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Abstract: Angiosperm tree species in temperate regions are broadly divided into diffuse-porous and ring—porous species
based on their xylem anatomy. Diffuse—porous species show very little distinction between the diameter of vessel elements in
early versus late wood while ring-porous species have a bimodal distribution of vessel diameters associated with large early
season vessels and small late season vessels. These anatomical differences result in differences between these two kinds of
tree species in stem water transport capacity and in the vulnerability to drought-induced cavitation. However it is not clear
if diffuse-porous and ring-porous species show differences in leaf hydraulic traits. Water transport resistance in leaves
accounts for 30% —80% of the total hydraulic resistance of the whole-plant water transport pathway and relatively few
studies have focused on leaf hydraulics owing to methodological barriers; hence elucidating the differences between diffuse—
porous versus ring-porous species in leaf hydraulics and in leaf hydraulic trait coordination with stem hydraulic traits can be
helpful in demonstrating the differences between diffuse—porous and ring-porous tree species in plant water use geological
distribution leaf phenology and ecological adaptation.

We compared hydraulic traits of branches and leaves in three diffuse-porous deciduous tree species ( Populus
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tomentosa  Platanus hispanica Prunus serrulata) and three ring-porous deciduous tree species ( Robinia pseudoacacia
Albizia julibrissin  Fraxinus chinensis) growing in northwestern China. Branch and leaf water transport capacity was
evaluated by their maximum hydraulic conductivities ( K, ) and the hydraulic vulnerability was evaluated with P50 which
corresponds to the branch or leaf water potential at 50% loss of maximum hydraulic conductivities. For stems P50 was
inferred from the vulnerability curves generated by air injection or bench dehydration method. For leaves the curves were
constructed by measuring hydraulic conductance ( K,,,;) in leaves rehydrated from a range of water potentials ( ¢r,.,) . K.
was measured by assessing kinetics of i, relaxation upon leaf rehydration.

The results showed that branch cross—sectional area-based maximum specific conductivities ( K of the ring—porous

s-max )

species were greater than those of the diffuse-porous species. Ring-porous species were more vulnerable to cavitation ( P50

) than  diffuse-porous species and a tradeoff relationship was evident between K and P50 in branches. No

s-max branch

differences were found between leaf water transport capacities ( K, ) or the vulnerability to hydraulic dysfunction ( P50,,,)

in the two species types and there was no tradeoff relationship between K, and P50 In the three diffuse-porous

T-max leaf *

species leaves were more vulnerable than branches to water stress-induced dysfunction but in the ring-porous species

branches were more vulnerable than leaves. Pearson correlation analysis indicated that there was no correlation between
branch and leaf hydraulic traits ( K, and P50) in the six investigated woody species. These results suggest that in our
study: (1) diffuse-porous and ring-porous species diverged mainly in branch but not in leaf hydraulics so that leaf
hydraulics alone cannot be used to explain the differences between these two tree types in ecological function and

adaptation. (2) Branch and leaf hydraulic traits were relatively independent and may be correlated with branch and leaf

structure respectively.

Key Words: diffuse-porous species; ring-porous species; branch and leaf; hydraulic traits

30% —80%
| 23
4
5
468 3 3
79
1
1.1
6 3 : ( Populus tomentosa) .
( Platanus hispanica) . ( Prunus serrulata) 3 : ( Robinia pseudoacacia) . ( Albizia
Julibrissin) . ( Fraxinus chinensis) o 20a o N
N 20—25 cm 7—10 m N 35—40 cm 12—15 m.
N 2—3 o 2011 8

http: / /www. ecologica. cn



5089
1.2
1.2.1
N N N 10
! 25—30 cmo
10 kPa (20 mmol/L KCI+1 mmol/L CaCl,)
Q( g/min) (K,=Q/AP/L AP L
) (K.=K,/S S ) o o
( Kipar) 10 min
(K,) (PLC=(1-K,;/K,,,) x100) 80% o
PLC 0
(K,) 10 kPa
(Kia) PLC( %) o 20 mmol/
L KCl+1 mmol/L CaCl, .
3 Weibull PLC/100=1-exp( —( —x/b) ¢) 2
b 63.2% ¢ b b o
50% P50, .. o
1.2.2
Brodribb " o
.3
3 o N
(30—300 s) Yro
Kleaf =
Cron( o /) /1 C s t o
(C,,, mmolem *MPa™") PV o Tyree PV
1 Schulte PV " Py
( RWC) (1) P, ORWC/ 3y, (MPa™")
bw (g) 1A (m’) WW (= - g M
(g/mol) o o
() K o 3
Sigmoid 16
y=—94
1+ e'(TO)
0 K otaman © 50%
P50, o

http: / /www. ecologica. cn



5090 32

2
2.1
1 6 o 3 N
S 3 -1 MPa -1 MPa 3
75% « Weibull 6 - 3 P50,
—-1. 80— -3.49 MPa -2.55 MPa 3 P50,.. —0.07— -0.65 MPa -0.27
MPa. P50,.... ( ¢ P<0.05)
3 . 3 ( t P<0.05) (1),
100 — i 100 I
| EBAMH P. tomeniosa |
' |
80 | } 80 |- |
| R=0998% |
60 — | P50 =-2.36 60 |- |
| Komax= 3.55 @
40 - I 40 |- WM P. pseudoacacia : %
I =0.981%* I
= | . PS0=-0.65 |
* : 2 K= 5.38 !
| |
0 i | [ I 'S 0 | | | o
-5 -4 -3 -2 -1 0 -3 -2 -1 0
100 ~ 100
£ ot £ wt
¥ ¥
3 ; : 2
}WE w_ﬁmﬁhmpamca HI[E . o
ﬁ(: 2= (0.988** =H<g A A. julibrissin
o P50=-1.80 B P=0.991%*
.ﬁ & PV Kaw=224 ﬁ & 40| Ps0=-0.07
& 8 K= 4.60
i ;: i =3 %n
g 20 - g 20 |
-] =M
1 | 0 |
-5 -4 -3 -2 -1 0 =3 -2
100 | 100 —
|
|
30 80 |-
: 4L P serrulata B F.chinensis
60 — l 2=0988%* 60 L 2= (.999%*
P50=-3.49 P50=-0.10
Ks—mu= 1.45 K,_m“= 471
40 — 40
20 20 |-
0 : O— 0 ;
-5 -4 -3 -2 -1 0 -3 -2
/A R E ) fERED
Applied/xylem pressure/MPa Applied pressure/MPa

13 3
Fig.1 Branch vulnerability curves for three diffuse—and three ring-porous species
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s-max

branch ( 1 )

(n=6)

Table 1 Pearson correlations between branch and leaf hydraulic traits of six woody species

P50

Maxm.lum spemf.m. Branch water Leaf maximum hydraulic P30 .
hydraulic conductivity . . Leaf water potential
¢ branch potential at conductance £ 50% of K
e 50% loss of K.y, (Kip) 2 30% of K
Maximum specific hydraulic conductivity of 1
branch ( K,,,..)
P50 . !
Branch water potential at 50% loss of K., 0.868
Leaf maximum hydraulic conductance ( K,,.) -0.576™ R !
PSO ’; ns ns ns 1
Leaf water potential at 50% of K|, 0.339 0.451 ~0.767
* P<0.05 ns
2.2
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