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s u m m a r y

Soil moisture datasets in large gullies are rare due to the difficulty of direct sampling in such landform.
This study attempted to estimate spatial soil moisture averages in gullies from measurements of adjacent
uplands by using observation operators, based on three-year soil moisture datasets in a gully catchment
of the Loess Plateau. Soil moisture datasets in 2010 and 2011 were used for developing observation oper-
ators and those in 2012 were used for validation. Several nonlinear and linear methods including cumu-
lative distribution function (CDF) matching method, linear regression (LRG) method, mean relative
difference (MRD) method and linear rescaling (LRS) method were used to define observation operators.
The results showed observation operators significantly improved the predictions compared to when
using spatial averages of uplands as the direct surrogates for gullies. Among different methods, the
CDF matching method performed best in estimating soil moisture in gullies followed by the LRG, LRS
and MRD methods. Validation analysis showed that the linear observation operators such as LRS, MRD
and LRG had better temporal transferability than the nonlinear operators. The MRD observation operators
for various layers could successfully transfer in time whereas temporal transferability only succeeds to a
limited extent for other observation operators. Furthermore, the MRD, LRG and LRS methods exhibited
better vertical transferability than the CDF matching method. However, the transferability of observation
operators across the whole root zone layers was not successful.
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1. Introduction

Gullies represent a serious land degradation form, which occur
globally in areas with crusting soils, such as loess (European belt,
Chinese Loess Plateau, North America), sandy soils (Sahelian zone,
north-east Thailand) and dispersive soils prone to piping and tun-
neling (Valentin et al., 2005). Although gullies are not directly in-
volved in agricultural activities, they are closely associated with
many hydrological processes since they geographically connect
hillslopes and channels. Thus the hydrologic characteristics of gul-
lies may greatly affect watershed discharge and sediments deposi-
tion. Several studies have shown that erosion from gullies were
responsible for most deposition of sediments in downstream pools
(Li et al., 2003; Valentin et al., 2005). Surface runoff and severe dis-
turbance of vegetation organization (then degrades soil structure)
are usually two necessary conditions for water erosion happening
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which is responsible for the occurrence and evolution of gullies
(Tang, 2004). In semiarid areas, soil moisture is a key eco-hydro-
logical variable (Ludwig et al., 2005). It switches the generation
of surface runoff (Brocca et al., 2008) and affects the vegetation
growth and distribution (Rodriguez-Iturbe et al., 1999). Therefore,
the knowledge of soil moisture is critical for understanding gully
evolution and the eco-hydrological processes in gullies (Gao
et al., 2011).

Several efforts have been made to collect soil moisture in gullies
(van den Elsen et al., 2003; Melliger and Niemann, 2010; Gao et al.,
2011). These studies reported different values and behaviors of soil
moisture between gullies and hillslope uplands. However, soil
moisture datasets in large gullies are still scarce, and widespread
in situ sampling in large gullies is difficult and costly due to steep
slopes and complex topography. Remote sensing sensors/
techniques are promising methods for soil moisture retrieving for
ungauged areas (Brocca et al., 2011; Khan et al., 2011). However,
ground validation and calibration were rarely conducted in places
where gullies are prevalent. Gao et al. (2013) found that soil
moisture time series in gullies could be reliably estimated from
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observations of adjacent uplands where soil moisture sampling are
much easier. In their study, the primary method for soil moisture
estimation in gullies was time stability analysis which was induced
by Vachaud et al. (1985) to characterize the time-invariant associ-
ations between spatial locations and classical statistical parametric
values. They found more than one upland location was temporally
stable with respect to spatial averages in gullies. Nevertheless,
time stability features of soil moisture fields are largely affected
by many geographical and meteorological factors including topog-
raphy, soil properties, vegetation and precipitation (Grayson and
Western, 1998; Mohanty and Skaggs, 2001; Jacobs et al., 2004,
2010; Hu et al., 2010; Joshi et al., 2011). However, only a few stud-
ies have conducted validation to test the temporal robustness of
time-stable locations (e.g., Martínez-Fernández and Ceballos,
2005; Jacobs et al., 2010). Therefore, it is uncertain as to whether
a time-stable location maintains its rank with time or if the rank
of surface soil moisture is consistent with time-stable observations
at deeper depths (Han et al., 2012; Heathman et al., 2012).

In recent years, observation operators termed by Drusch et al.
(2005) were used to transform point soil moisture observations
to spatial averages for a field. De Lannoy et al. (2007) and Han
et al. (2012) derived observation operators mainly by cumulative
distribution function (CDF) matching method. They found that
field soil moisture averages were accurately estimated from point
observations by CDF matching method. Other methods including
linear regression method and mean relative difference method
were also used to define observation operators, and similar results
were reported (Han et al., 2012). Moreover, Han et al. (2012) tested
the spatial–temporal transferability of observation operators. They
found observation operators successfully transferred in space (two
different fields and two different layers), whereas failed to transfer
between two years. Observation operators have also been used to
transform remote sensing soil moisture to model predictions or
in situ soil moisture measurements (Drusch et al., 2005; Brocca
et al., 2011; Matgen et al., 2012).

On the Loess Plateau of China, large gullies (with depth from
several meters to tens of meters, even deeper than 100 m) are
important compositions of landscapes. Especially in the hilly re-
gion of the Loess Plateau, gullies occupy 50–60% of the total area
with densities of 3–8 km km�2 (Huang and Ren, 2006). In this
study, we attempt to propose different nonlinear and linear meth-
ods including cumulative distribution function (CDF) matching,
linear regression (LRG), mean relative difference (MRD) and linear
rescaling (LRS) to define observation operators for transforming
soil moisture of hillslopes (uplands) to spatial averages of gullies.
Most of these methods have been widely used for validating satel-
lite soil moisture products and assimilating remote sensing data
into land surface models with the purpose of bias reduction. How-
ever, the feasibility for these methods in rescaling hillslope soil
moisture into gullies has never been documented. Moreover, the
estimation errors for various observation operators were evalu-
ated. The temporal robustness of these observation operators and
their transferability across root-zone layers were also tested. Note
that this study only focuses on spatial averages of soil moisture in
gullies and uplands.
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2. Methods

2.1. Methods for defining observation operators

The nonlinear cumulative distribution function (CDF) matching
method and linear methods including linear regression (LRG),
mean relative difference (MRD), and linear rescaling (LRS) methods
were used to define observation operators. A summary of the char-
acteristics of these methods was indicated in Table 1.
2.1.1. CDF matching method
Cumulative distribution function (CDF) matching method has

been used in many hydrological applications with the purpose of
bias correction, data assimilation, and rescaling of different sets of
observations. Reichle and Koster (2004) used this technique to de-
fine observation operators for bias reduction in satellite-retrieved
surface soil moisture. Drusch et al. (2005) derived observation oper-
ators by using this method for direct assimilation of remote sensing
data into model results. Liu et al. (2011) employed this approach to
merge soil moisture retrieves of passive and active satellite sensors.
The CDF matching method has also been used for spatial soil mois-
ture averages estimation. De Lannoy et al. (2007) and Han et al.
(2012) used the CDF matching method to derive observation oper-
ators for field soil moisture averages estimation from point observa-
tions. In their studies, observation operators were presented in the
form of polynomial equations. The CDF matching method, in this
study, was used as the primary method to define observation oper-
ators through polynomial fit. A pre-analysis was conducted to
determine the optimal order of polynomial equations, although
the third-order polynomial equation was often employed (Drusch
et al., 2005; De Lannoy et al., 2007; Han et al., 2012). The results
of pre-analysis showed that the fifth order was best (Fig. 1) and thus
was selected for analysis in this study. The detailed procedures of
the CDF matching method used are summarized as follows:

(1) Rank the spatial averages of soil moisture content for
uplands (l) and gullies (g).

(2) Compute the differences in soil moisture between the corre-
sponding elements of each ranked dataset.c.a

c.c
n

d0k ¼ g0k � l0k ð1Þ
where g0k and l0k denote the ranked spatial averages for gullies and
uplands, respectively, for k = 1, 2, . . . , T, where T denotes the num-
ber of the datasets.

(3) Apply the fifth-order polynomial fit to the ranked soil mois-
ture values and the corresponding differences.

ed0k ¼ k0 þ k1l0k þ k2l02k þ k3l03k þ k4l04k þ k5l05k ð2Þ
(4) Compute the estimated spatial averages in gullies from the
estimated difference.
eg0k ¼ lk þ ed0k ð3Þ
Eq. (2) serves as the observation operator for each dataset to re-
move the systematic differences of spatial averages between gullies
and uplands.

2.1.2. Linear methods
2.1.2.1. LRG method. Linear regression analysis has been shown an
effective method to upscale point measurements to field averages
(De Lannoy et al., 2007; Han et al., 2012; Teuling et al., 2006). In this
study, a simple linear relationship was used as the third method to
estimate spatial averages in gullies. This method was as follows:

~gj ¼ bþ alj ð4Þ

where b and a are the intercept and the slope coefficient, respec-
tively. In this method and the following linear methods, only time
series datasets were used for analyses. Here j = 1,2,...,N, where N is
the total number of sampling events.

2.1.2.2. MRD method. This method is based on the concept of mean
relative difference (MRD) between spatial averages for uplands and
gullies. For a given depth, the relative difference between spatial
soil moisture averages for uplands (lj) and gullies (gj) is defined as:

bj ¼
lj � gj

gj
ð5Þ



Table 1
Overall description of different methods for defining observation operators.

Full name Abbreviations Type No. of parameters The highest order

Cumulative distribution function matching CDF matching Nonlinear 6 5
Linear regression LRG Linear 2 1
Mean relative difference MRD Linear 1 1
Linear rescaling LRS Linear 4 1

a b

Fig. 1. Pre-analysis statistics of determining the optimal order of polynomial fitting equations by using cumulative distribution function (CDF) matching method, (a)
determination coefficient and (b) root mean square error.
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Rearrange Eq. (6), gj can be expressed as:

gj ¼
lj

1þ bj
ð6Þ

Since similar soil moisture time series existed for uplands and
gullies (Fig. 2), we assumed a constant offset b, i.e., the temporal
mean of bj over the study period, to represent bj. Then spatial aver-
ages for gullies could be estimated as:

~gj ¼
lj

1þ b
ð7Þ

where T is the total number of sampling events when soil moisture
was sampled simultaneously for gullies and uplands.In fact, the
MRD method is a special LRG method as assuming a ¼ 1

1þb and
b = 0. However, the MRD method differs from the general LRG
method because a special parameter b is needed to be calibrated.

2.1.2.3. LRS method. LRS method has been widely used to validate
satellite soil moisture products (e.g., Brocca et al., 2010a; Draper
et al., 2009). One distinctive characteristic for this method is that
the rescaled values have the same temporal mean and variance
with the original datasets. Here, we will test whether this method
was viable to define observation operators for estimating spatial
averages of gullies. This method was described as follows:

ĝj ¼ ðlj � �lÞ sðgÞ
sðlÞ þ

�g ð8Þ

where ĝj is the rescaled spatial average of gullies; �l and �g are the
temporal means of lj and gj , respectively; s(g) and s(l) are the
standard deviation of lj and gj in time, respectively.
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 2.2. Validation method

Previous studies have shown that short-term sampling may
lead a failure of temporal transferability of observation operators
(Han et al., 2012). Therefore, we used the soil moisture datasets
in 2010 and 2011 to derive observation operators for each depth
while the datasets in 2012 would be used for validation. The statis-
tical metrics in Section 2.3 were used to evaluate the performances
of these methods.

2.3. Statistical metrics

Determination coefficient (R2), root mean square error (RMSE),
and mean bias error (MBE) were calculated as measures of the
goodness-of-fit between observed (Ej) and estimated (Oj) spatial
averages of gullies. They are defined bellows:

R2 ¼
ð
PT

j¼1ðEj � EjÞðOj � OjÞÞ2PT
j¼1ðEj � EjÞ2

PT
j¼1ðOj � OjÞ2

ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

j¼1

ðEj � OjÞ2
vuut ð10Þ

MBE ¼ 1
T

XT

j�1

ðEj � OjÞ ð11Þ

where T is the total number of sampling days, while �Ej and �Oj are the
temporal means of Ej and Oj, respectively.



(a)

(b)

(c)

(d)

Fig. 2. Time series of soil moisture for gullies and uplands during calibration and validation periods, (a) 0–20 cm; (b) 20–40 cm; (c) 40–60 cm; and (d) 60–80 cm.
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3. Soil moisture datasets

3.1. Study site

The study site is in the Yuanzegou watershed (37�150N,
118�180E) (Fig. 3), located in the north central area of the Loess Pla-
teau, China. This watershed has an area of 0.58 km2 with a gully
area of 0.31 km2 (53.4% of the total). This region has a semiarid
continental climate (Gao et al., 2011) with mean annual precipita-
tion of 505 mm. Detailed meteorological information for this area
refers to Gao et al. (2011). The elevation of the Yuanzegou catch-
ment ranges from 865 to 1105 m. The main gully extends from
south to north, where steep slopes (35–90�) prevail. Much of the
gully bottom comprises exposed bedrock with only a thin soil layer
(<20 cm). The loess soil of this watershed is a silt loam (belonging
to the Inceptisols, USDA). The uplands are composed of various
hillslopes with the length of tens to hundreds of meters and rela-
tively gentle gradients (<35�). The gullies are covered by sparse
perennial grassland; there are four land uses in the uplands,
namely cropland, grassland, fallow land and jujube orchards. The



Fig. 3. Topography of the study site and sampling locations distribution, (a) DEM; (b) slope; and (c) photos of gullies.
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topographic maps (DEM with a 5-m resolution) with the location
of sampling points for soil moisture and a picture of the study
catchment are shown in Fig. 3a and b, respectively.

3.2. Soil moisture datasets

A total of 19 sampling locations along three transects (A, B, and
C) with length from 50 to 80 m along gully sidewalls were estab-
lished for soil moisture collection (Fig. 1). These locations cover dif-
ferent topographic types (ridges, pipes and plain surfaces) in
gullies according to Gao et al. (2011). Soil moisture was not sam-
pled in gully bottom because most of them are exposed to bedrock.
For the uplands, a total of 59 sampling locations were established
to collect soil moisture of hillslopes. The sampling points were dis-
tributed along transects to include different topographic features,
i.e., upper, middle and lower positions on slopes. These sampling
points were also located in areas with different land uses (crop-
land, grassland, fallow and jujube orchards), and at least nine
points were sampled for each land use (Fig. 3). Soil moisture in
the 0–80 cm with an interval of 20 cm was collected by using a
portable Time Domain Reflectometry (TDR) system termed as
TRIME-IPH (IMKO, Ettlingen, Germany). This TDR system was local
calibrated through gravimetric method. The details of calibration
procedure were described in Gao et al. (2011). From 3 May 2010
to 19 September 2011, a total of 52 sampling events were recorded.
We selected 36 out of the 52 sampling events for developing obser-
vation operators in this study because there was a large number of
missing values for the rest. From 15 April to 23 August 2012, a total
of 15 sampling events were conducted and these data would be
used for validating observation operators. On each sampling event,
the all samples were collected within one day to minimize soil
water temporal variations as much as possible.

http
://

ir.
is
Fig. 4. Five-order polynomial fitting through cumulative distribution function
(CDF) matching method for different depths.
4. Results

4.1. Soil moisture temporal patterns

Fig. 2a–d shows the soil moisture time series at different depths
for uplands and gullies during both calibration and validation peri-
ods. Overall, similar temporal patterns were observed for gullies
and uplands; soil moisture increased after rain events and de-
creased thereafter, whereas noticeable lags of response to rainfall
existed in deeper depths. Soil moisture for uplands always exhib-
ited higher values than gullies except for a very few sampling days
(e.g., 12 August 2010) in the 0–20 cm. The difference between soil
moisture for gullies and uplands increased with depths. This could
be ascribed to the much steeper slope in gullies which is not favor-
able for soil moisture infiltration towards deeper depths. It is
worth noting that for each depth, the soil moisture difference be-
tween uplands and gullies decreased following rainstorms and in-
creased during inter-rainstorm periods.

4.2. Performances of observation operators and validation

In this section, we first showed how the original CDFs of spatial
soil moisture averages in uplands were transformed to the ones in
gullies based on soil moisture datasets in 2010 and 2011. Then we
compared the results of different transforming methods in esti-
mating spatial averages in gullies. Finally, validation analysis based
on soil moisture data in 2012 was conducted to test the temporal
robustness of these observation operators.

Five-order polynomial curves and the corresponding coefficient
values for different depths were shown in Fig. 4 and Table 2,
respectively. Significantly different fitting curve was observed for
the 0–20 cm compared to other depths. However, very similar fit-
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ting curves existed between 20–40 and 40–60 cm. This suggests
that observation operators defined by CDF matching method may
be not successful to transfer across the whole root-zone layers.
In-depth analysis on the vertical transferability of observation
operators was shown in Section 4.3. Fig. 5 shows how CDFs of soil
moisture for gullies were rescaled to the ones for gullies at various
layers. In general, the transformed and original CDFs of soil mois-
ture in gullies were very similar, suggesting the CDFs of spatial
averages in uplands were successfully rescaled to spatial averages
in gullies. It is worth noting that as calculating the errors between
estimated and observed soil moisture values, time series datasets
rather than ranked datasets should be used.

The other methods including LRG, MRD and LRS were also used
to estimate spatial averages in gullies. The coefficients of the corre-
sponding transforming equations were listed in Table 2. The statis-
tical metrics defined in Section 2.3 were used to evaluate the
performance of the different transforming methods and were pre-
sented in Table 3. Overall, estimations through observation opera-
tors were significantly better than when directly using upland
measurements as the surrogates of spatial averages in gullies.
Among different transforming methods, the CDF matching method
showed the best results for each depth with the highest R2 values
Table 2
Coefficients of transforming equations for estimating spatial averages in gullies from soil

Methods LRG MRD CDF

Coefficients a b b k0 k1

0–20 cm 0.979 �1.297 0.126 �0.158 7.50
20–40 cm 1.128 �4.633 0.150 �9.428 271.03
40–60 cm 1.237 �7.284 0.188 �18.505 488.73
60–80 cm 1.148 �6.591 0.255 18.603 �488.65

a

c

Fig. 5. CDFs of observed and predicted soil moisture in gullies for differen
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and the lowest RMSE for each depth. The LRG method was consid-
ered as the second best method because it had the lower estima-
tion errors than MRD method in terms of RMSE and MBE, while
LRG and LRS showed very similar values for various statistical mea-
sures. To compare the details of estimation results, the time series
of the estimated soil moisture through these methods were graph-
ically shown in Fig. 6. It also indicated that CDF matching, LRG and
LRS methods performed better than MRD method. Moreover, it is
noteworthy that the estimated values for MRD method signifi-
cantly underestimated the observed values over wet period.

Validation analysis based on soil moisture datasets in 2012 was
used to check the temporal robustness of different observation
operators with the results indicated in the latter section of Table 3.
In general, the CDF matching method performed more poorly over
the validation period than the linear methods except for the sur-
face layer (0–20 cm). For the subsurface layers, RMSE during the
validation period increased by 89.3–122.2% as compare to the val-
ues over the calibration period. Among the linear methods, rela-
tively poor performances were observed for LRG and LRS
methods; for the LRG method, the RMSE values in the 40–60 and
60–80 cm during the validation period were 37.6% and 113.1%
higher than those in the calibration period, respectively; for the.cn
moisture of uplands.

k2 k3 k4 k5

8 �127.390 958.018 �3329.155 4362.336
9 �3047.535 16715.110 �44776.631 46958.005
4 �5074.749 25850.253 �64641.518 63566.171
4 5097.289 �26444.264 68191.188 �69861.989

b

d

t depths (a) 0–20 cm; (b) 20–40 cm; (c) 40–60 cm; and (d) 60–80 cm.

c.a
c



Table 3
Performance comparison of different transforming methods and the results of cross validation. All of R2 values are significant at the level of p < 0.01.

Statistics 0–20 cm 20–40 cm 40–60 cm 60–80 cm

R2 RMSE MBE R2 RMSE MBE R2 RMSE MBE R2 RMSE MBE

CDF 0.951 1.19E�02 �1.78E�04 0.961 9.51E�03 �4.05E�04 0.955 9.48E�03 1.93E�04 0.939 8.73E�03 �2.62E�04
LRG 0.937 1.35E�02 6.84E�06 0.948 1.09E�02 2.14E�06 0.939 1.09E�02 5.73E�06 0.928 9.43E�03 �5.33E�06
MRD 0.937 1.45E�02 �2.10E�03 0.948 1.57E�02 �3.53E�03 0.939 1.80E�02 �3.96E�03 0.928 1.42E�02 �2.56E�03
LRS 0.937 1.36E�02 2.64E�17 0.948 1.10E�02 1.11E�16 0.939 1.10E�02 4.64E�17 0.928 9.52E�03 �1.68E�17
Upland 0.937 2.13E�02 1.65E�02 0.948 2.48E�02 2.17E�02 0.939 3.01E�02 2.68E�02 0.928 3.84E�02 3.70E�02

Validation
CDF 0.963 1.05E�02 4.61E�03 0.844 1.80E�02 7.07E�03 0.857 2.05E�02 1.57E�02 0.935 1.94E�02 1.85E�02
LRG 0.966 9.39E�03 2.96E�03 0.934 1.24E�02 6.04E�03 0.970 1.50E�02 1.36E�02 0.947 2.01E�02 1.94E�02
MRD 0.966 1.12E�02 4.24E�03 0.934 1.27E�02 3.98E�03 0.970 1.63E�02 9.22E�03 0.947 1.50E�02 1.24E�02
LRS 0.966 9.63E�03 3.77E�03 0.934 1.27E�02 5.97E�03 0.970 1.49E�02 1.36E�02 0.947 2.14E�02 2.07E�02

a b

c d

Fig. 6. Time series of soil moisture for gully averages, upland averages, and predictions through different transforming methods (a) 0–20 cm; (b) 20–40 cm; (c) 40–60 cm;
and (d) 60–80 cm. The x coordinate shows the temporal order of sampling over the study period.
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LRS method, the RMSE values over the validation period increased
by 35.5% and 124.8% in the two corresponding depths, respectively.
This means that the temporal transferability of observation opera-
tors defined by the CDF matching, LRG and LRS methods depends
on depths and performed better for shallow depths. However, for
the MRD method, higher R2 and lower RMSE values were observed
at various depths during validation period, indicating the success-
ful transferability of these observation operators in time. We also
showed the time series of observed and estimated soil moisture
for different methods graphically in Fig. 7. It indicated that the
MRD method performed best especially for subsurface layers and
the differences of soil moisture contents for different methods in-
creased with depths.

4.3. Transferability of observation operators for different layers

In this section, we tested if the observation operators for one gi-
ven depth were applicable in other depths. Table 4 shows the rel-
ative bias errors for different statistical measures (R2, RMSE and
MBE) as applying observation operator for a given depth into other
depths compared to the original observation operator for these
corresponding depths. The relative bias errors were calculated as
follows:

e ¼ k0 � k
k

ð12Þ

where e is the relative bias error; k is the value of a given statistical
measure as the original observation operator is used; k0 is the value
of a given statistical measure as the observation operator for other
depths is used. Here we set a threshold for the critical measures R2

and RMSE in terms of the relative bias error k to judge the success/
failure of the vertical transferability of observation operators.
For the specific case in this study, we define that the vertical
transferability fails if the absolute value of the relative bias error
(k) exceeds 50%.



a b

c d

Fig. 7. Time series of observed and estimated soil moisture contents through various methods during the validation period, (a) 0–20 cm; (b) 20–40 cm; (c) 40–60 cm; and (d)
60–80 cm.

Table 4
Vertical transferability of various observation operators. Row A represents the relative bias errors for various measures (R2, RMSE and MBE) as using observation operators at 0–
20 cm into other depths compared to the original observation operators for these corresponding depths. Similarly, Row B represents the relative bias errors as using observation
operators at 20–40 cm into other depths. And Row C and D represent the relative bias errors as using observation operators at 40–60 cm and 60–80 cm into other depths,
respectively. Positive values mean increases of statistical measures and negative values mean decreases of statistical measures.

20–40 cm 40–60 cm 60–80 cm

R2 RMSE MBE R2 RMSE MBE R2 RMSE MBE

A
CDF �2.5% 37.7% 803.7% �3.4% 74.1% �4239.9% �1.6% 140.5% 6732.1%
LRG 0.0% 22.0% >10,000% 0.0% 56.9% >10,000% 0.0% 139.7% <�10,000%
MRD 0.0% �6.4% �99.7% 0.0% �5.0% 25.3% 0.0% 36.6% �689.8%
LRS 0.0% 17.3% >10,000% 0.0% 52.7% >10,000% 0.0% 139.5% >10,000%

0–20 cm 40–60 cm 60–80 cm

B
CDF �27.1% 474.8% <�10,000% �2.2% 32.9% �2929.0% �4.2% 121.1% 5587.0%
LRG 0.0% 32.6% <�10,000% 0.0% 16.5% >10,000% 0.0% 93.0% <�10,000%
MRD 0.0% 7.6% 143.3% 0.0% �6.1% �63.9% 0.0% 19.7% �553.1%
LRS 0.0% 37.5% <�10,000% 0.0% 16.4% >10,000% 0.0% 97.5% >10,000%

0–20 cm 20–40 cm 60–80 cm

C
CDF �50.6% 1816.0% <�10,000% �1.5% 40.9% �1586.4% �2.2% 63.8% 3083.2%
LRG 0.0% 90.4% <�10,000% 0.0% 19.3% <�10,000% 0.0% 50.6% <�10,000%
MRD 0.0% 24.8% 362.4% 0.0% 17.2% 151.8% 0.0% 1.4% �341.4%
LRS 0.0% 98.5% <�10,000% 0.0% 20.9% <�10,000% 0.0% 58.6% >10,000%

0–20 cm 20–40 cm 40–60 cm

D
CDF �81.4% 2017.6% >10,000% �6.0% 106.1% �2964.2% �1.9% 64.6% 4760.1%
LRG 0.0% 120.0% <�10,000% 0.0% 74.3% <�10,000% 0.0% 41.3% <�10,000%
MRD 0.0% 64.1% 714.3% 0.0% 58.0% 395.8% 0.0% 26.1% 220.7%
LRS 0.0% 132.4% <�10,000% 0.0% 75.5% <�10,000% 0.0% 38.2% <�10,000%
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In general, the MBE indicated the greatest changes as observa-
tion operators for other depths were applied while R2 had the low-
est changes. The vertical transferability of observation operators
differed with methods. Among different methods, the CDF match-
ing method showed the poorest vertical transferability; as observa-
tion operators for subsurface layers were applied to the surface
layer, the R2 decreased by 27.1–81.4%; as to RMSE, the increases
of 9 out of 12 values exceeded 50%, with the highest increase of
2017.6%. However, the MRD method showed the best vertical
transferability with slight changes of R2 and the lowest increases
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of RMSE (10 out of 12 values less than 50%). Overall, the vertical
transferability of observation operators across root zone layers
was only successful to a limited extent and failed to transfer across
the whole root zone layers.
5. Discussion

On the Loess Plateau, soil moisture in gullies is important be-
cause of the large proportion of gullies and its significant role in
ecohydrological processes of catchments (Gao et al., 2013). Be-
cause of the difficulty of direct measurements, soil moisture in gul-
lies is needed to be derived through indirect methods. In this study,
we found that spatial soil moisture averages in gullies were esti-
mated accurately from hillslope measurements by using observa-
tion operators.

We used the same soil moisture datasets here for developing
observation operators with our previous study (Gao et al., 2013)
in order to compare the estimation results of different methods.
In our previous paper, time stability analysis was the primary
method for estimation soil moisture in gullies. Compared to the er-
ror statistics in this paper, we found that very similar R2 and RMSE
values existed between time stability analysis and observation
operators, which agrees with De Lannoy et al. (2007) and Han
et al. (2012). This suggests that observation operators also could
be used to estimate spatial averages of soil moisture from mea-
surements of adjacent sites. However, we still recommend the
observation operators derived by CDF matching method (higher
accuracy than MRD and LR method) when estimate soil moisture
in gullies from upland measurements (if available). This is due to
the shortcomings of time stability analysis: (1) the uncertainty of
identifying time-stable locations based on land surface features
(e.g., soil texture, topography or vegetation); (2) the uncertainty
of finding one single time-stable location for different periods
and different depths (Han et al., 2012). Nevertheless, the CDF
matching method is not perfect and is limited through the polyno-
mial fit (Drusch et al., 2005). Additionally, careful application of
MRD method should be required because it would underestimate
wet conditions (Fig. 6).

The test of spatial and temporal transferability of observation
operators in fact focuses on the transferability of parameters.
Observation operators defined by the linear methods (LRG, MRD
and LRS) showed better spatial and temporal transferability than
the nonlinear CDF matching method, although the latter had better
estimation accuracy in the calibration period. It is probably due to
that linear observation operators contained much less parameters
and lower order than the nonlinear one. For the linear observation
operators, the LRS method contained four parameters; the LRG and
MRD observation operators have two and one parameters, respec-
tively. Nevertheless, the nonlinear CDF matching operators have
six parameters and the highest order of five. This also could explain
why the MRD observation operators had better spatial–temporal
transferability than the LRS and LRG methods. As a result, this phe-
nomenon implies that a larger number of parameters and a higher
order of observation operators would increase the estimation accu-
racy of spatial averages in gullies but decrease the probability of
success of transferability in space and time. Our results partly
agreed with the findings of Han et al. (2012) who reported a failure
of temporal transferability, for both linear and nonlinear observa-
tion operators, between two years as upscaling point measure-
ments of permanent sampling location to field averages in two
agricultural sites of Indiana. They guessed that rainfall characteris-
tic was the main factor affecting the temporal transferability of
observation operators. For our study, however, larger estimation
errors during validation period were mainly observed at the sub-
surface layers (40–60 and 60–80 cm) (Table 3). Therefore, soil infil-
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tration properties rather than rainfall characteristics may be
primarily responsible for the failure of temporal transferability.
However, Matgen et al. (2012) observed similar shapes of CDF-
matching observation operators between two years when validat-
ing satellite soil moisture products, suggesting a successful tempo-
ral transferability of observation operators. Nevertheless, it is
worth noting the soil depth of interest in their study was less than
10 cm; therefore, their findings were consistent with ours since
successful temporal transferability of CDF matching operators at
surface layer was also observed here (Table 3). Moreover, Han
et al. (2012) found observation operators for CDF matching method
were vertically transferable at two layers (5 cm vs. 20 cm). This
may be due to only two shallow layers were of investigation in
their study. Han et al. (2012) also showed the successful transfer-
ability of observation operators between two nearby study sites.
Nonetheless, whether the observation operators in our site could
be applied at other gully catchments in the Loess Plateau region
is still not clear and future studies should focus on this possibility.
In addition, Drusch et al. (2005) found that the temporal transfer-
ability of observation operators in transforming remote sensing
maps of soil moisture to model results depends on geographic re-
gions in USA. This means that geographic positions may be a phys-
ical factor affecting the temporal transferability of observation
operators.

Other factors in terms of sampling distance and frequency,
scales and support may also affect the applicability of observation
operators. Sampling distance and frequency and support may af-
fect whether the sampled soil moisture can represent the true spa-
tial and temporal soil moisture characteristics of one site (Western
and Blöschl, 1999), and thus could change observation operators. A
large number of literatures have demonstrated that spatial and
temporal scales greatly affected soil moisture features in space
and time in terms of soil moisture variability and temporal stabil-
ity (e.g., Brocca et al., 2010b; Martínez-Fernández and Ceballos,
2005; Zhu and Lin, 2011). Since observation operators are devel-
oped based on soil moisture spatiotemporal features, the spatial–
temporal scales of soil moisture sampling should affect observa-
tion operators. However, the mechanisms of how sampling dis-
tance and frequency, scales and support affect observation
operators are still not understood and thus needs in-depth studies.

This study provided more general knowledge of soil moisture in
gully catchments and viable methods for estimating soil moisture
in gullies. The results of this study are important because few of
previous studies in this region investigated soil moisture in large
gullies (e.g., Qiu et al., 2001; Fu et al., 2003; Chen et al., 2007; Hu
et al., 2010; Wang et al., 2012a,b). The results presented here are
expected to provide insights for land surface modeling and to im-
prove the understanding of the hydrological effects of large gullies
in this region. In addition, with the increasing availability of re-
mote sensing soil moisture products, this study also provided pos-
sibility for calibration and validation of remote sensing soil
moisture products in the Loess Plateau.

6. Conclusions

This study investigated the applicability of transforming hill-
slope soil moisture averages to those of gullies at four depths (0–
20, 20–40, 40–60, and 60–80 cm) by using observation operators.
Soil moisture datasets in 2010 and 2011 were used for defining
observation operators and soil moisture datasets in 2012 were
used for validation. Four different nonlinear and linear methods
including cumulative distribution function (CDF) matching meth-
od, linear regression (LRG) method, mean relative difference
(MRD) method, and linear rescaling method (LRS) were used to de-
fine observation operators. The results showed that CDF matching
method performed best in estimating soil moisture in gullies, fol-
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lowed by LRG, LRS and MRD methods. Validation analysis indicated
that linear observation operators performed better temporal trans-
ferability than the nonlinear CDF-matching observation operators
which failed to transfer in time for the subsurface layers. Moreover,
the MRD, LRG and LRS methods exhibited better vertical transfer-
ability than the CDF matching method. However, the transferabil-
ity of observation operators across the whole root zone layers was
not successful. This study indicated that a larger number of param-
eters and a higher order of observation operators would increase
the estimation accuracy whereas decrease the probability of suc-
cess of spatial and temporal transferability.
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