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Abstract: A novel tunable-quality-factor (tunable-Q) contourlet
transform for geometric image representation is proposed. The
Laplacian pyramid in original contourlet decomposes a signal into
channels that have the same bandwidth on a logarithmic scale,
and is not suitable for images with different behavior in frequency
domain. We employ a new tunable-Q decomposition defined in the
frequency domain by which one can flexibly tune the bandwidth
of decomposition channels. With an acceptable redundancy, this
tunable-Q contourlet is also anti-aliasing and its basis is sharply
localized in the desired area of frequency and spatial domain. Our
experiments in nonlinear approximation and denoising show that
the contourlet using a better-suitable quality factor can achieve a
more promising performance and often outperform wavelets and
the previous contourlets both in visual quality and in terms of peak
signal-to-noise ratio.
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1. Introduction

Many recent studies showed contourlets as an efficiently
directional multiscale image representation scheme,
mainly in capturing the intrinsic geometrical structure as
a key in visual information [1-9]. Their experiments in
many image processing applications showed that the con-
tourlets can significantly outperform some other trans-
forms (e.g., wavelets) both in visual quality and in terms
of quality assessment index. However, the previous con-
tourlets should be improved for images of different oscil-
latory nature.

First and foremost, one should take into account
whether the low-quality-factor (low-Q) multiscale pyramid
scheme (i.e., the decomposition scheme based on a low-Q
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multiscale filter) of the previous contourlets is suitable
for images with different behavior in frequency domain.
The previous contourlet is constructed as a combination of
Laplacian pyramid (LP) and directional filter banks (DFB).
The LP as the first stage iteratively decomposes an im-
age into octave frequency bands in frequency domain and
can be considered as a constant low-Q transform, i.e., the
transform scheme with a constant and low quality fac-
tor (Q-factor). This means that high frequency channels
have wide bandwidth (BW) and low frequency channels
have narrow BW. This scheme or the Q-factor is only
suitable for processing less oscillatory signal, but not for
relatively more oscillatory signal [10-13]. Images often
contain more/less oscillatory features that may cause rich
high/low frequency component in the frequency domain,
and thus require a tunable-quality-factor (tunable-Q) trans-
form counterpart. However, the LP scheme in the previous
contourlet fails to provide such a Q-factor. By improving
the LP scheme, in this study, we construct a new tunable-Q
contourlet for image representation.

The second improvement is to reduce the aliasing com-
ponent in the tunable-Q contourlet. We overcome this
drawback by directly designing the multiscale filter bank
(FB) in frequency domain and reasonably using the cut-off
frequency of the FB.

The rest of this paper is structured as follows. We design
and discuss the tunable-Q contourlet in Section 2. Then,
we show the effectiveness of the tunable-Q as well as the
superiority of our contourlet with the experiments in Sec-
tion 3. The shortcoming of this study and the subsequent
tasks in future are summarized in Section 4.

2. Tunable-Q contourlet transform

2.1 Canceling the aliasing resulted from
downsampling

Contourlets outperform wavelets in image representation,
but its original version [1] is prone to cause aliasing com-
ponent outside of desired passband region [14,15]. This
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shortcoming could be overcome by the nonsampled con-
tourlet [16]. At the cost of nonsampling, however, this ver-
sion is impractical due to its computation burden and stor-
age overconsumption. In order to pursue sharply frequency
domain localization and acceptable redundancy ratio (Red)
as the same time, Lu presented a new contourlet that used a
novel multiscale pyramid structure instead of the LP [14].
This version can well reduce the aliasing component in fre-
quency domain and obtain a promising denoising result,
compared with the original version. In this section, we
will introduce this anti-aliasing employment to our novel
tunable-Q contourlet.

Fig. 1 presents the structure of the tunable-Q contourlet,
where the I-DFB denotes the inverse transform of the DFB.
Similar to the version of Lu, the main idea of our anti-
aliasing scheme is to use different FB for the first level
and all rest levels, corresponding to different downsampled
patterns in these levels. The L;(w) and D;(w)(i € {0,1})
in the diagram denote lowpass and highpass filters respec-
tively, with w = (wj,ws). The highpass branch at the
finest scale as well as the bandpass branch at each coarser
scale is followed by the DFB. The output of the lowpass
filter Lo(w) at the first level is not downsampled, while the
outputs of L;(w) at all rest levels are downsampled along
each direction. The key distinction of our employment
from that of Lu is the downsampled factor at each down-
sampled levels. We use a tunable number ¢/p (p,q € Z™,
p < g, ie., p/q € [0,1]) rather than the fixed number 2
settled by Lu, as showed in Fig. 1. It will be seen that
this improvement can really provide us with a tunable-Q
multiscale pyramid scheme.

Analysis
Fig. 1 Structure of the tunable-Q contourlet transform

Synthesis

We design L;(w)(i € {0, 1}) as the tensor product of its
one-dimensional (1D) prototype, and D;(w) in the same
way, i.e.,

Li(w) = L}®(w1)Li®(w2),

Di(w) = D (w;) DI (wy). n

In Fig. 1, each downsampler enveloped by an ellipse is
a resampler and actually implemented as upsampling by p,
followed an anti-aliasing filter R(w) and then downsam-
pling by g, as the illustration in Fig. 2. R(w) is an ideal

lowpass filter defined as (2), and w;;(i € {0,1} is the
stopband-edge frequency of L!P(w).

< : =
R(w) = {la lwi| < ws,0/g; lwa2| < ws0/9 C©

0, otherwise
p,p
R(w)

Fig. 2 Ideal sampling rate changer

To demonstrate the aliasing origin from the DFB and the
anti-aliasing employment in our new scheme as well, we
convert the iterative form of the decompositions in Fig. 1
to its parallel form, and consequently obtain one combined
filter for each channel. In Fig. 3(a), we show the block
diagram of the decompositions in Fig. 1 in iterative form.
There are three levels of radial decomposition, followed
by angular decomposition. We display the multiscale de-
composition with a simplified and realistic version of its
actual implementation, as this version can clearly and ex-
actly illustrate the anti-aliasing employment. Just for the
same reason, one of the directional filters in the DFB is
chosen here to serve the illustration in stead of the actu-
ally whole DFB. The gray regions in the multiscale and
directional filters represent the ideal passband support; the
gray-doted regions in the directional filters represent the
transition band of the DFB, i.e., the aliasing component

Dy(w) DFB
(a) Iterated form

Ly(w)

]

Lo(w) Ly(w) Dy(w) DFB

(b) Equivalent parallel form

Fig. 3 Block diagram of the tunable-Q contourlet with three levels
of multiscale decomposition



Haijiang Wang et al.:Tunable-Q contourlet transform for image representation

[14]. Fig. 3(b) gives its equivalent parallel form by sim-
ply combining the filter block in each channel. Using No-
ble identity [17] and then combining filter-blocks, we ob-
tain one combined filter for each channel to substitute all

149

the filters cascaded in this channel. Using this filter and
a downsampler which is behind the filter, one can directly
gain the highpass output of each decomposition level (L, I,
111, in Fig. 3), as shown in Fig. 4.

W (m,T) W (mt,m) Wy (mt,m)
v f [’— r —— 2
TT—0dw, ¢ ‘2(1!—(1 Gl .

l l q + *.».l

wq w W
7
7 = e
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(a) Combined filter of the (b) Combined filter of the (c) Combined filter of the

highpass branch at first level

highpass branch at second level

highpass branch at third level

Fig. 4 Dlustrations of the anti-aliasing employment in the tunable-Q contourlet

We can pictorially demonstrate the issues above by
Fig. 4. It can be seen that the aliasing component from the
DFB at the second and the third levels can be completely
cancelled out, if the following conditions can be granted,

wso <T—@, ws1 < g (n—a) (3)
where o is the maximum width of the transition band of the
DFB. Then, by iteratively using Noble identity, one can in-
fer that the aliasing component at all the subsequent levels
can be cancelled under this condition too, and the com-
bined filters at these levels will sharply localize in the de-
sired trapezoid-shaped support area corresponding to a sin-
gle direction. Therefore, by enforcing the constraint con-
dition (3) in the designing of wy ;(i € {0,1}), as that in
this study, the filters at all the levels (only except the first
level) can provide us with a desired frequency localization
ability.

Based on [14] and [18], « is specified as 1/3m. We have
the constraint condition:

_P

p
S, o wygi=-(m—a)==-
3 q ) q

[SUR I ]

Wsp=T—a= w. (4)

2.2 Keeping Q-factor constant in multiscale pyramid

In order to achieve a constant-Q multiscale pyramid
scheme, the following condition is also considered when
designing the multiscale FB.
_p
Ws1 t+Wpi = 5 (ws,O + wp,O) (5)
where wp ;(i € {0,1}) is the passband edge frequency of

L!P(w). Moreover, we also use the constraint condition
(6), both for obtaining finer frequency-domain partitions

and specifying the frequency response of the resonant fre-
quency points of these multiscale filters as 1.

Wp,0 = Ws,1- (6)
Based on (4), (5) and (6), we have
w 0=w31=gws0=e'gn,
P A B
p p\’ p\? 2
= = = — = — - % 7
Wp,1 qu,O (q> Ws,0 <q) 3'": @)

2.3 Designing multiscale pyramid FB in frequency
domain

We design the filters directly in frequency domain so as to
ensure them to be perfectly satisfied with all the conditions
above. The 1D prototype L}P(w)(i € {0,1}) has ideal
passbands and idea stopbands, and smooth passbands as
well, defined as (8) inspired by [19].

17 |wl < Wp,i

w—a
LP(w) = 0( ) i < ] <

5 @®)

0, wsi<|wl<m

where a = wp ;, b = ws,i — wp;, and #(w) is such a func-
tion defining on [0, 1] and changing with a certain level of

differentiability. We specifiy the §(w) as

f(w) = (1 + cos(mw)) /2 — cos(nw) /2, w € [0,1].

Next, we can obtain the D}P(w) from L!P(w), based on
the perfect reconstruction (PR) condition (9) inferred from
the structure in Fig. 1. Then we have (10), where 6.(w) is

the complementary function of #(w), i.e., there is a relation
that 6%(w) + 6%(w) = 1.
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0, 'wl < Wp,i
D{P(w)={ 6. (w ; a) v Wpi S w| Swsi . (10)
l, wsi<lw[<m

Finally, we obtain the FB in Fig. 1. Taking the case of
(p,q) = (2,3) (i.e., p = 2 and g = 3) for example, Fig. 5
shows the magnitude frequency response of these filters in
their 1D case.

1.0
0.8
[*}
g 0.6
B
&
s 0.4
0.2
0
0 02 04 06 08 1.0
w/n
P LP(W); et LP(W); e : DIP(w);
= DPW); —: H'(w).

Fig. 5 Frequency response of the FB in Fig. 1 and the combined
filter in Section 2.4

2.4 Q-factor in multiscale pyramid

For a deeply analysis to the Q-factor of multiscale pyra-
mid filters, we convert the n-level multiscale decompo-
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sition structure in Fig. 1 to its equivalent parallel form
again (see Fig. 6), by iteratively exchanging the down-
sampler with the multiscale filter at every level (as that
in Section 2.1, but more completely this time). Here,
Hj(w) is the multiscale pyramid filter at level j(j € Z
and j € [0,n]). As L;{(w) and D;(w) is settled as
(1), H;(w) can also be represented in the same way, i.c.,

Hj(w) = HjP(w1)H}P(ws), with
( H&D(w) DID(w)
HlD(w) LID(w D1D w
H ( )= U) (Ew> L%D (w)
q

g H&’B( ) = L{P(w

Dm<§
e () -
)

HID — L(I,D( ) LlD ((B

With the case of (p,q) = (2,3) again, HiP(w) is il-
lustrated in Fig. 7. The central frequency and the BW
of HIP(w) both decrease gradually, as the decomposition
level j increases. Moreover, we also show the magnitude
frequency response of HiP(w) in Fig. 5 to pictorially
present its relation with L!P(w) and D}P(w).

\

Hyw) DFB |
| B (w) DFB |
| Hy(w) a2 DFB [
)|~ -L5) )| DFB [
— H(w) g:’ g:)

Analysis

—{I-DFB Hy(~w)
~—{1.DFB H(-w)
—{1-DFB —{ (L5 —] By
. 2 o
(&= L), ol
-1 1
WG L)t () [

Synthesis

Fig. 6 Equivalent parallel form of the iterated FB in Fig, 1

It can be seen that the aim of this section can be achieved
by calculating the Q-factor of H;(w). Since H ;D (w) is the
1D prototype of H;(w), the calculation to the Q-factor of
H;D(w) will obtain the same result as that from H;(w).
Therefore, we attempt to calculate the Q-factor of the 1D
prototype for the sake of simplicity as below.

In the case of n-level decomposition, the two transition
bands of HiP(w)(0 < j < n) are

2 J 2 -1
[ws,leftawp,left]: o E T, o g i,
3\ ¢q 3 \¢q

2(p i-1 2/p Jj—2
and [wp,right; ws,right] = g a 7, g a Tt
(12)

where ws je5: and wp je 5 are the stopband edge frequency
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and the pass band edge frequency of the left transition band
respectively, and wp right and w; rign: are the pass band
edge frequency and the stopband edge frequency of the
right transition band respectively.

1.01

0.8}
(]
2 0.6f
S 04t
0.2
0 " A J
0 0.2 0.4 0.6 0.8 1.0
w/n
— HPW); = HoW) — : H{™(w);
— CHPW) — HPw); — (XIH WP

Fig. 7 Frequency response of H;D(w)(j €[0,4]) with 4-level de-
composition and (p, 9)=(2, 3)

If the transition function #(w) is chosen such that
10 (w) |? is half-band, as the specification in this study, then
the passband edges, defined by the half-power frequencies,
are the midpoints of the transition bands (12) [19]. The
resonant frequency (RF) of H }D(w), defined as the geo-
metric mean of the left and right pass-band edges, is given
by (13). Using (12) again, the BW of H}P(w) is given by
(14). Consequently, we can obtain the Q-factor as (15).

j—2
RF; (p, q) = g <1+§> (S) \/g (13)
n p\ (P2 (, p
o, =5 (1+2) (2) (1-2)- o9

Q) = i () _ Vpla
Y BWi(pg)  1-p/g
Since Q(p, q) is constant and independent of the level
index 7, our multiscale pyramid employment is a constant-
Q transform scheme after (p, ¢) parameter is specified in
advance. We call the contourlet version based on this mul-
tiscale pyramid employment as the tunable-Q contourlet
transform because the Q-factor in this version can be flexi-
bly tuned by the (p, ¢) parameter. Fig. 8 shows that a
higher/lower-Q contourlet version can be achieved by us-
ing a (p, q) parameter with a higher/lower p/q value.
Using H;(w) instead of L;(w) and D;(w), the PR con-
n

(15)

dition in (9) can be rewritten as Z |H; (W)|* = 1, for
i=0

n-level decomposition. It is pictéﬁally shown in Fig. 7
that the designed H }D (w) meets this condition. Of course,
the same result will be obtained for their tensor product.
In addition, we can see from above that, exactly speak-
ing, the contourlet of Lu is just a particular case with
(p: ) = (1, 2) corresponding to our version.

H O o©

Value

1 0.3 0.5 0.7 0.9
]Jf (/
—:Q;

— : Red.
Fig. 8 The Q-factor and Red of the proposed contourlet for various
(p, q) parameters

(==

2.5 Redundancy and basis images

As discussed above, the redundancy of the tunable-Q con-
tourlet should also be taken into account. In the following,
we calculate its Red defined as the data-quantity ratio of
the transform-domain result against the original.

The Red of the structure in Fig. 1 can be inferred easily,
as the DFB does not change the data quantity of its input.
The Red of n-level decomposition is presented in (16). As
the Red resulted from the nonsampled contourlet version
[16] is n+1, the redundancy from our version is effectively
reduced.

n—1 2j
Red, (p,q)zl%—z (g) . (16)

§=0

Then, the Red of the tunable-Q contourlet is given by
(17).

1
—s. (17
1-(p/9)" an

In Fig. 8, we also illustrate the increasing of Red along
with the raise of p/q value.

The basis images of the tunable-Q contourlet in fre-
quency and spatial domain are shown in Fig. 9. Compared
with the basis image of the previous contourlet displayed
in [14], all the basis images with different (p, ¢) parameters
here are sharply localized in the desired support area, both
in frequency and space domains. Also, we can observe that
as the p/q value or Q-factor rises, the central frequency of
the related basis is moving outward obviously.

Red (p,¢) = lim Red, (p,q) =1+

3. Experimental analyses

Using images of different oscillatory nature, we evaluate
the effectiveness of the trunable-Q in the proposed con-
tourlet, compared with other transform schemes in appli-
cations of image nonlinear approximation (NLA) and de-
noising.

Various images widely tested in image processing ex-
periments are used here, e.g., Pepper, Tire, Lena and Bar-
bara image. Each of them has a size of 512x512. For
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simplicity, the tunable-Q contourlet using the parameter of
(p, q) is denoted as CT p/g. Other transform schemes in-
clude the wavelet transform (WT), the original contourlet
transform (CT) of Do [1], and the anti-aliasing contourlet
transform of Lu [14] (denoted as CT1/2 for the explana-

tion in Section 2.4). We use four multiscale decomposition
levels for all the transforms, and Daubechies 9/7 filters for
WT. For the DFB in contourlets, and we use (3, 4, 4, 5)
(the last number 5 corresponds to the finest scale) direc-
tional levels for the four levels respectively.

28 g 125 125 125 5
100 6 100 100 100 4
75 . 75 75 3
50 ) 50 50 50 .
25 1
g B 25 25 "
25 50 75 100 125 25 50 75 100 125 25 50 75 100125 25 50 75 100125
@ p, 9)=(1,3) (®) (0, 9=(1,2) © @, 9=@2,3) ) @, 9)=3,4)
125 0.03 125 0.03 125 g
12 3 -
100 0.02 100 0.02 100
: : 0.01
75 0.01 75 0.01 758
: 0
e . 000150
—0.01 s e -0.01
= 2 00”

25 50 75 100125
@, 9=(1,2)

25 50 75 100 125
©) @, 9)=(1,3)

Fig. 9 Images of the contourlet basis with different (p, g) parameters in freqency (top row) and spatial (bottom row) domains

3.1 Nonlinear approximation

To evaluate the NLA performance of each transform
scheme, we repeat the experimental idea of Do, i.e., for
a given value M, to select the most significant coefficients
in each transform domain, and then to compare the recon-
structed images from these sets of M coefficients in vi-
sually quality and in terms of peak signal-to-noise ratio
(PSNR) [1]. We expect that most of the refinements hap-
pen around the image edges.

We firstly test the NLA results using M most signifi-
cant coefficients at the finest scale. Figs. 10 and 11 show
the NLA results of two image examples. The proposed
contourlet using different (p, g) parameters show differ-
ent performance, and the one using a better suitable (p,
g) parameter displays more promising results in capturing
edges.

Fig. 12 displays the NLA PSNR results of the two exa-
mples versus the number of retained coefficients. The
better-suitable (p, ¢) parameters consistently provide the
contourlet with slightly higher PSNR in different retained
numbers.

Then the NLA results using the most significant coeffi-
cients at all scales are calculated. Figs. 13 and 14 show a
detailed comparison of two NLA results. One can find that

E——  -0.02
25 50 75 100 125
) . 9)=3,4)

25 50 75 100 125
(8 (@, 9)=(2,3)

the proposed contourlet using a better-suitable Q-factor
preserves better detail structures and avoids more annoy-
ing artifacts as well.

(b) CT

(c)CT1/2 (d)CT1/3

Fig. 10 NLA resuits of the Pepper image using 4 096 most signifi-
cant coefficients at the finest scale

Also, Fig. 15 shows the NLA PSNR results of the two
images. The proposed transforms consistently gain higher
PSNR compared with other transforms too.
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@WT _ (b)CT

(c)CT1/2 (d) CT2/3

Fig. 11 NLA results of the Lena image using 4 096 most significant

coefficients at the finest scale (d) CT4/5

(¢c)CT1/2

Fig. 14 NLA results of the Barbara image using 16 384 most

5.778 significant coefficients
40
5.774
10 11 12 13 14
log, M
e} W s 2 CT; — W e SCTH
——=: CT1/4; SCT3: =—=:CT1/2; +CT2/3; ;
—-:CT1/2. —-:1CT3/4. 05— 1715 16 e e T
(a) Pepper image (b) Lena image log, M log,M
—_— i WT; s CT; — WT; e CT;
Fig. 12 NLA PSNR results using M most significant coefficients at s g'll:% g; — 2 CT1/2; il %'1_;25// 36: —: CT4/5;
the fivest duiafled mitepace (a) Tire image (b) Barbara image

Fig. 15 NLA PSNR result using M most significant coefficients

3.2 Image denoising

The improvement in approximation based on keeping the
most significant coefficients will directly lead to improve-
ments in applications [1]. In this experiment, we compare
the denoising performance of the proposed transform with
that of others by using the standard simple hard threshold-
ing rule to shrink the transform coefficients [1,14]. Without
the use of more complex shrinkage schemes, we can show
the real improvement of the transform.

As examples of the visual results of denoising, in Figs.
16 and 17, we display a “zoom-in” comparison when per-
1 forming different transform schemes on the Pepper and
(©) CT1/3 () CT1/2 Lena images. We see that the CTp/q using a better-suitable

parameter retains better edges while results in fewer arti-
Fig. 13 NLA results of the Tire image using 16 384 most significant facts compared with other schemes.
coefficients

(a) WT : () CT

To evaluate the different performances of the proposed
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transform using various (p, q) parameters, we display the  (p, ¢) parameter that can yield a more promising denosing
PSNR values of denoising result corresponding to diffe-  result. And by using a better-suitable parameter, the pro-
rent (p, q) parameters in Fig. 18. Also, the PSNR va-  posed transform can outperform wavelets and the previous
lues resulted from the CT and WT are shown here. We  contourlets in denosing.

can see that for a given image, there is a better-suitable

(a) WT

(c) CT1/2 (d)CT1/3 (c) CT1/2 (d)CT2/3

Fig. 16 Denoising results of Peppers image Fig. 17 Denoising results of Lena image
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e - WT; B OF L - :CTp/q.

Fig. 18 PSNR of denoising results versus different (p, g) parameters
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3.3 Computational complexity

An effective image representation scheme should in-
cur reasonable computational complexity. The compu-
tational time generally required by the proposed con-
tourlet is analyzed in the followings, compared with those
required by WT and CT. The computation spans from
the start of the decomposition to the end of the recon-
struction for each transform scheme. The parameters
about the multiscale level of all the schemes, the di-
rectional level of DFB and the filter of WT are simi-
larly used as above. For the (p,q) parameter of
CTplq, various cases usually adopted are tested. We
perform each transform scheme on images with diffe-
rent dataset sizes. For each size level of each transform
scheme, the time spans corresponding to different images
with this size are counted respectively, and then the mean
of these time spans is taken as an actual computational time
generally required by the scheme for this size level. We use
the following standard tested images—Pepper, Tire, Lena
and Barbara, and linearly interpolate each image in the ex-
periment when requiring its counterpart with other dataset
size.

All the transform schemes are realized with Matlab soft-
ware, with the WT code supported by this software and the
CT code provided by Do [1]. The computer equipment

used is the same for all the transform schemes: Pentium 4
central processor with 2.80 GHz and a memory with 1 GB
capacity.

The experimental results are reported in Table 1. We
also pictorially show the results corresponding to the size
level of 1 024x 1 024 in Fig. 19. For each size level, the
computational time required by CTp/q with every (p, q)
parameter is more than that of WT; while it is close to
that of CT although comparatively a little more. Also, for
each (p, q) parameter case, the time required by CTp/q and
CT is still close even when the dataset size reaches up to
1 024 x 1 024, as pictorially shown in Fig. 19. It indicates
that the computational complexity of CTp/g is generally
close to that of CT. The CTp/q incurs reasonable computa-
tional complexity mainly because the processes of its mul-
tiscale filtering and resampling in Fig. 1 are all efficiently
realized in frequency domain (The processes are similar to
those of [19]).

Also, Table 1 shows that for each size level, as the value
of p/q gradually increases or decreases, the computational
time required by CTp/q rapidly converges toward certain
acceptable value after a little increase. Fig. 19 obviously
illustrates its convergence trend. It indicates that the pro-
posed contourlet with other lower or higher Q-factors is
still an efficient image representation scheme.

Table 1 Computational time required by different transform schemes s

Dataset size

Transform scheme

WT CT CT1/8 CTl/6 CTI/4 CTI/3 CTL2 CT23  CT3/4 CT4/5 CT5/6 CT/8
256 %256 0.167  0.505 0.535 0.534 0.532 0.524 0.516 0.529 0.538 0.544 0.547 0.548
512x512 0637 1.827 1972 1970 1967 1956 1940 1969 1.982 1989 1993  1.99
1204x1 204 2317 7112 7.575 7.568 7.549 7.464 7312 7.451 7.664 7.731 7.757 7.766

? ages of different oscillatory nature is proposed in this pa-

o 5 N per. This transform provides a tunable parameter (p, ¢)

2 . S o by which one can flexibly tune the Q-factor of the pro-

b posed contourlet. By directly designing the multiscale FB

§ R in frequency domain, the aliasing component in the DFB of

‘;; 5 the original contourlet is effectively reduced. We use the

§ 4 transform in nonlinear approximation and image denois-

» ing. The result shows that the contourlets using different

) (p, q) parameters result in different performances, and the

2
1/8 1/6 1/4 1/3 1/2 2/3 3/4 4/5 5/6 7/8
plq
e © W
o :CTpl/q.
Fig. 19 Computational time required by WT, CT and CTp/q with
various (p, g) parameters

4. Conclusions

A new tunable-Q contourlet transform for representing im-

one using a better-suitable (p, ) parameter preserves more
detail edges while generates less annoying artifacts com-
pared with that of wavelets and the previous contourlets.

We should use the better-suitable Q-factor when we ap-
ply the tunable-Q contourlet to a given image. The subse-
quent issue is how to chose the most suitable (p, ¢) para-
meter for a particular image, and we leave it to our future
work.
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