
fluidics [20], and electromagnetism [21].

Suchmaterials as concrete/cement, cast iron,membrane, fibers,
are used widely in engineering. The tensile and compressive me-
chanical behaviors of the materials are different for micromech-
anisms or macrostructural buckling. However, their mechanical
behavior usually behaves linearly. Generally, we call the materi-
als as bimodulus materials. For a structure with bimodulus mate-
rial, the mechanical property of the material is stress-dependent
and structural reanalysis is necessary for finding the accurate
deformation [22,23]. The curves of constitutive law of the mate-
rials are piecewise linear. Sometimes the constitutive curve is ap-
proximated by a continuous differentiable curve [24]. Especially,
in topology optimization of a continuumwith bimodulus material,
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such an approximate method is very popular. For example, [25]
adopted proportional dual potential to give a continuous expres-
sion ofmaterial properties for bimodulusmaterial. Chang et al. [26]
approximated the piecewise linear curvewith the first kind Cheby-
shev polynomial curve. Liu and Qiao [27] used a Heaviside function
to approximate the relationship between stress and strain of bi-
modulus material.

In optimization of a structure with nonlinear material, the up-
date both of material mechanical property and of the design vari-
ables should be carried out, separately. Meanwhile, the computer
time is also influenced by the mesh scheme of the structure, e.g.,
a fine mesh gives accurate results and simultaneously increases
computational cost. As simplicity, high efficiency and stability are
the essentials of a method in application [28], people tried to find
a method with such merits to solve bi-modulus stiffness designs.
For instance, a material replacement method is worth consider-
ing. For example, [29,30] investigated the optimization ofmaterial-
oriented structures by using different materials to resist the
tension and compression forces. Alfieri et al. [31] proved the
method and used the local maximum magnitude of the principal
stress to determine local material property in design domain. Cai
and Shi [32] presented a double reference interval method to solve
such problems, and in that method the bimodulus material is re-
placed with an isotropic material and the porosity of the material
changes according to the local principal strains. Bimodulus layout
optimization was also studied by Srithongchai and Dewhurst [33].
Querin et al. [34] suggested orthotropic materials to replace the
original bimodulus material in structure. Cai [35] once gave a
modified SIMP method to solve the tension/compression-only
stiffness design. In that approach, the tension/compression-only
material is replaced with only one isotropic material. The modu-
lus of the isotropic material is identical to the effective modulus of
the tension/compression-only material. To consider the effects of
tension/compression-only on local stiffness, the stiffness matrix of
each element was modified. Numerical results demonstrated the
validity of the idea of material replacement.

A structure under multiple load cases (or conditions) is very
common in practical engineering. To solve the topology optimiza-
tion of a structure underMLC, one of themajor tasks is to give a rea-
sonable objective function [36–39]. A weighted function on each
load case is commonly used. But to our knowledge, no work pub-
lished deals with bimodulus stiffness design under MLC. Because
using traditional methods to solve bimodulus material layout op-
timization underMLCwill encounter two difficulties for the sake of
mechanical behavior of bimodulus. One is the stress-dependent of
material,whichmeans thematerial principal directions are aligned
with those of principal stresses and structural reanalysis is neces-
sary. The other is the definition of local material property under
MLC, which is also caused by stress-dependent behavior.

In this research, we attempt to give a method for optimal
stiffness design of structures with the bi-modulus material under
MLC. This paper is organized as follows: Section 2 introduces the
concept of bimodulus material, Section 3 shows the techniques of
the proposed method, Section 4 gives several numerical examples
to demonstrate the effectiveness of the present approach. Finally,
some conclusions are drawn in Section 5.

2. Bimodulus material

Fig. 1 gives the stress–strain curve of a material. For linear ma-
terial, the tangent value of the angle α gives the tension mod-
ulus of material, and the tangent value of β is the compression
modulus. As α = β , we call the material as isotropic material.
But for many materials in engineering, such as cast iron, rub-
ber, concrete, the difference between α and β is obvious. So, the
Fig. 1. The stress–strain (σ–ε) curve.

stress–strain curve is piecewise linear, and the material is com-
monly called a bimodulus material. As the material properties are
stress-dependent, in structural analysis, thematerial has to be con-
sidered as nonlinear and iterative analysis is inevitable [24,26,27].
To simplify the structural analysis, the character of the curve, i.e.,
piecewise linear, should be considered [31,34,35].

For a bimodulus material, the tension modulus ET and the
compression modulus EC can be expressed as

ET = tanα
EC = tanβ.

(1)

The ratio between ET and EC is signed as

RTCE =
ET
EC

. (2)

In Fig. 1, σT and σC are the allowable stresses of material under
tension and compression respectively. They can also be different
for a practical material. Clearly, the difference between σT and σC
has no relationwith the difference between ET and EC . In this work,
the effects of the difference between σT and σC on optimalmaterial
distribution in structure [40,41] are not under consideration.

3. Methodology

A finite element method is adopted to solve the mechanical
response of the structure under multiple load cases, and only a
small deformation is under consideration in this work. To avoid
the structural reanalysis for material nonlinearity, the original
bimodulus material is replaced with two isotropic materials with
moduli equal to the tension and compression moduli of the
bimodulus material, respectively. The new techniques on solving
the topology optimization of a continuumwith bimodulusmaterial
under MLC are given below, and five steps are contained. Firstly,
the optimization model is given in Section 3.1. Secondly, the
relationship between the relative density and the modulus of
porous material is introduced in Section 3.2 and the power-law
is adopted. Thirdly, the selection of modulus of an element is
introduced in Section 3.3. Fourthly, to consider the difference
between themechanical behaviors of structurewith newmaterials
or with original bimodulus material, the modification of local
stiffness is introduced in Section 3.4. Fifthly, the update of design
variables is discussed in Section 3.5. Finally, the flow chart of the
present algorithm is shown in Section 3.6.

3.1. Optimization model

Under multiple load cases, the volume constrained opti-
mization of a structure with minimum of the structural mean
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Fig. 2. Flow chart of the present algorithm.

compliance can be expressed as
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where the objective function c , is the sum of the structural mean
compliances of the load cases. I is the number of load cases the
structure is subjected to. M is the total number of elements. {ρm}

is the set of relative densities of elements. Ui and Pi are the
global nodal displacement and force vectors in the i-th load case,
respectively. km is the stiffness matrix of the m-th element with
an isotropic material. km is the modified matrix of km. Ki is the
global stiffness matrix of the structure assembled with {km}i. K i

is assembled with

k̄m

i. um is the nodal displacement vector of

the m-th element. To avoid the singularity of Ki with fixed finite
element mesh, ρmin = 0.001 is used in the present work. vm is the
volume of the m-th element. V0 is the total volume of solid design
domain. Positive scalar rv is the critical volume ratio of the final
structure.

3.2. Elastic modulus of a porous material

Topology optimization of a structure only with solid material
and void, is commonly considered as an integer programming
problem with discrete design variables of 1 and 0. The computa-
tional cost of the problem is extremely high when the number of
elements is huge. The gradient based methods cannot be applied
to solve the problem directly. Therefore, generally, the same opti-
mization problem is relaxed to bewith continuous design variables
and is solved by gradient-based methods. In the present work, the
material in an element is considered as a porous material. And the
relative density of material can change in the interval [ρmin 1] con-
tinuously. Thus, the local mechanical properties become differen-
tiable functions associated with the relative density.
A power-law relationship is used to penalize intermediate
densities [42] to obtain a result close to the original binary design.
For an element, e.g., the m-th element, the relationship between
the stiffness tensor and the relative density can be expressed as

Dm,ijkl = ρp
mD0,ijkl (4)

D0,ijkl = λδijδkl + µ

δikδjl + δilδjk


(5)

where the relative density ρm ∈

ρmin 1.0


, the power p is the

penalization factor. In the present work, p = 3 is used. Dm,ijkl is
the stiffness tensor of the porous material and D0,ijkl is the stiffness
tensor of the solid material with Lame constants of λ and µ. δij is
the Kronecker delta.

3.3. Selection of local isotropic material

As the original bimodulus material is replaced with two
isotropic materials and only one of them can be used as the
material of each element for structural analysis. It is known,
under a single load case, the mechanical behavior of bimodulus
material is determined by the local stress state. Therefore, the
isotropic material to be used as the local material is completely
determined by the local stress state. For example, if all of the
principal stresses of an element are negative the element is under
pure compression, and the new isotropic material with modulus
equal to the compression modulus of bimodulus material can
accurately express the local material property. Pure tension will
also tell us the isotropic material whose modulus is equal to
the tension modulus of the biomodulus material is the correct
selection of the localmaterial property. Under complex stress state,
i.e., the 1st principal stress is positive while the 3rd is negative, the
bimodulus material shows orthotropic (transversally isotropic in
detail) and any one of the isotropic materials cannot be used to
express the accurate local material property. But in the material-
replacement method, one of the two isotropic materials must be
used to approximately express the local material properties. And
the difference of local stiffness caused by the replacement will be
modified and is discussed in the next section. Now, which one
of the isotropic materials should be selected as the material of
an element under a complex stress state? This situation becomes
more serious under MLC. Here we define the tension strain energy
density (TSED) as the strain energy density caused by positive
principal stresses and the compression strain energy density
(CSED) as the strain energy density caused by negative principal
stresses. For the m-th element under MLC, the TSED and CSED can
be obtained by the following equations.

TSEDm

=
1

2NG

I
i=1

NG
Gaus=1

3
j=1

1
2


σj,Gaus,i +

σj,Gaus,i
 · εj,Gaus,i (6)

CSEDm

=
1

2NG
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i=1

NG
Gaus=1

3
j=1

1
2


σj,Gaus,i −

σj,Gaus,i
 · εj,Gaus,i (7)

where NG is the number of Gaussian integrating points of an
element. σj,Gaus,i and εj,Gaus,i are the principal stress and strain,
respectively.

The total SED of the element is

SEDm = TSEDm + CSEDm. (8)

The elastic modulus of local material under MLC is determined by
the following equation.

Em =

ET , if (TSED > CSED)
EC , if (TSED < CSED)
max(ET , EC ), others.

(9)
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The method is different from the method for selection of material
given by Alfieri et al. [31] in which the material properties are
determined by local principle stresses.

3.4. Calculation of km and Modification of local stiffness

In simulation, the stiffness matrix of the m-th element before
modification reads

km =


vm

BT
mDmBmdv (10)

where Bm is the geometric matrix to relate the strain and the nodal
displacement of an element. Dm is the elastic matrix of an element
with isotropic material.

As the elastic matrix of the element with original material is
different from the ‘‘current’’ matrix, i.e., Dm, the ‘‘current’’ element
stiffness matrix km must be different from the accurate matrix,
which further influences the local mechanical behavior. To reduce
the difference after material replacement, the matrix km should be
modified.

The criterion of modification for local stiffness is given
according to the local strain energyunder the ‘‘current’’ stress state.
Briefly, the effective SED of the element under the ‘‘current’’ stress
state may be different from the ‘‘current’’ SED (Eq. (8)). Thus, the
effective strain energy density (SED) of the m-the element should
be expressed as

SEDeffective
m

=
1

2NG

I
i=1

NG
Gaus=1

3
j=1


sign(σj,Gaus,i) · σj,Gaus,i · εj,Gaus,i


. (11)

Two cases are discussed in determining the value of sign(·) in
Eq. (11).

(a) If the ‘‘current’’ modulus of material in an element is ET ,
Eq. (12) is used to obtain the value of sign(·).

sign

σj


=


1 if σj ≥ 0
RTCE if σj < 0. (12)

(b) If the ‘‘current’’ modulus ofmaterial in an element is EC , Eq. (13)
is used to obtain the value of sign(·).

sign

σj


=


1 if σj ≤ 0
R−1
TCE if σj > 0. (13)

Particularly, RTCE = 1 means the material is isotropic, and the
effective SED of an element is absolutely equal to either the real
SED or the ‘‘current’’ SED even under a complex stress state. When
RTCE ≠ 1, the effective SED and the current SED are not identical to
each other. And the modification factor for local stiffness matrix is
expressed as following equation.

fM = max


10−6,

SEDeffective
m

max

10−30, SEDm

 . (14)

Using Eqs. (4) and (10), the modified stiffness matrix km can be
expressed as

km = fM · km =


f 1/pM · ρm

p 
vm

BT
m · D0 · Bmdv. (15)

3.5. Update of design variables

The optimization problem in Eq. (5) is solved by the optimality
criteria (OC)method [43,44]. For them-th element at the k-th step,
the update of its relative density is determined by the following
equation.
Fig. 3. Initial design of structure.

ρ(k+1)
m
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ρmin, ρ

(k)
m − ∆


if ρ(k)

m Lqm
≤ max


ρmin, ρ

(k)
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ρ(k)
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min

1.0, ρ(k)

m + ∆


if ρ(k)
m Lqm

≥ min

1.0, ρ(k)

m + ∆

 (16)

where ∆, i.e., the maximum incremental of relative density is set
to be 0.1 in this work. Numerical damping coefficient q = 0.5,
Using the optimality condition, one can obtain Lm according to the
following equation.

Lm =

 ∂c
∂ρm


λ

∂Vm

∂ρm

(k) (17)

∂c
∂ρm

= pρ−1
m

I
i


uT
mkmum


i (18)

where the positive scalar λ is the Lagrangian multiplier, which
can be found by using the bi-sectioning algorithm. To avoid the
checkerboards in optimization, the objective sensitivities,


∂c

∂ρm


,

are modified by a filter technique [9,44,45].

3.6. Flow chart of algorithm

The termination condition in step 6 in Fig. 2 is given below. ck − cj
ck

 ≤ η, 1 < j = k − n, k − n + 1, . . . , k − 1 (19)

where the tolerance η = 0.001, integer n is set to be 5 in this work.

4. Results and discussions

Structural analysis in the following examples are performed by
using commercial software ANSYS (version 12.0) [46]. A fixed finite
element mesh is adopted in each example to describe the entire
design domain in optimization. The same PC (Intel Pentium Dual-
Core processor, CPU 2.66 GHz, 2 G Memory) with the same setting
of computation is used in solving the following examples.

4.1. Example 1—isotropic vs bimodulus

Fig. 3 shows a deep beam with size of 4 m × 1 m and thickness
of 0.02 m. Two vertical sides are fixed. The structure is discretized
with 3600 plane stress elements. The tension modulus of the
original bimodulusmaterial is Et = 100 GPa and the Poisson’s ratio
is 0.2.

Topology optimization of the structure under two load cases
is considered. For the first load case, a concentrated force of P1
is applied on the center of the top vertically. For the second load
case, a concentrated force of P2 is applied on the center of the
bottom, vertically. The objective of optimization is tominimize the
structural compliance with limited amount of material, e.g., the
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(a) With isotropic material (57 iterations). (b) With bimodulus material (60 iterations).

Fig. 4. The optimal topology of structure under two load cases symmetrically (P1 = P2).
(a) With isotropic material (53 iterations). (b) With bimodulus material (32 iterations).

Fig. 5. The optimal topologies of structure under MLC (P1 = 1.4P2).
(a) With isotropic material (54 iterations). (b) With bimodulus material (44 iterations).

Fig. 6. The optimal topologies of structure under MLC (P1 = 2P2).
volume ratio of final structure, rv in Eq. (3), is 20%. To show the
effects of bimodulus on the final topology, the following six cases
are considered.

(a) P1 = P2 = 1000 N and the material in structure shows
isotropy, i.e., RTCE = 1/1;

(b) P1 = P2 = 1000 N and RTCE = 1/2;
(c) P1 = 1.4P2 = 1400 N and RTCE = 1/1;
(d) P1 = 1.4P2 = 1400 N and RTCE = 1/2;
(e) P1 = 2P2 = 2000 N and RTCE = 1/1;
(f) P1 = 2P2 = 2000 N and RTCE = 1/2.

• Results of cases (a) and (b)
The frame shown in Fig. 4(a) is the optimal isotropic material

distribution for the structure (Fig. 3) under two load cases, and
the structure shown in Fig. 4(b) is the structure with bimodulus
material under the same loading conditions. Although both of
the final structures have two symmetric planes, the topologies
are different near the centers of top and bottom boundaries.
The difference implies the stiffness design of a structure with
bimodulus material cannot be replaced with traditional design
(with isotropic material) even if the loading cases are symmetric.
• Results of cases (c) and (d)

Fig. 5 gives the optimal topologies of structure under two load
cases with P1 = 1.4P2. Fig. 5(a) shows the traditional design
(structure with isotropic material). For the sake of P1 > P2, the
final structure has only one symmetric plane, and the amount of
material under compression is greater than that under tension in
the first load case.

Fig. 5(b) displays the optimal material distribution of the
structure with bimodulus material under the same load cases.
The topology is different from the traditional design (Fig. 5(a)),
obviously. Under the first load case, the amount of material
under compression in this figure (Fig. 5(b)) is greater than that of
structure in Fig. 5(a). Therefore, bimodulus stiffness design, i.e., the
stiffness design of a structure with bimodulus material, might be
far different from the traditional design.
• Results of cases (e) and (f)

Fig. 6 gives the optimal material distributions for a structure
with different materials under the same load cases (P1 = 2P2).
The two topologies are different.

From above, one can find the topologies for all of the six
cases are different from each other. So, the bimodulus stiffness
Fig. 7. Initial design of a cantilever beam under two load cases.

design is different from the stiffness designwith isotropicmaterial.
Simultaneously, in each of the above comparisons the iterations for
the update of bimodulus material are not identical to that for the
update of isotropic material. But the difference between them is
not of significance.

4.2. Example 2—effects of RTCE

Fig. 7 shows a 0.8 m × 0.5 m cantilever beam with thickness
of 0.02 m. The structure with left side fixed is under two load
cases, e.g., P1 = 1000 N on the lower right corner for case 1 and
P2 = 1000 N on the upper right corner for case 2. The structure is
discretized with 2560 plane stress elements. The tension modulus
of the bimodulus material is Et = 100 GPa and the Poisson’s ratio
is 0.2. The objective is tominimize the structural compliancewhile
the final structural volume ratio, rv , is 30%.

Three cases on considering the differences between the tension
and compression moduli are investigated to show the validity of
the method, i.e.,

(a) RTCE = 4/5 v.s. RTCE = 5/4;
(b) RTCE = 1/2 v.s. RTCE = 2/1;
(c) RTCE = 1/8 v.s. RTCE = 8/1.
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Fig. 8. Optimal topology of structure with isotropic material under MLC.

Fig. 8 gives the optimal topology of structure with isotropic
material under multiple load cases. Here this result is called a
traditional design, and is used for the comparisonwith the optimal
design of structure with different bimodulus materials under the
same loading cases (see Figs. 11–13).

Fig. 9 gives the optimal topologies of the cantilever beam
under different single load cases. Circulating any one of the two
topologies around the x-axis, one can find the two topologies
are the same. The reason is that the two points where P1 and
P2 are applied distribute symmetrically. And it also leads to the
same results as the structure is filled with a bimodulus material.
Therefore, Fig. 10 only gives the optimal material distributions of
the structure with bimodulus under the first loading case. It also
shows the difference of the topologies of structure for different
values of RTCE.
• Results of case (a)

Fig. 11(a) shows the optimal topology of structure with a
bimodulus material of RTCE = 4/5. The topology is identical to the
traditional design (see Fig. 8) except the difference in local shapes
in two frames. RTCE = 4/5 implies that the compression modulus
is 1.25 times the tension modulus. Meanwhile, the area near the
concentrated forces must be under tension. The material layout in
the rest area of the structure is easily under compression.

Fig. 11(b) gives the optimal structure with the bimodulus
material of RTCE = 5/4. It means the tension modulus of the
material is 1.25 times the compression modulus. This topology is
obviously different from the traditional design (Fig. 8), and is also
different from that in Fig. 13(a).

It also can be concluded that the topologies in Fig. 11 are
different from those in Fig. 10(a) and (b). For cases (b) and (c),
differences exist, as well.
• Results of case (b)

Fig. 12(a) displays the optimal material distribution in a
structure with the bimodulus material of RTCE = 1/2, which is
different from the traditional design, as well. Thematerial adjacent
to the right vertical side layouts is complicated.

The frame shown in Fig. 12(b) is the optimal structure with the
bimodulus material of RTCE = 2/1. The structure is also different
from those in Figs. 8 and 13. The size of the X-shaped internal
component is very small. So, the loads are mainly transferred to
the fixed end (left vertical side) by the two strong inner arms.
• Results of case (c)

Fig. 13(a) and (b) give the final material distributions for the
last two cases in which the two moduli of bimodulus material
are greatly different. The material distributes to be easily under
compression in Fig. 13(a), or to be easily under tension in Fig. 13(b).

4.3. Example 3—efficiency

In Fig. 14 the rectangle structure with sizes of 4.0 m × 1.0 m ×

0.02m is under three load cases. For the first case, the concentrated
force of P1 = 1000 N is applied on the point M1. For the second
case, the total 1000 N is separated into two parts (P2 = 500 N)
and applied on the points M21 and M22, separately. For the third
case, the total 1000 N is separated into two parts (P3 = 500 N)
and applied on the points M31 and M32, separately. The tension
modulus of the material is 10 GPa and Poisson’s ratio is 0.2. The
element size is 0.025 m. In the final structure, the volume ratio, rv ,
is 35%.

To show the efficiency of the present method, two cases are
discussed, i.e.,

(a) The material is isotropic, i.e., RTCE = 1;
(b) The material is bimodulus, e.g., RTCE = 1/5.

Fig. 15 shows the topologies of the structure subjected to
a single load case for different conditions. Under the same
loading case, the optimal topologies are different as the material
in structure shows different mechanical behavior. Clearly, the
topologies are different from those in Fig. 16. As compression
modulus is much greater than tension modulus (RTCE = 1/5),
the material distribution in Fig. 16(b) is also different from that in
Fig. 16(a). Comparing the topologies in Figs. 15 and 16, one can find
the the first load case has the greatest effect on the final material
distribution.

The result shown in Fig. 16(a) is obtained by using CPU time of
3935 s after 49 iterations (Fig. 17). The final structure in Fig. 16(b) is
obtained by using a CPU time of 5275 s after 55 iterations (Fig. 17).
It means the CPU time for the second case is 34% higher than that
of the first case. The difference between the CPU times of each step
for two cases is about 11.9%. The iterations of the second case is
greater than that of the first case is merely coincidental.

The value of objective function, i.e., structural compliance
reaches 0.69 N m for the first case, in which the material in the
structure is isotropic. The objective function finally approaches
0.316 N m as the material in the structure shows bimodulus
behavior. It is less than that of the first case. The reason is that
the tension moduli are the same in two cases. However, the
compression modulus is greater than tension modulus in the
second case.
(a) Only P1 acts. (b) Only P2 acts.

Fig. 9. Optimal layouts of isotropic material under single load case.
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(a) RTCE = 4/5. (b) RTCE = 5/4. (c) RTCE = 1/2.

(d) RTCE = 2/1. (e) RTCE = 1/8. (f) RTCE = 8/1.

Fig. 10. Optimal layouts of bimodulus material in structure only under P1 .
(a) RTCE = 4/5. (b) RTCE = 5/4.

Fig. 11. The optimal topologies of structure with different bimodulus materials (Case (a)).
(a) RTCE = 1/2. (b) RTCE = 2/1.

Fig. 12. The optimal topologies of structure with different bimodulus materials (Case (b)).
(a) RTCE = 1/8. (b) RTCE = 8/1.

Fig. 13. The optimal topologies of structure with different bimodulus materials (Case (c)).
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Fig. 14. Initial design of structure.

5. Conclusions

The material-replacement method is applied to investigate the
optimal topology of a continuum with bimodulus material under
multiple load cases. From numerical results, some conclusions are
obtained as follows

(1) The final topology of a structure with bimodulus material
under multiple load cases is different from that of the same
structure with isotropic material under the same loading
conditions. Especially, if the loads applied on structure are not
of symmetry, the difference of topologies is much obvious and
should be paid attention to in practical engineering.

(2) The value of RTCE (or the ratio between Et and Ec) influences
the final topology, greatly, e.g., the amount of materials under
compression tends to be greater when RTCE is less than 1.0, and
vice versa.

(3) Under the same MLC, the computational cost of topology
optimization of a continuum with bimodulus is slightly
greater than that of the structure with isotropic material
per iteration because different update schemes for design
variables. However, the iteration number for bimodulus
update is not definitely greater than that for isotropicmaterials
update.
Fig. 17. Iteration histories of mean compliances of structure with different
materials.

(4) As bimodulus material being stress-dependent, under MLC the
local stress state is not an accurate concept which confuses the
update of design variables in traditional methods. Using the
present method, the local bimodulus material is replaced with
one of two isotropic materials and the effective strain energy
density becomes the role for modulus selection. Numerical
results show its simplicity and effectiveness which is easy
operating in practical engineering.
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(e) P3 act only (isotropic material). (f) P3 act only (bimodulus material).

Fig. 15. Optimal layouts of structure under different single load cases.
(a) With isotropic material (CPU time: 3935 s). (b) With bimodulus material, RTCE = 1/5 (CPU time: 5275 s).

Fig. 16. Topologies of structure with different materials under MLC.
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