
Contents lists available at SciVerse ScienceDirect

ELSEVIER

journal homepage: www.elsevier.com/locate/biochemsyseco

Genetic diversity of a dominant species *Stipa bungeana* and its conservation strategy in the Loess Plateau of China

Zhaobin Jing ^{a,1,2}, Jing Yu^{b,1,2}, Jimin Cheng ^{a,b,c,*}

^a College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China

^b College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China

^c Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, Shaanxi 712100,

PR China

ARTICLE INFO

Article history: Received 7 March 2012 Accepted 27 October 2012 Available online 21 December 2012

Keywords: Stipa bungeana Genetic diversity Genetic differentiation SRAP

ABSTRACT

In order to investigate the genetic diversity and population structure of *Stipa bungeana* under the background of grassland utilization and grazing exclusion, ten *S. bungeana* populations were selected from different steppe type in the Loess Plateau of China. Sequence-related amplified polymorphism (SRAP) marker was used to assess the genetic diversity. Fifteen SRAP primer combinations generated a total of 482 amplification bands, 418 (86.72%) were polymorphic bands. A relatively high level of genetic diversity (PPB = 89.80%, h = 0.1972, H = 0.3154) was detected at the species level, but the genetic diversity was low at the population level (PPB = 17.01–33.33%, h = 0.0438-0.0967, H = 0.0361-0.1447). AMOVA analysis revealed a high level of genetic differentiation among populations ($\Phi_{ST} = 0.6757$), and a limited among-population gene flow ($N_m = 0.1200$). There was no significant correlation between genetic distance and geographic distance by Mantel test (r = 0.1126, P = 0.204). Conservation implications were proposed for *S. bungeana*.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The *Stipa* genus includes 300–400 annual and perennial species. They usually grow in arid and dry areas, and some species with primitive morphological characteristics grow in semi-arid areas. *Stipa* species are especially relevant to restoration studies in arid environments due to the fact that they dominate large parts of the Eurasian zonal vegetation. Owing to their strong and long-term association with human activities, *Stipa* steppes are considered to be highly important model systems in arid land ecology (Hassan et al., 2009).

Stipa bungeana is a perennial C₃ tussock grass with the clonal growth by tillering. It distributes in typical steppe of semiarid areas that belong to warm temperate zones. *S. bungeana* appears as the accompanying species or dominant species in west arid and semi humid areas of China. *S. bungeana* is a main wild forage in northwest natural grassland of China, and it has low water content and loses water quickly. It is useful for the stabilization and conservation of grassland because of its fibrous roots and highly developed root system. *S. bungeana* plays an important role in the maintenance of soil and water because it can quickly form community and become the dominant and constructive species with its strong ability to compete for growth (Cheng et al., 2010a,b).

^{*} Corresponding author. Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, Shaanxi 712100, PR China. Tel.: +86 29 87012272; fax: +86 29 87012210.

E-mail addresses: zxxjzb520@gmail.com (Z. Jing), 34051099@qq.com (J. Yu), gyzcjm@ms.iswc.ac.cn, 353813638@qq.com (J. Cheng).

¹ Zhaobin Jing and Jing Yu contributed equally to this work.

² Tel.: +86 29 87012272; fax: +86 29 87012210.

^{0305-1978/\$ -} see front matter © 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bse.2012.10.004

A number of studies have reported on *S. bungeana* ecology (Cheng et al., 2010a,b; Huang et al., 2001a,b). Apart from these, no studies have reported about its genetic diversity, breeding and growth system. The genetic diversity of a few *Stipa* species have been reported that including *Stipa* grandis, *Stipa* purpurea, and *Stipa* tenacissima (Zhao et al., 2006; Zhao et al., 2008; Wu et al., 2010; Mohamed et al., 2010; Liu et al., 2009). Sequence-related amplified polymorphism (SRAP) is recognized as one of most used molecular marker first introduced by Li and Quiros (2001). Owing to its simplicity, reproducibility, high polymorphic rate, SRAP has been applied extensively in genetic diversity analysis (Li et al., 2010; Huang et al., 2011).

The objective of this study is to evaluate the genetic diversity and population structure among and within populations of *S. bungeana* in the Loess Plateau of China, in order to improve the management of genetic resources. For this purpose, we analyzed the genetic variation of natural populations in different steppe types. The relationship between genetic diversity index and geographic distance was also analyzed.

2. Materials and methods

2.1. Study area

The study areas were located in the different steppe of the Loess Plateau, China (Fig.1; Table 1). In September of 2010, ten sites were selected based on different steppe types and utilization status in four provinces that including Shaanxi, Inner Mongolia, Ningxia and Gansu.

2.2. Plant sampling

S. bungeana is a perennial C_3 grass, and it is the dominant species in the Loess Plateau of China. Thirty plants were sampled randomly from per population, and the distance between individuals was at least 30 m. Fresh leaves were collected from *S. bungeana* individuals and immediately stored in zip-lock bags with silica gel and brought back to laboratory and stored at -80 °C for later DNA extraction.

2.3. DNA extraction

Genomic DNA from silica gel-dried leaves was extracted using a modification of the Protocol of standard CTAB method (Zhao et al., 2006). DNA quality was detected by electrophoresis on 0.8% (w/v) agarose gel. DNA concentration was measured by a UV–VIS spectrophotometer, and adjusted to 40 ng μ L⁻¹ and then stored at –20 °C for SRAP-PCR analysis.

2.4. SRAP-PCR amplification

SRAP markers were used to detect the genetic diversity among 10 populations according to previously established protocols by Li and Quiros (2001). The primer sequences were synthesized by Beijing Aoke Biological Technology and Service Co. Ltd. 225 primer combinations were screened among four plants from four provinces. From these, 15 primer combinations were selected for the present study based on reproducibility, clarity of bands, and their highly polymorphic (Table 2).

PCR amplification reactions were carried out in 20 μL volume, containing 40 ng of template DNA, 10 × PCR buffer (100 Mm Tris-HC, pH 8.3; 500 mM KCl), 0.18 mM of each dNTP, 0.75 mM of each primer, 1.87 mM of MgCl², 1 units of Taq DNA polymerase (TaKaRa Biotechnology Dalian Co., Ltd., China). PCR amplification was performed as follows: initial 5 min at 94 °C,

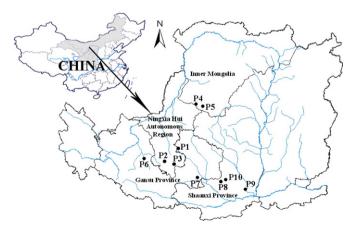


Fig. 1. Locations of research site in the Loess Plateau, China.

Table 1

Locations and the habitat characters.

Location	Population	Sample code	Altitude (m)	Longitude	Latitude	Vegetation type	Constructive species	Utilization status
Yunwu Mountain, Ningxia Hui Autonomous Region	P1	1–30	2049	106 °37′	36°25′	Typical steppe	Stipa bungeana + S. grandis	Fencing
Piancheng village, Xiji County, Ningxia Hui Autonomous Region	P2	31–60	2081	105°58′	35°57′	Typical steppe	Stipa bungeana + Artemisia sacrorum	Grazing
Liupan Mountain, Ningxia Hui Autonomous Region	Р3	61–90	1760	106°27′	35°49′	Typical steppe	Stipa bungeana	Fencing
Chengchuan village, Etuoke City, Inner Mongolia Autonomous Region	P4	91–120	1364	107°23′	38°06′	Desert steppe	Achnatherum splendens	Grazing
Machangjie village, Etuoke City, Inner Mongolia Autonomous Region	Р5	121–150	1354	107°43′	38°02′	Desert steppe	Stipa bungeana	Grazing
Huining County, Gansu Province	P6	151-180	1726	105°01′	35°58′	Typical steppe	Stipa bungeana	Grazing
Jingchuan County, Gansu Province	P7	181–210	1305	107°31′	35°19′	Forest steppe	Stipa bungeana + Bothriochloa ischaemum	Fencing
Jinhua Mountain, Tongchuan City, Shaanxi Province	P8	211–240	1200	108°34′	35°10′	Forest steppe	Bothriochloa ischaemum + Stipa bungeana	Mowing
Manquanhe Village, Pucheng County, Shaanxi Province	P9	241–270	430	109°45′	34°53′	Forest steppe	Bothriochloa ischaemum + Artemisia sacrorum	Mowing
Bai Village, Bin County Shaanxi Province	P10	271-300	1161	108°50′	35°15′	Forest steppe	Stipa bungeana + Artemisia sacrorum	Mowing

followed by 5 cycles of 1 min at 94 °C, 1 min at 36 °C, and 1 min at 72 °C. In the following 30 cycles, the annealing temperature was increased to 51 °C, and a final 7 min extension at 72 °C. PCR products were separated on 6% denatured polyacrylamide gels and detected by silver staining. Then clear and reproducible distinguished bands were recorded and used in the following analysis. DL2000 DNA ladder (TaKaRa Biotechnology Dalian Co., Ltd., China) was used as DNA markers.

Table 2

Primer combination used in this study and their polymorphism and diversity analysis.

Primer combination	Sequence	t	р	Р %
Me1 + Em2	F: TGA GTC CAA ACC GGATA	32	26	81.25
	R: GAC TGC GTA CGA ATT TGC			
Me1 + Em4	F: TGA GTC CAA ACC GGATA	26	23	88.46
	R: GAC TGC GTA CGA ATT TGA			
Me1 + Em11	F: TGA GTC CAA ACC GGATA	31	27	87.10
	R: GAC TGC GTA CGA ATT CTA			
Me4 + Em1	F: TGA GTC CAA ACC GGACC	27	23	85.19
	R: GAC TGC GTA CGA ATT AAT			
Me5 + Em4	F: TGA GTC CAA ACC GGAAG	35	34	97.14
	R: GAC TGC GTA CGA ATT TGA			
Me5 + Em11	F: TGA GTC CAA ACC GGAAG	32	30	93.75
	R: GAC TGC GTA CGA ATT CTA			
Me8 + Em19	F: TGA GTC CAA ACC GGACT	38	36	94.77
	R: GAC TGC GTA CGA ATT TCA			
Me11 + Em19	F: TGA GTC CAA ACC GGAAC	32	28	87.50
	R: GAC TGC GTA CGA ATT TCA			
Me12 + Em8	F: TGA GTC CAA ACC GGAGA	28	24	85.71
	R: GAC TGC GTA CGA ATT CAC			
Me12 + Em14	F: TGA GTC CAA ACC GGAGA	34	27	79.41
	R: GAC TGC GTA CGA ATT CTT			
Me13 + Em12	F: TGA GTC CAA ACC GGAAG	36	31	86.11
	R: GAC TGC GTA CGA ATT CTC			
Me13 + Em14	F: TGA GTC CAA ACC GGAAG	26	17	65.38
	R: GAC TGC GTA CGA ATT CTT			
ME6-X + Em7	F: TGA GTC CTT TCC GGTAA	33	29	87.88
	R: GAC TGC GTA CGA ATT CAA			
ME6-X + Em8	F: TGA GTC CTT TCC GGTAA	37	34	91.89
	R: GAC TGC GTA CGA ATT CAC			
ME6-X + EM3-X	F: TGA GTC CTT TCC GGTAA	35	29	82.86
	R: GAC TGC GTA CGA ATT CGA			
Total		482	418	86.72
Average		32.13	27.87	86.72

Abbreviation: t, Number of total loci; p, Number of polymorphic loci; P %, the percentage of polymorphic loci.

2.5. Data analysis

In SRAP analysis, each clear, reproducible, amplified DNA polymorphic bands between 100 bp to 2000 bp were scored as 1 for presence or 0 for absence to form a binary matrix for further analysis. POPGENE version 1.32 (Francis et al., 2000) was used to compute the number of effective loci, the percentage of polymorphic loci, observed number of alleles (na), effective number of alleles (ne), Nei's genetic diversity (*h*) (Nei, 1973), and Shannon's information index (*H*). *H* was calculated at two levels: the genetic diversity within the species (H_{sp}) and the mean diversity within the population (H_{pop}). Genetic diversity was partitioned by Shannon's information index (*H*), where the portion of variation within a population is H_{pop}/H_{sp} and the portion of variation among populations is ($H_{sp} - H_{pop}$)/ H_{sp} (Lewontin, 1972). In addition, an analysis of molecular variance (AMOVA) was carried out using AMOVA program version 1.5 (Excoffier et al., 1992). Φ_{ST} was used to show genetic differentiation values between populations. Based on Φ_{ST} , the number of migrants per generation (Nm) was estimated using Nm = $(1 - \Phi_{ST})/4\Phi_{ST}$. Relationships between the genetic distance matrix and the geographic distance matrix were estimated with the Mantel test (Mantel, 1967) in the NTSYS-pc program (Rohlf, 2000) by 1000 permutations of bootstrapping.

3. Results

3.1. Genetic diversity of S. bungeana

Fifteen SRAP primer combinations generated a total of 482 bands varied in size from 100 to 2000 bp, and 418 bands were polymorphic with a polymorphic ratio of 86.72%. Each primer combination generated an average of 32.13 bands (Table 2). The genetic diversity parameters of *S. bungeana* populations were shown in Table 3. The Nei's genetic diversity (*h*) was 0.1972 and Shannon's information index (*H*) was 0.3154 at the species level. Within each population, the number of polymorphic loci ranged from 75 (P4) to 147 (P2), with a mean of 117. The percentage of polymorphic band (PPB) ranged from 17.01% (P4) to 33.33% (P2) with an average 26.53%. The observed number of alleles (na) varied from 1.1701 (P4) to 1.3333 (P2) with an average of 1.2653. The effective number of alleles (ne) ranged from 1.0716 (P4) to 1.1664 (P2) with a mean of 1.1348. Nei's genetic diversity (*h*) varied from 0.0438 (P4) to 0.0967 (P2) and the mean value was 0.0800. Shannon's information index (*H*) ranged from 0.0361 (P4) to 0.1447 (P2), with an average value of 0.1118. Results showed that Population 2 from Piancheng village with the highest level of genetic diversity, whereas the lowest genetic diversity showed in population 4 from Chengchuan village.

3.2. Genetic differentiation among populations

Shannon's information index (*H*) at the species level was 0.3154, and the genetic diversity at the population level was 0.1118 (Table 3). The genetic differentiation among the populations was 0.6455 by using the formula $G_{ST} = (H_{sp} - H_{pop})/H_{sp}$, which indicated that 64.55% of the total genetic variation was among populations. A similar level of genetic differentiation among the populations was obtained from AMOVA analysis, and the genetic variation among the populations was 67.57% and 32.43% within populations. The genetic differentiation values of *S. bungeana* populations was highly significant (P < 0.001), and Φ_{ST} was 0.6757 (Table 4). The level of gene flow (Nm) was 0.1200 calculated by the formula Nm= $(1-\Phi_{ST})/4\Phi_{ST}$, which indicated that a lower gene exchange among populations existed.

3.3. Correlation of genetic diversity and geographic distance

The correlation between the genetic distances and geographic distances were analyzed using all pairs of the populations (data not shown). Results of the Mantel test indicated that there is a low correlation between the genetic distances and the geographic distances (r = 0.1126, P = 0.204).

NPB	PPB (100%)	na	ne	h	Н
112	25.40	1.2540	1.1235	0.0746	0.1146
147	33.33	1.3333	1.1664	0.0967	0.1447
130	29.48	1.2948	1.1347	0.0799	0.1230
75	17.01	1.1701	1.0716	0.0438	0.0361
101	22.90	1.2290	1.1220	0.0722	0.1088
130	29.48	1.2948	1.1604	0.0935	0.1413
129	29.25	1.2925	1.1416	0.0872	0.1028
126	28.57	1.2857	1.1459	0.0882	0.1346
89	20.18	1.2018	1.1182	0.0688	0.0687
131	29.71	1.2971	1.1641	0.0953	0.1437
117	26.53	1.2653	1.1348	0.0800	0.1118
396	89.80	1.8980	1.3121	0.1972	0.3154
	112 147 130 75 101 130 129 126 89 131 117	112 25.40 147 33.33 130 29.48 75 17.01 101 22.90 130 29.48 129 29.25 126 28.57 89 20.18 131 29.71 117 26.53	112 25.40 1.2540 147 33.33 1.3333 130 29.48 1.2948 75 17.01 1.1701 101 22.90 1.2290 130 29.48 1.2948 75 17.01 1.1701 101 22.90 1.2290 130 29.48 1.2948 129 29.25 1.2925 126 28.57 1.2857 89 20.18 1.2018 131 29.71 1.2971 117 26.53 1.2653	112 25.40 1.2540 1.1235 147 33.33 1.3333 1.1664 130 29.48 1.2948 1.1347 75 17.01 1.1701 1.0716 101 22.90 1.2290 1.1220 130 29.48 1.2948 1.1604 129 29.25 1.2925 1.1416 126 28.57 1.2857 1.1459 89 20.18 1.2018 1.1182 131 29.71 1.2971 1.1641 117 26.53 1.2653 1.1348	112 25.40 1.2540 1.1235 0.0746 147 33.33 1.3333 1.1664 0.0967 130 29.48 1.2948 1.1347 0.0799 75 17.01 1.1701 1.0716 0.0438 101 22.90 1.2290 1.1220 0.0722 130 29.48 1.2948 1.1604 0.0935 129 29.25 1.2925 1.1416 0.0872 126 28.57 1.2857 1.1459 0.0882 89 20.18 1.2018 1.1182 0.0688 131 29.71 1.2971 1.1641 0.0953 117 26.53 1.2653 1.1348 0.0800

Table 3 Genetic diversity parameters of ten populations of S. bungeana.

Abbreviation: NPB, number of polymorphic band; PPB, percentage of polymorphic band; na, observed number of alleles; ne, effective number of alleles; *h*, Nei's (1973) gene diversity; *H*, Shannon's information index.

Table	4

AMOVA of genetic variances within and among *S. bungeana* populations.

Source of variation	d.f.	Sum of squares	Variance component	Percentage of variation (%)	P value
Among groups	9	745.690	36.8503	67.57	< 0.001
Within groups	190	17.686	17.6855	32.43	< 0.001
Total	199	763.376	54.5358	100	

4. Discussion

4.1. Genetic diversity of S. bungeana

A good knowledge of genetic diversity is a necessary prerequisite for the conservation of a specie because it may indicate the status and survival potential of populations (Lande, 1988). Previous studies showed that molecular markers can reveal the dispersal capacity of a species and infraspecific structure (Ouborg et al., 1999). In addition, a loss of genetic diversity usually reduces the ability of populations to adapt the environmental changes (Wang et al., 2003; Hao et al., 2006).

Over grazing and mowing might particularly affect the genetic diversity among populations (Kleijn and Steinger, 2002; Matlaga and Karoly, 2004; Wu et al., 2010). Wu et al. (2010) study indicated that the genetic diversity of *S. grandis* was lower under the condition of mowing. However, in our study, the genetic diversity of *S. bungeana* was relative high under the condition of grazing and mowing than fencing condition for some populations (Table 3). Seed germinating ability of *S. bungeana* was lower, and it mainly depends on clonal reproduction to expand populations. Under fencing condition, the lack of human or animals disturbance is beneficial to increase clonal growth by repeatedly producing tillering ramets from shoot base between genetically closely plants. Thus, we assumed that the low genetic diversity under fencing condition may be related to this specific reproduction pattern.

4.2. Genetic structure of S. bungeana population

Population genetic structure could provide useful information about intraspecific differentiation for conservation and management of populations (Song et al., 2011). In this study, genetic differentiation was consistent with a pattern of strong variation among populations and weak variation (strong homogeneity) within populations. Our genetic differentiation value was higher than other *Stipa* species (Table 5). The genetic differentiation value was also higher than the average coefficients of long-lived perennial species ($\Phi_{ST} = 0.25$, n = 60), out-crossing species ($\Phi_{ST} = 0.25$, n = 73), mixed breeding species ($\Phi_{ST} = 0.40$, n = 18) and the widespread species ($\Phi_{ST} = 0.34$, n = 32) (Nybom, 2004). This result indicated that genetic differentiation among *S. bungeana* populations was highly significant (P < 0.001). This may be explained by the reproductive system, genetic drift, selection or adaptation, gene flow (dispersal of pollens and seeds), or bottlenecks (Newton et al., 2002; Maki, 2003).

The complex topography, remote distribution and different steppe types of sampling may have decreased the gene flow (dispersal of pollens and seeds) among populations, and promoted the genetic differentiation of *S. bungeana* populations. This conclusion was supported by the result of gene flow in *S. bungeana* (Nm = 0.120). Wright (1951) pointed out that significant genetic differentiation may result from genetic drift when Nm < 0.5. Fischer et al. (2000) also suggested that the genetic drift may play an important role in population differentiation if there is no significant correlation between genetic distance and geographical distance. In our study, the genetic distance showed no significant correlation with geographical distance, indicating that genetic drift influenced the genetic structure of *S. bungeana*. Similar results were reported for *S. grandis* and *S. tenacissima* (Zhao et al., 2008; Liu et al., 2009). Therefore, genetic drift may be another important driver factor to increase the larger genetic variation among populations.

4.3. Conservation consideration

As an important dominant species, *S. bungeana* reduced rapidly because of habitat fragmentation, human activities and lower germination rate. Genetic diversity is one primary basis for nature conservation, and the structure of genetic diversity is valuable to proposing conservation strategies (Wu et al., 2010). Considering the relatively low genetic diversity within

Table	5
-------	---

Species	Genetic diversity values	Markers	References			
Stipa grandis	PPBs = 76.06%; Hs = 0.2305; Is = 0.3521; $\Phi_{ST} = 0.2805$	RAPD	Zhao et al. (2006)			
Stipa krylovii	PPBs = 97.47%; Is = 0.3820; $\Phi_{\rm ST}$ = 0.4315	RAPD	Zhao et al. (2006)			
Stipa grandis	PPBs = 100%; Hs = 0.3207; Is = 0.4894; $\Phi_{\rm ST} = 0.2588$	RAPD	Zhao et al. (2008)			
Stipa purpurea	PPBs = 96.70%; Is = 0.3517; $\Phi_{ST} = 0.4202$	ISSR	Liu et al. (2009)			
Stipa grandis	PPBs = 68.42%; Hs = 0.1952; Is = 0.3035; $\Phi_{ST} = 0.2431$	AFLP	Wu et al. (2010)			
Stipa tenacissima	PPBs = 99.07%; Hs = 0.2402; Is = 0.3834; $\Phi_{ST} = 0.3240$	ISSR	Mohamed et al. (2010)			

Abbreviation: *PPBs*, percentage of polymorphic loci at species level; Hs, Nei's gene diversity at species level; Is, Shannon's information index at species level; ϕ_{ST} , genetic differentiation coefficient among populations.

populations and high genetic differentiation among populations, we should take necessary measures including both in situ and ex situ methods to protect the populations. Taking into account the current grazing and mowing ways and habitat of *S*. *bungeana*, we suggest that in situ conservation should be considered firstly. For ex situ conservation, to improve germination rate of seed should be carried out as soon as possible, then artificial cultivation may enlarge the vegetation coverage of *S*. *bungeana*.

Acknowledgments

The authors would like to thank Prof. Xi-Ping Wang for critical review of this manuscript and Lisa Yu for proofreading. We thank Yang Yong for guiding the laboratory work. This research work was supported by "Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issues" of the Chinese Academy of Sciences (XDA05050202), and the earmarked fund for Modern Agro-industry Technology Research System (CARS-35-40).

References

- Cheng, J., Hu, T.M., Cheng, J.M., Wu, G.L., 2010a. Distribution of biomass and diversity of Stipa bungeana community to climatic factors in the Loess Plateau of northwestern China. AfR. J. Biotechnol. 9 (40), 6733–6739.
- Cheng, J., Hu, T.M., Cheng, J.M., 2010b. Responses of vegetation restoration to climate change during the past 30 years in enclosed grassland of Yunwu-Mountain in semi-arid region of the Loess Plateau. Acta Ecol. Sin. 30, 2630–2638.

Excoffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes, application to human mitochondrial DNA restriction data. Genetics 131, 479–491.

Fischer, M., Husi, R., Prati, D., Peintinger, M., Kleunen Van, M., Schmid, B., 2000. RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). Am. J. Bot. 87, 1128–1137.

Francis, C.Y., Yang, R.C., Timothy, B., 2000. Popgene Version 1.32. http://www.ualberta.ca/~fyeh/popgene_info.html.

Hao, B.Q., Wang, L., Mu, L.C., Yao, Y.L., Zhang, Z.R., Tang, M.X., Bao, W.K., 2006. A study of conservation genetics in Cupressus chengiana, an endangered endemic of China, using ISSR markers. Biochem. Genet. 44, 31–45.

Hassan, R., Hamasha, Hensen, I., 2009. Seed germination of four Jordanian Stipa spp: differences in temperature regimes and seed provenances. Plant Species Biol. 24, 127–132.

Huang, F.X., Fu, D.S., Liu, Z.D., 2001a. Study on the relationship between aboveground biomass of the Artemisia phaerocephala-Stipa bungeana community and climate variables at sandy grassland ErdosPlateau. Acta Agrestia Sin 9, 148–153.

Huang, F.X., Gao, Q., Fu, D.S., Liu, Z.D., 2001b. Relation between climate variables and the aboveground biomass of Thymus mongolicus-Stipa bungeana community in steppe of Ordos Plateau, Inner Mongolia. Acta Ecol. Sin 21, 1339–1346.

Huang, L.K., Bughrara, S.S., Zhang, X.Q., Bales-Arcelo, C.J., Bin, X., 2011. Genetic diversity of switchgrass and its relative species in Panicum genus using molecular markers. Biochem. Syst. Ecol., 1–9.

Kleijn, D., Steinger, T., 2002. Contrasting effects of grazing and hay cutting on the spatial and genetic structure of Veratrum album, an unpalatable, longlived, clonal plant species. J. Ecol. 90, 360–370.

Lande, R., 1988. Genetics and demography in biological conservation. Science 241, 1455-1460.

Lewontin, R., 1972. The apportionment of human diversity. Evol. Biol. 6, 381-398.

Li, G., Quiros, C.F., 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455–461.

Li, H.Z., Chen, H.Y., Zhuang, T.M., Chen, J., 2010. Analysis of genetic variation in eggplant and related Solanum species using sequence-related amplified polymorphism makers. Sci. Hortic. 125, 19–24.

Liu, W.S., Dong, M., Song, Z.P., Wei, W., 2009. Genetic diversity pattern of Stipa purpurea populations in the hinterland of Qinghai–Tibet Plateau. Ann. Appl. Biol. 154, 57–65.

Maki, M., 2003. Population genetics of threatened wild plants in Japan. J. Plant Res. 116, 169-174.

Mantel, N.A., 1967. The detection of disease clustering and a generalized regression approach. Cancer. Res. 27, 209–220.

Matlaga, D., Karoly, K., 2004. Long-term grazing effects on genetic variation in Idaho fescue. J. Range Manage. 57, 275-279.

Mohamed, B., Cesar, B., Me, K.H., Toma, N., Mohamed, Z., 2010. Genetic variation in natural populations of Stipa tenacissima from Algeria. Biochem. Genet. 48, 857–872.

Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70, 3321–3323.

Newton, A.C., Allnutt, T.R., Dvorak, W.S., Del Castillo, R.F., Ennos, R.A., 2002. Patterns of genetic varition in Pinus chiapensis, a threatened Mexican pine, detected by RAPD and mitochondrial DNA RFLP markers. Heredity 89, 191–198.

Nybom, H., 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13, 1143–1155.

Ouborg, N.J., Piquot, Y., van, Groenendael, J.M., 1999. Population genetics, molecular markers and the study of dispersal in plants. J. Ecol. 87, 551-568.

Rohlf, F.J., 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Exeter Software, Setauket, New York.

Song, N., Nwafili, S.A., Gao, T.X., 2011. Genetic diversity and population structure of Chrysichthys nigrodigitatus from Niger Delta based on AFLP analysis. Biochem. Syst. Ecol. 39, 320–327.

Wang, T., Su, Y.J., Li, X.Y., Zheng, B., Chen, G.P., Wang, B.S., 2003. RAPD analysis of the genetic variation within populations of a relict tree fern, Alsophila spinulosa (Cyatheaceae). Acta. Ecol. Sin. 23, 1200–1205.

Wright, S., 1951. The genetical structure of populations. Ann. Eugenet. 15, 323-354.

Wu, J.B., Gao, Y.B., Bao, X.Y., 2010. Genetic diversity of Stipa grandis P.Smirn populations across the species' range in the Inner Mongolia Plateau of China. Biochem. Syst. Ecol., 1–7.

Zhao, N.X., Gao, Y.B., Wang, J.L., Ren, A.Z., Xu, H., 2006. RAPD diversity of Stipa grandis populations and its association with some ecological factors. Acta. Ecol. Sin. 26, 1312–1319.

Zhao, N.X., Gao, Y.B., Wang, J.L., Ren, A.Z., 2008. Population structure and genetic diversity of Stipa grandis P. Smirn, a dominant species in the typical steppe of northern China. Biochem. Syst. Ecol. 36, 1–10.