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a b s t r a c t

Owing to the critical situation of water resources and demographic pressure, improvement of crop water
use efficiency (WUE = grain yield per unit seasonal evapotranspiration) in the dryland area of Loess Plateau
of China is crucial. The aims of this study were (i) quantifying WUE of dryland maize (Zea mays L.) in the
Loess Plateau, and (ii) identifying management practices that improve both WUE and yield. We compiled
a data base of 36 sets of experiments spanning more than 20 years, where conventional practice (CT) was
compared with alternatives including RT/NT, reduced or no tillage without straw mulching; SM, straw
mulching; PM, plastic film mulching 100%; RM, plastic film mulching 50% or more; RMS, ridge mulched
with plastic film + furrow mulched with crop straw.

Yield ranged from 1.12 to 14.6 Mg ha−1 and WUE from 2.8 to 39.0 kg ha−1 mm−1; the maximum yield
and WUE were achieved under RM, PM and RMS and the minimum under CT. Practices had small and
inconsistent effect on seasonal evapotranspiration, hence variation in yield and WUE were attributable
oil water at sowing
ield
ater use efficiency

to changes in both the contribution of soil evaporation to total evapotranspiration and the partition-
ing of seasonal water use before and after silking. The yield-evapotranspiration relationship indicated
that attainable WUE was 40 kg ha−1 mm−1. Few crops, however, reached this efficiency emphasizing the
opportunities for improvement. Implications for crop management and further improvement in yield
and WUE are discussed.

© 2014 Elsevier B.V. All rights reserved.
. Introduction

Water stress is the main limiting factor for crop production
n rainfed farming systems in arid and semi-arid areas (Debaeke
nd Aboudrare, 2004). In China, rainfed farming systems account
or about 25 Mha, mostly located in the semi-arid Loess Plateau
from 100◦54′ to 114◦33′E and 33◦43′ to 41◦16′N) (Deng et al.,
006). Soils and climate of the region have been described in
etail (Huang et al., 2011; Li and Xiao, 1992; Turner et al., 2011).

riefly, well-drained, light and medium loamy soils account for
0% of the soils in the region, with silt content (0.001–0.05 mm)
round 60–75%. The climate is mostly semiarid, with long-term

∗ Corresponding author at: State Key Laboratory of Soil Erosion and Dryland Farm-
ng, Northwest A & F University, Yangling 712100, Shaanxi, China.
el.: +86 29 87088120; fax: +86 29 87080055.

E-mail address: zhangshulan@nwsuaf.edu.cn (S. Zhang).

ttp://dx.doi.org/10.1016/j.fcr.2014.04.003
378-4290/© 2014 Elsevier B.V. All rights reserved.
annual precipitation ranging from 150 to 300 mm in the north to
500–700 mm in the south but declining trends have been recorded
between 1961 and 2010 (Wang et al., 2012a). Owing to population
growth and scarcity of water resources, the challenge is to increase
food production with less water. Technologies for improving
crop water use efficiency (WUE = grain yield per unit seasonal
evapotranspiration) are critical for sustainable crop production
and local food security. Therefore, quantifying the attainable WUE
is essential to diagnose current crop and field management and
identify opportunities for improving WUE without yield penalty.

Rainfed cropping systems in the region accounts for more than
80% of the arable land (Huang et al., 2011). The limited water and
frost-free window allows for a single crop per year. Family farms,
typically 0.7–1 ha in size, are prevalent in the Loess Plateau (Nolan

et al., 2008; Huang et al., 2011) where maize and wheat are the
dominant crops (Turner et al., 2011) and input cost of production
ranges from 60 to 200 $US/ha (Nolan et al., 2008). Machinery is
gradually replacing animal and human labour for farm operations

dx.doi.org/10.1016/j.fcr.2014.04.003
http://www.sciencedirect.com/science/journal/03784290
http://www.elsevier.com/locate/fcr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fcr.2014.04.003&domain=pdf
mailto:zhangshulan@nwsuaf.edu.cn
dx.doi.org/10.1016/j.fcr.2014.04.003
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Fig. 1. Plastic mulching in maize crops in Gansu Province, Loess Plateau of China.

uch as sowing and harvesting. Crop yield is primarily driven by
nnual rainfall and its distribution (Huang et al., 2011). The aver-
ge yield in tableland areas with higher rainfall, for example in
ingyang, are 3.5 Mg ha−1 for winter wheat and 6.5 Mg ha−1 for
aize, whereas in the hilly area with lower rainfall, for example

n Dingxi, is 1.0 t ha−1 for wheat (Nolan et al., 2008).
As the main crop, maize growing season spans from end of

pril to September, whereas 50–60% of annual precipitation falls
s rain during the summer, from June to September. The mismatch
etween the rain season and maize cycle means the crop is consis-
ently constrained by rainfall during early growth stages, whereas
rratic rainfall at later stages may also reduce grain yield. Within
his context, innovations in soil and crop management are sought
o improve yield, water uptake and WUE. Conservation tillage and
ther field management practices, such as mulching with plastic
lm, have been extensively tested and applied to crop production.

n a review of Chinese cropping systems over the past decade, Xie
t al. (2008) showed that conservation tillage increased crop yield
r gave similar yields to conventional tillage in 89% of studies, and
ecreased crop yields in the remaining 11% of studies. Plastic film
ulching practices include alternating ridges and furrows, with

nly the ridges mulched with plastic film (Li et al., 2001; Wang
t al., 2009), and a recently developed technique of double ridges
nd furrows mulched with plastic film. The latter technique has
een reported to improve yield significantly (Liu et al., 2009; Zhou
t al., 2009), and it has been applied to more than 200,000 ha in the
orthwest of the Loess Plateau Fig. 1.

Despite limitations that are widely acknowledged (e.g. French
nd Schultz, 1984), boundary functions provide a robust framework
o analyze water-limited yield (French and Schultz, 1984; Angus
nd van Herwaarden, 2001; Sadras and Angus, 2006; Grassini
t al., 2009a, 2009b). This approach was used to assess water
se efficiency of wheat in low rainfall environments worldwide
Sadras and Angus, 2006), wheat in the Loess Plateau (Zhang
t al., 2013), sunflower in Argentina (Grassini et al., 2009a) and
aize in USA (Grassini et al., 2009b). Despite the large number

f yield/evapotranspiration (ET) relationships reported for maize
n the Loess Plateau, water use efficiency in this region has not
een benchmarked. Importantly, this type of benchmark is useful
o compare alternative management practices (Zhang et al., 2013).

In this work, we compiled yield and ET data from field-grown

aize under different practices in the Loess Plateau to: (i) ana-

yze yield, water use and WUE responses to various agronomic
ractices; (ii) determine boundary functions for the relationship
etween grain yield and seasonal ET; and (iii) discuss the agronomic
earch 163 (2014) 55–63

factors with potential to reduce gaps of yield and WUE. By accom-
plishing this objective we are also making valuable information
originally published in Chinese journals more broadly available.

2. Methods

Combining key words ‘maize’, ‘evapotranspiration’ and ‘Loess
Plateau’, we searched for papers published between 1996 to 2012
in three data bases: Elsevier ScienceDirect, SpringerLink and China
Academic Journal Network Publishing Database. Yield (with about
15% moisture content) and evapotranspiration (ET) data were taken
from tables or digitized from graphs. We identified 36 studies car-
ried out in smallholder farms and experimental stations under
rain-fed conditions in the Loess Plateau (Appendix 1). The approach
to data compilation and analysis has been described in Zhang
et al. (2013). To avoid excessive cross-referencing, here we sum-
marize the method. Data from the same experiment but reported
in more than one publication were not repeated; the publication
with the most complete dataset or combination of data from dif-
ferent periods was used. All crops received adequate and balanced
amounts of fertilizer to ensure no nutrient-related constrain to crop
growth, hence, maize yield was mainly driven by water supply and
the influence of other agronomic practices on soil water balance
(e.g. tillage method). Reported ET was calculated as in-season pre-
cipitation plus change in soil water content between sowing and
harvest at least for a 2 m soil layer. This assumption could lead to
(i) underestimation of ET and overestimation of WUE with shal-
lower soil layer (i.e. <2 m) but this is unlikely in the deep soils of the
regions, or (ii) overestimation of ET and underestimation of WUE
particularly in wetter seasons were deep drainage and runoff might
bias estimates (Sadras and Angus, 2006). WUE was calculated as the
ratio of yield and ET.

In all these papers, local conventional tillage (CT) was compared
with one or more alternative practices including: RT/NT, reduced
tillage or no tillage without straw mulching; SM, no tillage or con-
ventional tillage or subsoiling with straw mulching; PM, plastic
film mulching 100% (including biodegradable film and liquid film
applied in four studies, i.e. Zhang et al., 2012a; Li et al., 2012; Xiaoli
et al., 2012; Wang et al., 2011); RM, plastic film mulching about
50%; RMS, ridge mulched with plastic film + furrow mulched with
crop straw. The local conventional tillage was ploughed soil with
no ground cover. In most studies, maize was harvested at matu-
rity; harvest time varied between treatments thus capturing the full
agronomic implications of difference practices. Plastic mulch was
removed after harvest in most cases, but some experiments kept it
for soil water conservation during fallow. Nevertheless, new instal-
lation is regularly made before sowing irrespective of maintenance
of mulch during fallow.

Standard errors for yield and ET were not always reported so
no attempt was made to account for variable errors among exper-
iments (Hunter and Schmidt, 1990). Descriptive statistics were
calculated for all three traits, i.e. yield, ET and WUE. Using local
conventional tillage (CT) as reference, we calculated the percent
change in yield, ET and WUE for each experiment as:

Change in trait(%) = TraitAP − TraitCT

TraitCT
(1)

Where subscripts indicate conventional (CT) and alternative
practices (AP) listed above. Frequency distributions of changes in
yield, ET and WUE were calculated for each alternative practice
except for RT/NT and RMS, as these had only 10–11 data points.

Independent-samples t-test was used for pair-wise comparisons of
CT and alternative management practices for yield, ET and WUE.
The SPSS software package (v16.0) was used for all the statistical
analyses.
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Fig. 2. Frequency distribution of change in (A) yield, (B) evapotranspiration and
(C) water use efficiency of maize in the Loess Plateau. Changes are the value of the
variable under alternative practice relative to local conventional tillage. Alternative
practices SM, no tillage or subsoiling or conventional tillage with straw mulching;
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M, plastic film (or biodegradable or liquid film) mulching 100%; RM, plastic film
ulching about 50%; Numbers between brackets are average percent change in

ield, ET and WUE.

Boundary function analysis followed the approach of French and
chultz (1984). Yield is plotted against seasonal crop ET, and a lin-
ar function is fitted to those data that delimit the upper frontier
or yield. This linear frontier has agronomically meaningful param-
ters, i.e. the slope represents the seasonal transpiration-efficiency
TE) and the x-intercept is usually interpreted to be the (minimum)
mount of seasonal soil evaporation (Sinclair et al., 1984).

. Results

.1. Yield

Grain yield ranged from 1.12 to 14.6 Mg ha−1 across soils, sea-

ons, and treatments (Table 1). The average for each practice ranged
rom 5.96 Mg ha−1 for CTSM to approximately 9.8 Mg ha−1 for RM
nd PM. On average, alternative practices increased yield relative
o conventional by 11% under SM to 76% under PM (Fig. 2A). Both

able 1
aize yield, evapotranspiration (ET) and water use efficiency (WUE) under various mana

Practices No. of data (n) Grain yield (Mg ha−1)

Mean Range

SM 84 6.48 a 3.1–11.7
CTSM 5.96 a 2.6–11.4
RM 47 9.89 a 4.83–14.6
CTRM 7.50 b 2.16–12.2
PM 40 9.70 a 5.5–14.33
CTPM 6.21 b 2.05–8.89
RMS 11 9.59 a 4.98–11.52
CTRMS 7.25 b 4.1–8.84

ote: SM, no tillage or subsoiling or conventional tillage with straw mulching; RM, plasti
ith plastic film + furrow mulched with crop straw; CT, conventional tillage, the subscr
ifferent lower case letters in the same column mean significant difference between alte
earch 163 (2014) 55–63 57

yield and yield responses to management practices relative to con-
ventional had a wide range of variation (Table 1).

Frequency distributions of change in yield are presented for SM,
RM and PM treatments (Fig. 2A); small sample size precluded anal-
ysis for RMS. The results further highlighted the spread of yield
responses. Yield responses under stubble mulch (SM) were largely
neutral to positive, with yield increase up to 45%. The RM and PM
practices had neutral to large positive effects on yield, with 20–30%
records of improvement larger than 50% (Fig. 2A). Yield change
under RMS was 35% on average, and varied from 12% to 73%.

3.2. Seasonal crop evapotranspiration

Seasonal ET ranged from 253 to 706 mm, but means for different
practices showed a relatively narrow range, from 380 to 398 mm
(Table 1). Frequency distributions of changes in ET also showed an
overall neutral effect, with few cases where alternative practices
increased or decreased ET more than 10% (Fig. 2B). In addition, RMS
generally had neutral effect on ET relative to CT (data not shown).

Analysis of a subset of studies reporting soil water content at
sowing showed consistent gains for SM, PM, RM, and RMS in rela-
tion to conventional tillage except one year at one site (Table 2). On
average, SM increased initial soil water over CT from 16 to 27 mm,
and RM increased it from 9 to 53 mm. A consistent benefit of PM in
increasing soil water over CT during fallow was apparent, from 18
to 65 mm. Overall, PM was superior to other practices in terms of
capturing water during fallow.

The small variation in ET under alternative practices (Table 1)
compared to robust improvements in storage of soil water at sow-
ing (Table 2) suggest some degree of decoupling between these
variables, as shown in Fig. 3. In some cases, change in ET correlated
with change in initial soil water, but the slopes are lower than 1 thus
indicating that for 1 mm increase in initial soil water, ET increased
by 0.6–0.9 mm (Fig. 3A and B). In other cases, changes in evapo-
transpiration were unrelated to changes in initial soil water content
(Fig. 3C and D).

3.3. Relationships between yield and water use

Fig. 4 shows grain yield as a function of evapotranspiration
for the pooled data. A boundary line with slope 40 kg grain
ha−1 mm−1 (a proxy to attainable transpiration efficiency, TE) and
x-intercept = 40 mm provided an upper limit for all the data. Crop
WUE ranged from 2.8 to 39.0 kg ha−1 mm−1 across soils, seasons,

and treatments, whereas averages for each practice ranged from
15.6 to 26.2 kg ha−1 mm−1 (Table 1), which accounted for 39–66%
of attainable TE. Water use efficiency improved an average of 11%
with SM, 35% with RMS, 39 with RM and 69% with PM (Fig. 2C).

gement practices in the Loess Plateau.

ET (mm) WUE (kg ha−1 mm−1)

Mean Range Mean Range

390 a 253–691 17.4 a 8.2–29.2
396 a 253–706 15.6 a 6.3–27.1
380 a 282–554 26.2 a 14.0–39.0
387 a 261–582 18.0 b 7.8–30.3
398 a 278–545 24.6 a 17.4–36.9
380 a 280–582 15.8 b 6.5–29.4
394 a 277–538 24.5 a 17.4–31.6
398 a 261–582 18.6 b 14.7–27.1

c film mulching 50% or more; PM, plastic film mulching 100%; RMS, ridge mulched
ipts indicate corresponding CT of alternative practices listed in the first column.
rnative practice and its corresponding CT tested by t-test (P < 0.05).
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Table 2
Change in water content in soil profile (0–200 cm) at maize sowing under various management practices compared with conventional tillage.

Practice Location Min.–Max (mm) Average (mm) Experimental years Reference

SM Heyang, Shaanxi 13–38 23 2007–2009 Cai et al., 2011
Heyang, Shaanxi 16–33 26 2007–2009 Shang et al., 2010
Pengyang, Ningxia 6–32 18 2007–2010 Gao et al., 2012
Shouyang, Shanxi −2–40 27 2003–2008 Wang X., et al., 2011

RM Heyang, Shaanxi 7–14 9 2007–2010 Li et al., 2012
Heyang, Shaanxi 11–47 27 2009–2010 Zhang et al., 2012
Zhenyuan, Gansu – 53 1998–2000 Wang, 2001
Zhenyuan, Gansu – 36 1999–2002 Fan et al., 2005
Zhenyuan, Gansu 11–34 20 1999–2010 Wang et al., 2012a,b

PM Xifeng, Gansu 36–46 42 2002–2004 Li et al., 2006
Jingyuan, Gansu 34–46 40 2006–2008 Yang et al., 2010
Yuzhong, Gansu 40–55 47 2006–2008 Yang et al., 2010
Zhuanglang, Gansu 52–68 60 2006–2008 Yang et al., 2010
Qinzhou, Gansu 58–72 65 2006–2008 Yang et al., 2010
Anding, Gansu 39–58 49 2005–2007 Liu et al., 2008
Zhenyuan, Gansu 46–61 53 2005–2007 Liu et al., 2008
Yuzhong, Gansu 15–60 38 2007–2009 Zhang et al., 2010
Zhuanglang, Gansu 24–60 42 2008–2010 Liu et al., 2012
Heyang, Shaanxi 16–21 18 2007–2010 Li et al., 2012
Xixian, Shanxi 56–65 61 – Dang et al., 2006
Pengyang, Ningxia 33–77 55 – Ma et al., 2011

Note: SM, no tillage, subsoiling or conventional tillage with straw mulching; PM, plastic film (or biodegradable or liquid film) mulching 100%; RM, plastic film mulching 50%
o
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Significant correlations were found between yield and both soil
ater at sowing (Fig. 5) and pre-silking water use (Fig. 6). No asso-

iation was found between yield and post-silking water use (data
ot shown). As the benchmark in Fig. 4 is based on seasonal evapo-
ranspiration, the association between yield and water use before

ilking in a subset of data (Fig. 6) suggests seasonal distribution of
ater supply could explain part of the gaps between boundary line

nd data points below it.

ig. 3. Relationship between change in seasonal evapotranspiration of maize and change in
nder alternative management relative to conventional practice. In (A and B) the lines are
lastic film mulching 100% during certain time of fallow before sowing; SM is straw mulc
t al. (2008), (B) Cai et al. (2011), (C) Yang et al. (2010), (D) Wang X., et al. (2011). The slop
n presowing soil water.
4. Discussion

4.1. Yield responses to alternative practices

Owing to the spatial and temporal variation in weather, differ-

ences in soils and crop management practices such as sowing date
and sowing density, there was a large variation in yield for a given
target practice, i.e. CT and alternatives. The neutral or adverse effect

soil water content at sowing in the Loess Plateau. Changes refer to values measured
y = x. Alternative practices are: (A) PM, (B) SM, (C) PM, and (D) RT, SM; where PM is
hing during fallow; RT is reduced tillage without straw mulching. Sources: (A) Liu
es are indicated increments of evapotranspiration contributed by per mm increase
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Fig. 4. Relationship between maize grain and evaportranspiration (ET) in the Loess
Plateau of China (n = 314). The solid line is based on French and Schultze (1984)
f −1 −1
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rontier concept, with x-intercept = 40 mm and slope = 40 kg grain ha mm . For
omparison we included the dashed line with slope of 37 kg grain ha−1 mm−1

eported for maize in the Western Corn-Belt by Grassini et al. (2009b).

f straw mulching on yield, observed in approximately 45% of cases,
an be attributed to low soil temperature, which slows down maize
evelopment (Dam et al., 2005; Zhang et al., 2011). Hence, appli-
ation of straw mulching in the region needs to consider its impact
n soil thermal condition and consequences for crop development.

In contrast to the inconsistent effects of stubble on yield, alter-
ative practices using plastic film mulching (RM, PM and RMS)
ignificantly increased maize yield by more than three tons per
ectare (Table 1, Fig. 2A). This could be attributed to a combination
f factors including higher soil temperature that accelerated maize
evelopment (Liu et al., 2010b; Li et al., 2013a), higher available soil

ater (Liu et al., 2010c; Li et al., 2013b; Zhang et al., 2011), lower

oil evaporation (Li et al., 2013b), improved capture of radiation (Liu
t al., 2010b), enhanced nutrient uptake and reduced weed pres-
ure (Kasirajan and Ngouajio, 2012). However, due to depletion of

ig. 5. Soil water content and maize yield relationship. Practices are: (A) CT, SM and (B)
lm mulching 100% during fallow and crop season. Source: (A) Shang et al., 2010; (B) Yan
earch 163 (2014) 55–63 59

soil water and fertility derived from RM and PM practices (Li et al.,
2007; Zhang et al., 2011), the RMS might be a sustainable means of
increasing crop yield and WUE in the region.

4.2. Water use and water-yield relationships

Despite improvement on initial soil water content (Table 2),
alternative practices generally had small impact on seasonal water
use (Table 1, Fig. 2B and Fig. 3) except for PM, for which about
20% of cases showed gains in ET. This indicates that alterna-
tive practices mainly change the ratio between soil evaporation
and maize transpiration (Li et al., 2013b). The attainable maize
yield in the Loess Plateau was bounded by a line with slope
representing transpiration efficiency = 40 kg grain ha−1 mm−1, and
x-intercept representing soil evaporation = 40 mm. For maize in the
western USA Corn Belt, the boundary transpiration efficiency was
37 ± 1.3 kg grain ha−1 mm−1 and the soil-evaporation parameter
75 mm (Grassini et al., 2009b). Of interest, the boundary transpi-
ration efficiency of 37 kg grain ha−1 mm−1 estimated by Grassini
et al. (2009b) applies to our data, except where crops were grown
with plastic mulch. The higher transpiration efficiency and lower
soil evaporation in our data set compared with the parameters
for maize in USA were therefore mostly associated with crops
under plastic mulch (triangles in Fig. 4), reinforcing the gain in effi-
ciency and reduced soil evaporation under this practice. Part of the
increased transpiration efficiency maybe explained by higher radi-
ation use efficiency (RUE) under this practice; this is supported by
both local experiments (Liu et al., 2010b) and theory on the link
between RUE and TE (Stockle and Kemanian, 2009). Early studies
reported correlations between RUE and TE in sunflower (Sadras
et al., 1991).

Among various practices in the region, the highest WUE was
achieved under RM, PM and RMS and the lowest was under CT.

Small variation in ET indicated that increase in WUE under alter-
native practices was attributable to differences in yield (Table 1),
which in turn relates to variation in soil evaporation/transpiration
ratio (Li et al., 2013b) and pre-silking water use (Fig. 5).

CT, PM; where SM is straw mulching during fallow and crop season; PM is plastic
g et al., 2010.
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Fig. 6. Correlation between evapotranspiration before silking with maize yield. Source: (A) Cai et al., 2011; (B) Li et al., 2010.
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The average WUE across all practices was 21.5 kg ha−1 mm−1,
hich compares well with global measured average WUE of

8.0 kg ha−1 mm−1 for irrigated maize (Zwart and Bastiaanssen,
004), again reinforcing the effective use of agricultural practices

n the region. Nonetheless, large and frequent yield gaps (i.e. the
oints under the boundary line in Fig. 4) may result from environ-
ental (e.g. rainfall pattern) and management factors (e.g. sowing

ate). For example, rainfall close to the critical period of kernel
umber determination would increase yield and WUE compared to
ainfall concentrated in earlier or later parts of the season (Otegui
t al., 1995; Passioura and Angus, 2010). A large proportion of small
ainfall events favours soil evaporation losses, as documented else-
here (Sadras, 2003). Then, mismatch between plant population
ensity and rainfall could also contribute to the gap (Barbieri et al.,
012; Grassini et al., 2011a). In addition, different varieties might
lso contribute to the scatter of yield vs. ET data (Liu et al., 2010a).

Grassini et al. (2011b) found a ceiling for yield of 15 Mg ha−1

hen seasonal water supply reached about 650 mm for irrigated
aize in USA. In comparison, our data set suggests a ceiling of yield

f 14.4 Mg ha−1 for ET => 400 mm (Fig. 4). This can be related to
irect effects of excess water, or indirect effects such as lower tem-
erature and less radiation during critical reproductive stages in
xtremely wet seasons (Cirilo and Andrade, 1994). Other reasons
ay contribute further to the apparent discrepancy. For example,

n the present study the residual soil moisture at maturity has
een subtracted from the ET estimate, while Grassini et al. (2011b)
ave not. Also, lower vapor pressure deficit in the Loess Plateau
ompared to the western US Corn Belt (Sadras and Angus, 2006)
ccounts for part of the difference in TE between regions.

.3. Implications for management

.3.1. Increasing water availability and reducing water loss
The relationship between maize yield and soil water at sow-
ng highlighted the importance of water supply for guaranteeing
rop growth at early stages, when rainfall is scarce in the Loess
lateau. A larger benefit of PM in increasing soil water over CT dur-
ng fallow was apparent (Table 2). This was because the PM blocks
soil evaporation (Li et al., 2001), and increases harvesting of small
rainfall events (<5 mm) (Zhu et al., 2004). Greater amounts of stored
soil water at sowing could support higher plant population density
conducive to greater biomass accumulation and ultimately greater
yield (Nielson et al., 2010). Hence, encouraging farmers to apply
PM and adjusting other practices such as sowing density would be
important to improve maize production and WUE in this region.

4.3.2. Modulating the partitioning of water use before and after
flowering

Crop water use depends on water availability, population den-
sity and structure and nutrient supply, as these factors modulate
the rate of canopy and root expansion. Based on relationship in
Fig. 6, previous studies have shown that higher population den-
sity increased crop ET during the initial stages of maize growth
(Barbieri et al., 2012) or before silking (Alessi and Power, 1974,
1976). In the Loess Plateau, soil water availability increased under
PM (Table 2) thus providing the opportunity for increased popu-
lation density leading to higher yield (Liu et al., 2014), and WUE.
Nevertheless, further studies are needed to define plant population
density according to pre-sowing stored water.

There are also opportunities to tailor nitrogen fertilization to
soil management, site and rainfall. A 10-year field experiment
under conventional practice showed that in dry seasons maize
yields decreased with increasing N rate above 120 kg ha−1, and
in normal or wet seasons, maize yields increased with increasing
N to 240 kg ha−1 (Zhou et al., 2004). Under plastic film mulching,
Zhang et al. (2012b) reported the optimum N fertilization rates
were lower in dry season or with low available soil water at sowing
(150 kg N ha−1), compared with normal season and high available
soil water at sowing (>300 kg N ha−1). Furthermore, Wang et al.
(2012b) documented that split application of nitrogen contributed
both high maize yield and better grain quality compared with single
application under plastic film mulching in both fallow and growing

season period. In addition, N rate of 200 to 250 kg N ha−1 with split
application favoured water use and biomass accumulation before
silking which could increase yield closer to potential (13.1 to
15.1 Mg ha−1) from dry to wet seasons under PM (Liu et al., 2014).
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herefore, PM during fallow and growing season would buffer dry
pells, and allowing for a refined N management determined by
ocal yield target based on cultivar and sowing density.

In conclusion, soil and crop management offer a range of solu-
ions to increase maize yield and WUE in water-limited Loess
lateau. To improve dryland maize production and close yield and
UE gaps, strategies include (i) increase the capture and reten-

ion of fallow rain through mulching, especially plastic cover; (ii)
ncrease the proportion of water productively transpired by the
rop in-season through mulching, especially plastic cover com-
ined with crop residue and (iii) increase ET before silking by
djusting population density and fertilizer N management.
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