早地长期培肥土壤脲酶和碱性磷酸酶 动力学及热力学特征研究

邱莉萍¹, 王益 $权^{2*}$, 刘 军², 张兴昌¹

(1 西北农林科技大学水土保持研究所,陕西杨凌 712100; 2 西北农林科技大学资源环境学院,陕西杨凌 712100)

摘要:研究了连续 25 年长期培肥试验条件下土壤脲酶和碱性磷酸酶酶促反应的动力学和热力学特征,从酶学角度 揭示长期培肥的效应。结果表明,长期培肥增加了 脲酶和碱性磷酸酶酶促反应的 V_{max}、V_{max}/K_m和 k 值;降低了 E_a、v G、v H 和 v S 值,说明培肥能提高酶促反应速度、减小活化自由能、加快土壤中物质的生物循环过程。酶促 反应动力学参数和热力学参数与土壤性质相关分析表明,酶促反应动力学参数大多依赖于土壤化学性状,基于动 力学参数的土壤肥力指标体系可评价土壤肥力水平,且U V_{max}、P K_m、P- V_{max}可作为土壤肥力的重要指标。 关键词:长期培肥;土壤酶;动力学;热力学 中图分类号: S1541 2 文献标识码: A 文章编号: 1008-505X(2007)06-1028-07

The dynamic and thermodynamic characteristics of soil reactions catalyzed by soil enzymes under long2term fertilization in Loess Plateau

QIU L2 ping¹, WANG Y2 quan^{2*}, UU Jun², ZHANG Xing chang¹

(1 Institute of soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China;

2 College of Resource and Environment Science, Northwest A&F University, Yangling, Shaanxi 712100, China)

Abstract: Soil enzyme is a sensitive indicator of soil fertility condition. The dynamic and thermodynamic characteristics of soil enzymes can illustrate the enzyme catalyzed soil biochemical processes and explain the changing mechanisms of soil fertility. In this paper, the dynamic and thermodynamic parameters of soil reactions catalyzed by soil enzymes were anal lyzed for the soils under 25 years. continuous fertilization. The objective of this research was to reveal the effects of long2 term fertilization on soil fertility from the aspects of soil enzymes. The results showed that long2term fertilization increased V_{max} , V_{max}/K_m and k, but decreased E_a , v G, v H and v S, indicating that fertilization could improve the velocity of enzymatic reaction, decrease the free energy for activation, and thermodynamic parameters of enzymatic catalyzed reaction and phosphorus. The correlation analysis between dynamic and thermodynamic parameters of enzymatic catalyzed reaction mainly depended on soil chemical properties and the soil fertility evaluation index system based on dynamic and thermodynamic parameters could be used to evaluate soil fertility. The results from this study further implied that U- V_{max} , P- K_m and P- V_{max} were important indices for the evaluation of soil fertility.

Key words: long2term fertilization; soil enzymes; dynamic parameters; thermodynamic parameters

土壤酶学的研究从开始就与土壤肥力和土壤质 量的研究紧密联系^[1-2]。土壤酶活性及土壤酶催化 的生化反应特征是表征土壤质量的重要量度,也是 指示土壤养分供应能力的重要指标,而且酶促反应

收稿日期: 2006-08 25 修改稿收到日期: 2006-12-26

基金项目:西北农林科技大学科研创新团队项目;国家973计划(2007CB106803)项目资助。

作者简介: 邱莉萍(1979)),女,汉族,江西赣州人,博士,主要从事土壤生物质量研究。Tel: 029 87019629,E2mail: qiulp79@tom.com

* 通讯作者 Tel: 029- 87019228, E2mail: wyiquan@public. xa. sn. cn

特征的变化对评价土壤施肥后的生化代谢响应具有 重要意义。Masciandaro等^[3]研究表明,土壤在分施 有机肥、有机)无机复混肥、无机肥料一年后,脱氢 酶动力学常数有不同的变化,施用有机物料和有机)无机复混肥后脱氢酶的 Vmax值增大,施无机肥料 后土壤脱氢酶 Vmax值无显著变化;但施用有机肥料 的土壤脱氢酶 Km 值不变,而施用有机)无机复混 肥和无机肥料的土壤 Km 值显著增加。并认为脱氢 酶动力学常数可以作为衡量土壤中微生物活性变化 的有效指标。

土壤酶促反应动力学方法对探讨土壤酶的来 源、性质及影响因素,提高土壤肥力和进一步调控反 应过程有着重要意义, 它有助于揭示各反应的中间 阶段以及各种生物现象,可以反映酶促反应过程; 而酶促反应热力学方法仅涉及反应的始态和终态, 不考虑反应进行的详细过程,但却可以反映酶促反 应的结果,有利于对反应的宏观特征进行描述[4]。 因此,将两种方法结合起来既能反映酶促反应的微 观过程,又能了解宏观结果,从而能更全面地研究土 壤酶的催化特性。目前国外对土壤酶动力学、热力 学研究的较多,如 Dalal、Gianfreda、阿里耶夫等^[57]; 国内仅有和文祥和朱铭莪等^[89]对陕西不同土类脲 酶动力学做了研究,但长期施肥后土壤酶促反应的 动力学和热力学特征及其与土壤肥力状况之间的关 系方面的研究鲜有报道。本研究以长期培肥试验为 材料,研究了脲酶和碱性磷酸酶动力学、热力学反应 特征,探讨了各参数与土壤肥力之间的关系,旨在通 过两种酶的动力学、热力学研究,深入认识土壤酶的 作用机理,探索用动力学参数和热力学参数表征土 壤培肥过程及其作用程度,为土壤酶促反应的合理 调节提供理论依据。

1 材料与方法

111 供试土样

供试土样采自西北农林科技大学 1977 年在农一站设置的长期肥料定位试验地,种植制度为冬小麦)玉米一年两熟制。本研究选取其中的 4 个试验处理^[10],即:1)对照(无肥, CK), 2)化肥(尿素和过磷酸钙施用量分别为 450 和 525 kg/hm², CF), 3)中量秸秆(在 CF处理基础上施用玉米秸秆 18750 kg/hm², MS), 4)厩肥(在 CF处理基础上施用厩肥 9375 kg/hm², BM)。每年在冬小麦播前按方案一次施入玉米秸秆、有机厩肥和化肥,并翻入 20 cm 土层内。各处理重复 3 次,随机区组排列。培肥试验开始前土壤基本性状为:有机质 1410 g/kg,全氮 01 89 g/kg,全磷 01 67 g/kg,碱解氮 541 45 mg/kg,速效磷 715 mg/kg,属中等肥力水平,土壤类型为重壤质 土(系统分类命名为土垫旱耕人为土,Earth2cumuli2 orthic anthrosols),土壤 pH 719。

本研究所用的土壤样品采自 2002 年冬小麦播 种前(试验已进行了 25 年),各处理土壤性质差异明 显(表 1)。采样时先去除表层未腐解的秸秆,每个 试验小区分别用五点法取 5) 20 cm 耕层土样,并混 匀风干,处理过 1 mm 筛备用。

The chemical properties of the soil before sampling Table 1 处理 有机质 (g/kg) 全氮 (g/kg) 碱解氮 (mg/kg) 全磷 (g/kg) 速效磷 (mg/kg) Available P Treatments Organic matter Total N Alkal2 hydrolysable N Total P 11 0 2 3 CK 151 118 511625 01 698 61 836 151 975 Œ 11068 551125 01776 141 634 MS 181 726 11 364 711750 01784 171430 221 486 11 489 871938 11018 BM 511 184

表1 取样前土样的化学性状

112 试验方法

11211 脲酶酶促反应 称取 5 g风干土于三角瓶 中,加入 1 mL 甲苯,静置 15 min 后,于不同尿素浓度 (10、50、100、500 mmol/L)、不同反应时间(3、6、9、12、 15、24 h)和不同温度(15、30、45 e)下用 Hoffmann 与 Teicher 法^[11]测定脲酶活性。

11212 碱性磷酸酶酶促反应 称取5g风干土于三

角瓶中,加入 5 滴甲苯后, 于不同磷酸苯二钠浓度 (1、5、10、20 mmol/L)、不同时间(3、6、9、12、15、24 h) 和不同温度(15、30、45 e)下用 ±^e¶³法^[11]测定碱 性磷酸酶活性。

113 酶促反应参数计算

11311 土壤酶促反应动力学参数计算 在一定底物浓度下,酶活性与时间关系曲线过零点切线的斜

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

率为酶促反应初速度(V₀); 土壤酶促反应可用 Michaelis- Menten 方程来描述:

$$\frac{1}{V_0} = \frac{K_m}{V_{max} @S} + \frac{1}{V_{max}}$$
(1)

用 Lineweaver2Burk 法作图可求得米氏常数 (Km)和最大反应速度(Vmax)^[12]。

11312 酶促反应速度常数 k 和活化能 Ea 的计 算^[13]:

$$k = \frac{1}{t} @\ln(\frac{V_{max}}{V_{max} - V_t})$$
(2)

其中, V_{max}为最大的释放氨或酚速率, t 为反应时间, ∀ 为t 时间释放的氨或酚量。

活化能 Ea 由 Arrhenius 速度方程的积分式求得:

$$\ln k = \ln A - \frac{E_a}{R\Gamma}$$
(3)

其中 k 为温度T 时的反应速度常数, T 为酶促反应 温度(K), A 为频率因子, R 为气体常数 81314 J/ (mo#K)。

11313 土壤酶酶促反应热力学参数计算^[13]:

活化自由能: $G = RT \ln(\frac{RT}{hkN})$	(4)
活化焓: \$H= E _a 2RT	(5)

活化熵:
$$S = \frac{SH - SG}{T}$$
 (6)

其中: T 为开氏温度(K), k 和 R 同上, N 为阿伏加 德罗常数(61023 @10²³个分子数/mol), h 为普朗克 常数(61626 @10⁻³⁴J/S)。

本研究中方差分析用 SAS 软件进行,用 LSD 法 进行多重比较。

2 结果与讨论

211 土壤酶酶促反应的 Km 和 Vmax

土壤酶的 Km 值通常作为表征土壤酶与底物结 合牢固程度的指标,在数值上等于初速度达到最大 反应速度一半时的底物浓度。当 Km 值小时,酶与 底物结合牢固,亲和力大;反之,酶与底物的亲和力 就小。从表 2 可知,由于脲酶和碱性磷酸酶所参与 的反应及其机理不同,两者的 Km 值差异很大。脲 酶的 Km 值介于 14~50 mmol/L 之间,碱性磷酸酶的 则在 018~215 mmol/L 之间;而且脲酶和碱性磷酸 酶 Km 值随温度变化有所不同,这与前人的研究结 果一致^[14 16]。脲酶和碱性磷酸酶的 Km 值在 15 e 和 30 e 时相差不大,但在 45 e 时急剧增大,这是因为 泪度升真后并化了会与反应的酶 K 值试小, 泪度 升高也加速了酶) 底物复合体的分解和反应产物的 解离, 使 K_m 值增加; 但不同施肥措施对 K_m 值的影 响不大。

最大反应速度 V_{max}是总酶量的量度,可反映酶) 底物复合物的分解速率。对土壤来讲,它是实现 某种酶过程的潜在能力的容量指标,在一定条件下, V_{max}对某一酶类是个特定值。本研究中,各处理土 壤脲酶和碱性磷酸酶 V_{max}值均随温度的升高而增 加; 除碱性磷酸酶在 15 e 时,施肥处理 V_{max}值相近, 且明显大于无肥处理外,各温度下不同培肥处理脲 酶和碱性磷酸酶 V_{max}值均为 BM> MS> CF> CK。说 明施肥显著加快了发生在土壤中的酶促反应速度, 促进土壤中的氮、磷循环。

和文祥和朱铭莪在研究陕西土壤脲酶与土壤肥 力关系时发现, Vmax/Km 值是反映酶促反应特征的 重要指标, 可指示土壤肥力水平^[8]。在本研究中, 各 处理土壤脲酶和碱性磷酸酶的 Vmax/Km 值均随温度 升高而增加, 而且各温度下施用有机肥后土壤脲酶 Vmax/Km 值均有显著增加, 长期施肥后土壤碱性磷 酸酶的 Vmax/Km 值在低温(15e)和高温(45e)条件 下也有所增加, 以化肥和中量秸秆处理增加较大。

212 土壤酶酶促反应速度常数 k 和活化能 Ea

通过对土壤酶促反应速率常数 k 的计算发现 (表 3),随温度升高,各处理土壤脲酶、碱性磷酸酶 的反应速率常数逐渐增大,说明土壤酶促反应为吸 热反应,温度升高促进了土壤的酶促反应。在同一 温度下,各处理脲酶 k 值顺序为: BM、MS> CF> CK,碱性磷酸酶 k 值为施肥处理高于不施肥处理, 施肥处理之间反应速率常数差异不显著,表明施肥 能加速酶促反应,这与前述的 Vmax值变化趋势一致。

在土壤酶学研究中,活化能 Ea 是指酶和底物 形成活化络合物时所必须取得的最低能量,即反应 过程中必须克服的能量障碍,可用来表征酶促反应 的难易程度和反应速度的快慢。不同培肥措施中, 土壤脲酶 Ea 值的顺序为: CK> CF> MS> BM;碱性 磷酸酶 Ea 值的顺序为: CK> CF> MS> BM;碱性 磷酸酶 Ea 值的顺序为: CK> BM> CF> MS(表 3)。 说明长期培肥降低了土壤酶促反应的活化能,有利 于酶)底物络合物的形成,从而加速了土壤生化反 应进程,促进了氮、磷营养元素的转化。但施肥的效 果因土壤酶的类别和肥料的不同而异。长期施用秸 秆和厩肥有利于土壤中脲酶酶促反应的进行;而长 期施用秸秆和化肥则有利于土壤中碱性磷酸酶酶促 反应的进行。

温度我亮后病化了参与反应的酶。Km值减小;温厚ublishing House. All rights reserved. http://www.cnki.net

Table 2 Kinetic parameters of urease and alk phosphatase for different soil treatments										
酶类	处理	1	K _m (mmol/L)	$V_{max}[NH_3 mg/(g\#h)]$			V _{max} / K _m		
Enzymes	Treatments	15e	30 e	45 e	15 e	30e	45 e	15 e	30e	45 e
脲酶	CK	161 619	171 280	471 3 3 1	01 0091	01 0257	01 0787	01 0006	01 00 15	01 0017
Urease	CF	241 225	191 846	411952	01 01 81	01 0327	01 0962	01 0007	01 00 16	01 0023
	MS	141 155	131 588	431 5 62	01 0 199	01 0346	011124	01 0014	01 0025	01 0026
	BM	151 572	181 639	501 5 74	01 02 18	01 0410	01 1471	01 0014	01 0022	01 0029
LSD ₀₁₀₅	温度 Temp.		61 448			01 0238			01 0003	
	处理 Treat.		71 445			01 0275			01 0003	
碱性磷酸酶	CK	11 1 10	01817	11632	010180	01 0345	01 1053	01 0162	01 0422	01 0645
Alk.2phosphatae	CF	11 005	01 986	11877	01 0242	01 0461	01 1 370	01 0240	01 0467	01 0730
	MS	01 932	11 204	11986	01 0227	01 0498	01 1408	01 0244	01 0413	01 0709
	BM	11 396	11419	21 5 59	01 0242	01 0581	01 1695	01 0173	01 0410	01 0662
LSD ₀₁₀₅	温度 Temp.		01 281			01 0211			01 0036	
	处理 Treat.		01 325			01 0244			01 0041	

表 2 各处理土壤脲酶、碱性磷酸酶的动力学参数

表 3 各处理土壤脲酶、碱性磷酸酶的 k 和 Ea 值

Table 3 The k and Ea values of urease and alk. - phosphatase for different soil treatments

处理 Treatments	脲酶 Urease k(@10 ⁻³ /h)		E_a	碱性磷酸酶 Alk phosphatase k (@10 ⁻³ /h)			E _a	
15e		30e	45e (KJ/ IIOI)		15e 30e		45 e	(KJ/ 1101)
CK	21 0	81 5	714	361 6 9	01 075	01 19	01 37	401 49
CF	31 3	91 2	1013	291 5 7	01 096	01 23	01 42	371 84
MS	41 5	91 7	1119	24188	01 098	01 21	01 42	37116
BM	51 2	91 5	1219	231 2 3	01 087	01 22	01 43	401 00
LSD0105 温度Temp.		11 67				01 019		
处理 Treat.		11 93				01 022		

213 土壤酶酶促反应热力学特征

土壤酶促反应热力学参数见表 4。其中活化自 由能 \$G 是酶促反应自发进行可能性的量度, \$G 值越小, 酶促反应进行的可能性越大, \$G值小于零 时反应可自发进行^[10]。各培肥土壤脲酶和碱性磷 酸酶的 \$G> 0, 说明土壤脲酶和碱性磷酸酶形成活 化络合物的过程不能自发进行。在同一温度下, 不 同处理土壤脲酶的 \$G 值排序依次为: CK> CF> MS> BM; 而碱性磷酸酶 \$G值各处理的排序随温 度变化差异较大, 且培肥处理均比不培肥处理小, 表 明长期培肥后土壤的酶促反应活化自由能有所降 低, 酶促反应得到了促进。

活化焓 \$H 通常用以表征酶的活性部位与反应 物结合时从外界所需获取的能量。在4个处理中, 土壤脲酶和碱性磷酸酶的 \$H 均大于 0,说明需要 从环境中获得较多的能量才能使酶促反应进行。各 培肥处理2种酶的 \$H 值均随温度升高而减小,进 一步说明土壤酶促反应为一吸热过程。同一温度下,各处理土壤脲酶的 \$H 值大小为: CK> CF> MS > BM;碱性磷酸酶的 \$H 值大致为: CK> BM> CF > MS。这些结果表明,温度升高和长期施肥都能减少酶的活性部位与反应物结合时从环境所需获取的能量,从而能以更少的能量完成形成活化络合物必须具有强的应变、扭曲、甚至键的断裂,以至达到过渡状态,完成酶促反应过程。

活化熵 \$S则是表征实现过渡态可能性的量度,\$S越小,反应物在酶活性中心定向有序性越大,酶促反应越强。4个处理土壤脲酶和碱性磷酸酶的\$S都小于0,说明酶与反应物形成活化络和物的过程使体系有序性增强。各培肥处理土壤脲酶和碱性磷酸酶\$S值均在30e最大,说明30e时,两种酶活性中心定向有序性达到最大。同一温度条件下不同处理土壤脲酶 \$S值为:CK>CF>MS>BM,碱性磷酸酶 \$S值为 CK>BM>CF>MS,表明长期培

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

	1 abic 4			ise and ark ph			11.5	
处理	温度		脲酶 Urease		碱性磷酸酶 Alk phosphatase			
Treatments	T(e)	\$ G(kJ/mol)	\$H(kJ/md)	\$ S(J/ mol)	\$G(kJ/mol)	\$H(kJ/mol)	\$ S(J/ md)	
CK	15	851 30	341 29	- 177110	93121	381 09	- 191138	
	30	861 27	341 17	- 171196	95184	371 97	- 191100	
	45	911 02	341 04	- 179116	98197	371 84	- 192123	
CF	15	841 16	271 18	- 1971 85	921 60	351 44	- 198149	
	30	861 07	271 05	- 194178	951 39	351 32	- 198128	
	45	901 15	261 93	- 1981 79	981 58	351 19	- 199133	
MS	15	831 40	221 49	- 211148	921 55	341 77	- 200162	
	30	851 93	221 36	- 2091 80	951 53	341 64	- 200195	
	45	891 77	221 24	- 212138	981 58	341 52	- 201145	
BM	15	831 04	201 84	- 215199	921 80	37161	- 191163	
	30	851 97	20171	- 215135	95146	371 48	- 191137	
	45	891 55	201 59	- 2161 85	981 56	371 36	- 192148	
LCD	温度 Temp.	01 74	01 005	21 26	01 16	01 006	01 3 2	
LSD0105	处理 Treat.	01 86	01 006	21 61	01 18	01 007	0137	

表 4 各处理土壤脲酶、碱性磷酸酶的热力学参数

Table 4 Thermodynamic parameters of urease and alk. - phosphatase for different soil treatments

肥减小 \$S值,从而促使反应物在酶活性中心定向 有序性较大,酶促反应易于进行。 关系

214 土壤酶促反应动力学参数与基本肥力因子的

酶促反应动力学各参数与土壤理化性质之间的 关系见表5。随反应温度由15e上升到45e,土壤

表 5 酶学参数与土壤理化性质间的相关分析

Table 5 Correlation	coefficients between	enzymatic parameters a	und soil	physic2 chemi cal	properties
---------------------	----------------------	------------------------	----------	-------------------	------------

				2	-	1.5			
项目	温度	物理粘粒	有机质	全氮	碱解氮	全磷	速效磷	nН	പ്രവ്ന
Items	T(e)	Physi@clay	OM	Tot. N	Alk N	Tot. P	Avail. P	μι	Cacos
U- K _m	15	01 209	- 01 495	- 01 607	- 01 542	- 01 241	- 01 292	01 434	01 135
	30	01 652	- 01067	- 01 304	- 01 143	01 257	01 235	- 01 277	01 455
	45	01 529	01 601	01 472	01 575	01 628	01 678	- 01 964*	01 405
U- V _{max}	15	- 01 640	01 788	01 807	01 791	01 756	01719	- 01 230	- 01 835
	30	- 01 393	01 934*	01 896*	01 924*	01 931*	01912*	- 01 547	- 01 629
	45	- 01 283	01 989**	01 944*	01 980*	* 01 967 **	01 963*	* - 01 697	- 01 509
U- V_{max}/K_m	15	- 01 636	01 886*	01 974*	* 01918*	01 704	01 706	- 01410	- 01 736
	30	- 01 784	01 739	01 884*	01 787	01 503	01 502	- 01 185	- 01818
	45	- 01 555	01 905*	01913*	01 908*	01 854	01 831	- 01417	- 01 757
P-Km	15	01 535	01 674	01 485	01 626	01 801	01 828	- 01 979*	* 01 317
	30	- 01 432	01 979**	01 975*	* 01 982*	* 01 912*	01 905*	- 01 594	- 01 630
	45	- 01 168	01 973 * *	01 894*	01 954*	* 01 992 * *	01988^{\ast}	* - 01751	- 01415
P- V _{max}	15	- 01 516	01 594	01 565	01 579	01 659	01 607	- 01 096	- 01 735
	30	- 01 437	01 920*	01 891*	01912*	01911*	01 889*	- 01 502	- 01 667
	45	- 01 364	01916*	01 866*	01902^*	01 934*	01911*	- 01 541	- 01610
P- V _{max} / K _m	15	- 01 832	- 01 144	01 006	- 01110	- 01 225	- 01 281	01 756	- 01 790
	30	01 094	- 01 581	- 01 652	- 01617	- 01 365	- 01419	01 584	01 062
	45	- 01 692	- 01157	- 01 066	- 01 143	- 01 153	- 01218	01 703	- 01 704
U E _a		01 657	- 01 867	- 01 908*	- 01 880 [*]	- 01 784	- 01 759	01 320	01 830
P- E _a		01 897*	01 077	- 01 095	01 035	01 198	01 249	- 01 723	01 843

 $r_{0105} = 01\ 878; r_{0101} = 01\ 959$

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

脲酶的Km与物理性粘粒、有机质、全氮、碱解氮、全磷、有效磷及 CaCO₃ 的相关系数逐渐增大,而与 pH 的相关系数逐渐减小。土壤脲酶的 Vmax 与各理化性质的相关系数也呈现相似规律,且在 30 e 时与有机质、全氮、碱解氮、全磷、有效磷呈显著正相关关系;在 45 e 时与这些指标呈极显著正相关关系。Vmax/Km 与物理性粘粒、pH、CaCO₃ 含量呈负相关;在 15 e 和 45 e 下与有机质、全氮、碱解氮呈显著或极显著正相关。

15 e 时土壤碱性磷酸酶的 Km 除与 pH 呈极显 著负相关外,与其它理化性质均呈正相关关系; 30 e 和 45 e 时, Km 与有机质、全氮、碱解氮、全磷、 速效磷呈显著或极显著正相关;而与物理性粘粒、 pH、CaCOs 含量呈负相关。Vmax在任何温度下与物 理性粘粒、pH、CaCOs 含量呈负相关,在 30 e 和 45 e 时, Vmax与有机质、全氮、碱解氮、全磷、速效磷呈显 著正相关。Vmax/Km 除与 pH 呈明显的正相关外,与 其它理化性质均呈现负相关或极小正相关,这是因 为Vmax/Km 为一相对指标,其值主要取决于 Vmax和 Km 及土壤碱性磷酸酶的酶促反应过程,而与土壤性 质之间的相关性不大。

脲酶 Ea 值与物理性粘粒、pH 和 CaCO3 呈正相 关关系,与有机质、全氮、碱解氮、全磷和速效磷含量 呈负相关关系,且与全氮和碱解氮呈显著负相关; 碱性磷酸酶 Ea 值与物理性粘粒、全磷、速效磷和 CaCO3 含量呈正相关关系,而与 pH 值呈负相关关 系,与有机质、全氮和碱解氮等性质相关性不显著。 活化能与土壤肥力水平有关的理化性质的负相关关 系还表明土壤肥力水平的提高有利于土壤酶促反应 的进行。

综上所述, 酶促反应的动力学和热力学参数从 不同方面、不同程度反映了土壤脲酶和碱性磷酸酶 的活性与酶促反应过程及特征; 在特定条件下, 某 一个动力学因子起主导作用, 从而决定了表观酶活 性的高低。用动力学参数组成的土壤肥力体系可用 来评价肥力水平, 且U Vmax、P-Km、P-Vmax可作为土 壤肥力的重要指标。

3 结论

1)长期培肥降低了酶促反应的活化自由能,减少了酶的活性部位与反应物结合时从外界所需的能量,并能促使反应物在酶活性中心定向有序性增大,加速酶促反应的进行。

水平有关的土壤化学性质,与土壤物理性粘粒及 CaCO3含量关系不大,而活化能 Ea与土壤肥力水平 有关的理化性质呈负相关关系,表明土壤肥力水平 的提高有利于土壤酶促反应的进行。

3) U- V_{max}、P- K_m、P- V_{max}是反映酶促反应初速 度最重要的指标,可指示土壤肥力水平。

参考文献:

- [1] 邱莉萍,刘军,王益权,等. 土壤酶活性与土壤肥力的关系研究[J]. 植物营养与肥料学报,2004,10(3):277-2801
 Qiu L P, Liu J, Wang Y Q et al. Research on relationship between soil enzyme activities and soil fertility[J]. Plant Nutr. Fert. Sci., 2004, 10(3):277-2801
- [2] 樊军,郝明德.黄土高原旱地轮作与施肥长期定位试验研究
 [J].植物营养与肥料学报,2003,9(2):146 1501
 Fan J, Hao M D. Study on longterm experiment of crop rotation and fertilization in the Loess Plateau Ö. Relationship between soil enzyme activities and soil fertility[J]. Plant Nutr. Fert. Sci., 2003, 9(2): 146-1501
- [3] Masciandaro G, Ceccanti B, Ronchi V. Kinetic parameters of dehy2 drogenase in the assessment of the response of soil to vernicompost and inorganic fertilizers[J]. Biol. Fert. Soils, 2000, 32: 479-4831
- [4] 朱铭莪,白红英,代伟,等.陕西几种土壤过氧化氢酶的动力 学和热力学特征[J].西北农业大学学报,1989,17(1):20-251 Zhu M E, Bai H Y, Dai W et al. Catalase s dynamic and thermody namic of several soils in Shaanxi[J]. Acta Univ. Agric. Boreal2 occ2 dent., 1989, 17(1):20-251
- [5] Dalal R C. Distribution, salinity, kinetic and thermodynamic charac2 teristics of urease activity in a vertical profile[J]. Aust. J. Soil. Res., 1985, 23: 49-601
- [6] Gianfreda L, Cristofaro A D, Rao M A et al. Kinetics behavior of syn2 thetic organo and organo2mineral2urease complexes[J]. Soil Sci. Soc. Am. J., 1995, 59: 811- 8151
- [7] Aliyev S A, Gadjiyev D V, Mikaibv F D. Kinetic and thermodynamic characteristics of enzymes invertase and urease in azerbaijan soils[J].
 , 1984, (11): 55 66l
- [8] 和文祥,朱铭莪.陕西土壤脲酶与土壤肥力关系研究心.土壤 脲酶动力学特征[J].土壤学报,1997,34(1):42-521
 He W X, Zhu M E. Relationship between urease activity and fertility of soils in Shaanxi province[J]. Acta Pedol. Sin., 1997, 34(1):42
 - 521
- [9] 朱铭莪,乔安生.不同施肥条件下 土脲酶动力学研究[J]. 西北农业大学学报, 1994, 22(4): 89-911
 Zhu M E, Qiao A S. The urease kinetics in Lou soil under different fertilization conditions [J]. Acta Univ. Agric. Boreal 2 occident., 1994, 22(4): 89-911
- [10] 张一平,张福锁,樊小林,等.二十一年长期土壤培肥定位试验的启示[R].陕西杨凌, 1998l
 Zhang Y P, Zhang F S, Fan X L. Inspiration of a 21 years fixed fet2 tilization experiment[R]. Yangling, Shaarxi, 19981

◎2)酶促反应动力学参数大多依赖于与土壤肥力 ublishing 关松荫. 去糠酶及基研究法[Md. 北京:农业出版社, 1986]

Guan S Y. Soil enzyme and its research methods[M]. Beijing: Agri2 cultural Press, 1986

- [12] 郭蔼光. 基础生物化学[M]. 北京:世界图书出版公司, 1997
 Guo A G. Basic biochemistry[M]. Beijing World Book Publishing Press, 19971
- [13] 蒋以超,张一平.土壤化学过程的物理化学[M].北京:中国 科学技术出版社,19931
 Jiang Y C, Zhang Y P. Physical chemistry in soil chemical processes

[M]. Beijing: China Science & Technology Press, 19931

[14] Kramer S, Green D.M. Acid and alkaline phosphatase dynamics and

their relationship to soil microclimate in a semiarid wood land [J]. Soil Biol. Biochem , 2000, 32: 179–1881

- [15] Nor YM. Soil urease activity and kinetics[J]. Soil Biol. Biochem., 1982, 14: 63-651
- [16] 樊军. 黄土高原旱地长期定位试验土壤酶活性研究[D]. 陕西杨凌:中国科学院水土保持研究所硕士论文, 20011 Fan J. Study on enzyme activities of a long/term experiment in Loess Plateau[D]. Yangling, Shaanxi: MS thesis of Institute of Soil and Water Conservation, CAS, 20011

欢迎订阅 2008 年5 植物营养与肥料学报6

2008年的5植物营养与肥料学报6,为双月刊,大16开本,页码增至200页,单月25出版,定价28元,全年168元。邮发代号:82-169。可通过全国各地邮局办理2008年订阅手续。也可直接汇款到本刊编辑部办理订阅。

地 址: 100081 北京市中关村南大街 12 号

中国农科院资源区划所5植物营养与肥料学报6编辑部

- 电 话: 010- 68918653 Email: zwyf@chinajournal. net. cn
- 网址: http://www.plantnutrifert.org
- 银行帐号: 农行北京北下关支行
- 户 名: 中国农业科学院农业资源与农业区划研究所
- 帐 号: 050601040011896