Chinese Journal of Applied Ecology, Jul. 2012 23(7): 1846-1852

大穗型小麦产量形成过程中光合特性的动态变化^{*}

王丽芳 徐宣斌*** 王德轩 上官周平

(西北农林科技大学水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨陵 712100)

摘 要 在大田条件下,对 8 个大穗型小麦新品系和多穗型品种西农 979(对照)的产量性状 以及不同生育期叶片光合速率、叶绿素荧光参数、叶绿素含量(Chl) 和叶面积指数(LAI) 进行 研究. 结果表明:除单位面积穗数低于对照外 8 个新品系的穗粒数、穗粒重和千粒重均显著高 于对照,大穗型小麦新品系 2036、2037、2038、2039 和 2040 的产量显著高于对照; 8 个新品系 的平均光合速率(P_a) 与对照差异不显著,而 PS II 最大光能转换效率、PS II 实际量子效率、光 化学猝灭系数和 PS II 反应中心活性均高于对照; 品系 2037、2040、2039、2038 和 2036 的 Chl 比对照分别提高 17.5%、19.1%、15.3%、13.9% 和 7.9%; 大穗型小麦品系的 LAI 明显高于对 照,且在生育后期下降缓慢.

关键词 大穗型小麦 产量 光合特性

文章编号 1001-9332(2012)07-1846-07 中图分类号 S311 S512.1 文献标识码 A

Dynamic changes of photosynthetic characteristics in big-spike wheat yield formation. WANG Li-fang, XU Xuan-bin, WANG De-xuan, SHANGGUAN Zhou-ping (State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, North-west Agriculture and Forestry University, Yangling 712100, Shaanxi, China). -Chin. J. Appl. Ecol., 2012 **23**(7): 1846 – 1852.

Abstract: A field experiment was conducted to investigate the yield traits , leaf photosynthetic rate , chlorophyll fluorescence parameters , chlorophyll content (Chl) , and leaf area index (LAI) of eight new big-spike wheat lines , with multiple-spike cultivar Xinong 979 (*Triticum aestivum* cv. Xinong 979) as the control. The eight new lines had significantly higher kernel numbers per spike , kernel qualities , and 1000-grain mass but lower spike numbers per unit area , and the lines 2036 , 2037 , 2038 , and 2040 had significantly higher yields than the control. The average net photosynthetic rate (P_n) of the eight new lines had no significant difference with that of the control , but the PS II maximum energy conversion efficiency , PS II actual photochemical efficiency , photochemical quenching coefficient , and PS II reaction center activity of the lines were higher than those of the control. The leaf Chl of the lines 2037 , 2039 , 2038 and 2036 were 17.5% , 19.1% , 15.3% , 13.9% , and 7.9% higher than those of the control , and their LAI was significantly higher than that of the control and declined slowly in late growth period.

Key words: big-spike wheat; yield; photosynthetic characteristics.

随着我国小麦需求量的日益增长和耕地面积的 持续减少,大穗型品种由于具有穗大粒多、单穗产量 潜力较大的穗部特征,逐渐受到育种和栽培专家的 关注^[1].光合作用是作物干物质积累和获取产量的 基础^[2-3] 小麦产量的90%~95%来自于直接或间 接的光合作用^[4],尤其是在生育后期,功能叶的光 合产物对籽粒的贡献达80%,开花后新合成的光合

* 中国科学院知识创新重要方向项目(KZCX2-YW-JC408)资助. * *通讯作者. E-mail: xxb931@ sohu. com 2011-12-30 收稿 2012-04-27 接受. 产物是小麦籽粒灌浆物质的主要来源^[5],高产小麦 品种更是如此.大穗型小麦生长发育过程中群体发 展动态良好、株间光照合理、源库关系协调是开发产 量潜势的基础,研究其产量形成过程中光合特性的 动态变化对于提高小麦产量具有重要的指导作用.

近年来的生产实践表明,小麦高产群体的培育 需要全面提高孕穗-开花-成熟期的群体质量,建立 高成穗率和高光效群体结构^[6].具有高产潜力的品 种(系)在生育后期具有较高的光合速率、较大的光 合叶面积和较高的 PS II 最大光化学效率(F_v/F_m), 并且其光合功能期长 叶绿素含量高 能够延缓叶片 衰老,有利于同化产物的积累进而提高产量^[7].小 麦开花期至灌浆高峰期具有持续、稳定的光合速率 是其高产的一个重要原因^[8].目前,国内外已有大 量关于小麦光合特性方面的研究^[29-12].有关作物 叶片光合速率与籽粒产量的关系尚有争议,存在正 相关^[13-14]和负相关^[15-16]两种结果. 作物光合特性 是综合评价生产力的一个重要指标 ,是作物高产的 生理基础 改善其光合特性对于开发作物产量潜力 具有重要意义[17-18]. 传统的小麦品种选育多注重农 艺性状的优化配置,关于光合特性动态变化与产量 形成关系的综合研究亟待加强.本文对8个大穗型 小麦新品系主要功能叶片的叶绿素含量、气体交换 参数、荧光参数和群体叶面积系数的变化进行研究, 以揭示大穗型小麦在产量形成过程中光合特性的变 化规律 促进作物光合和荧光特性参数在小麦优良 品种选育中的应用.

1 材料与方法

1.1 供试材料

大田试验选用参加 2009 年陕西省小麦品种预 备试验、2010 年小麦区域试验,而且其他性状表现 良好的 8 个具有高产潜力的大穗型小麦新品系,并 以黄淮海麦区大面积推广的西农 979 作为对照,穗 部性状特征见表 1.

1.2 试验设计

试验于2010—2011 年在武功县苏坊镇苏东村 (34°17′N,108°04′E)进行.该区属暖温带半湿润 季风气候,海拔577m,年均气温13.2℃,年均日照

表1 供试小麦的主要穗部性状特征

 Table 1
 Main spike characteristics of tested wheat cultivars

品种(系)	穗数	穗粒数	穗粒重	其他性状
Cultivar	Number of	Number of	Kernel mass	Other
	spikes	grains per	per spike	characteristics
	$(\times 10^4 \cdot hm^{-2})$	spike	(g)	
2005	371 ~428	45 ~ 83	1.5~4.2	-
2013	339 ~406	39~93	1.3 ~ 5.1	稳定类型的穗行圃
2026	404 ~493	$31 \sim 70$	1.5 ~ 3.5	-
2036	$376 \sim 484$	$30 \sim 58$	1.6~3.0	抗倒伏 芒较短
2037	455 ~511	$38 \sim 68$	1.3 ~3.6	抗病性好
2038	331 ~642	$45 \sim 74$	1.7~3.5	抗倒伏 透光性能好
2039	412 ~541	$45\sim\!82$	1.9~4.0	-
2040	446 ~629	$30 \sim 62$	1.5 ~3.4	籽粒成熟时叶秆皆绿
西农 979 Xinong 979	654 ~763	30 ~ 51	1.1~2.3	株型紧凑

时数1887.8 h,年均降水量630 mm,主要集中在7— 9月,年均蒸发量1302.5 mm.土壤为红油土,土层 深厚,地势平坦,地力水平较高,保水保肥性好.

2010 年 10 月 7—10 日播种 2011 年 6 月 15 日 收获 播种量 187.5 kg • hm⁻² 行距 0.17 ~ 0.22 m. 试验设置 9 个品系(种)处理,小区面积 20 m² 3 次 重复.小麦播种时施基肥:施尿素 375 kg • hm⁻²、磷 酸二铵 525 kg • hm⁻²、硫酸钾 112.5 kg • hm⁻²; 冬 灌施尿素 112.5 kg • hm⁻². 其他栽培管理措施同大 田生产.

1.3 测定项目与方法

1.3.1 产量性状测定 成熟期,在各小区中随机选取20株单茎考察穗粒数、穗粒重和千粒重,并随机取3行1m长小麦,通过行距折算单位面积穗数和产量.

1.3.2 叶片光合速率测定 在拔节期、抽穗期、开花 期、灌浆初期和灌浆中期,选择大小均匀、无病虫害 的叶片,用 Li-6400 便携式光合仪(Li-Cor, USA)于 晴天 9:00—11:00 测定倒二叶或旗叶的光合速率 (P_n , μ mol CO₂ • m⁻² • s⁻¹).采用开放式气路,平 均 CO₂浓度为(382.6±2.5) μ L • L⁻¹,叶室采用红/ 蓝 LED 光源,其光合有效辐射(PAR)为 1200 μ mol • m⁻² • s⁻¹,风速 < 1 m • s⁻¹,湿度 53% ~ 56%,气体流速 5 mL • min⁻¹,每次测定时稳定 2 min 后读数,重复 3~4 次.

1.3.3 叶绿素荧光参数测定 利用脉冲调制式荧光 仪 FMS 2.02 (Hansatech, UK) 于晴天 9:00—11:30 测定倒二叶或旗叶的叶绿素荧光参数,重复3~4 次.在叶片自然生长角度不变的情况下测定稳态荧 光(F_s) 同时记录叶表光强和叶温,随后加1个强 闪光(5000 μmol • m⁻² • s⁻¹ 脉冲时间 0.7 s) 测定 光下最大荧光(F_m);将叶片遮光,关闭作用光5 s后暗适应3 s 再打开远红光5 s 测定光下最小荧光 (F_{o}) . 叶片暗适应 30 min 后测定初始荧光 (F_{o}) 随 后加1个强闪光(5000 μmol • m⁻² • s⁻¹ 脉冲时间 0.7 s) 测定最大荧光(F_m). 参照文献 [19]的计算 方法: 光系统 II (PS II) 最大光能转换效率 F_v/F_m = $(F_{\rm m} - F_{\rm o})/F_{\rm m}$; PS II 实际量子效率 $\Phi_{\rm PSII} = (F_{\rm m} - F_{\rm o})/F_{\rm m}$ F_{s}) / F_{m} ; 光化学猝灭系数 $q_{P} = (F_{m} - F_{s}) / (F_{m} - F_{s})$ F_{o} ,); PS II 反映中心活性 F_{v} , F_{m} = (F_{m} , F_{o} ,), F_{m} . 1.3.4 叶绿素含量测定 在拔节期、抽穗期、开花 期、灌浆前期、灌浆中期和灌浆后期,利用 SPAD-502 叶绿素仪(Minolta, Japan),在晴天 9:00-11:30 对 小麦无病虫害且大小均匀的倒二叶或旗叶进行测定.

测定时手持 SPAD-502 叶绿素仪夹住叶片,沿叶脉方向慢慢移动测定3次求平均值,每重复测定2株. 1.3.5 叶面积指数测定 在拔节期、抽穗期、开花期和灌浆期,利用 LAI-2000 冠层分析仪(Li-Cor, USA)测定群体叶面积,重复3~4次.

1.4 数据处理

采用 Excel 2003 和 DPS 7.05 软件进行数据统 计分析 采用 Duncan 新复极差法进行多重比较(α =0.05).图、表中数据为平均值 ±标准误.

2 结果与分析

2.1 小麦产量及其构成因素的变化

8 个大穗型品系的穗粒数、穗粒重和千粒重均 高于西农 979 穗数显著低于西农 979(表 2).其中, 大穗型品系的穗粒数除品系 2036,千粒重除 2005 和 2039 外均与对照差异显著;穗粒重均与对照差异 显著.品系 2036、2037、2038、2039 和 2040 的产量分 别比西农 979 增大 3.0%、16.6%、9.8%、10.4% 和 14.7%,品系 2005、2013、2026 的产量比西农 979

表2 小麦产量及其构成因素

Table 2 Yield and its components of wheat

低 表明大穗型品系在单位面积穗数基础上增产与 穗粒数、穗粒重和千粒重的提高关系密切.

2.2 不同生育期小麦叶绿素含量的动态变化

由表 3 可以看出 在不同生育期,大穗型小麦品 系叶片的叶绿素相对含量(Chl)均显著高于西农 979. 在整个生长期,平均叶绿素相对含量大小为品 系 2040 > 2005 > 2037 > 2026 > 2039 > 2038 > 2013 > 2036 > 西农 979,其中,品系 2040、2005、2037、2026、 2039、2038、2013 和 2036 的平均叶绿素相对含量比 西农 979 分别提高 19.0%、17.9%、17.5%、17.1%、 15.3%、13.9%、8.7% 和 7.9%,这表明大穗型品系 与西农 979 相比叶绿素含量相对较高且持续时间 长,可延缓叶片衰老,为小麦生长奠定能量基础. 2.3 不同生育期小麦叶片净光合速率变化

随小麦的生长发育,叶片净光合速率(*P*_n) 呈先 上升后下降的趋势,在拔节期和灌浆中期叶片*P*_n相 对较低(表4). 品系 2039、2013 和西农 979 的 *P*_n峰 值出现在灌浆初期,品系 2040、2037、2036、2026 和 2005的*P*_n峰值出现在抽穗期,品系2038的*P*_n峰

	-				
品种(系) Cultivar	穗数 Number of spike (×10 ⁴ ・hm ⁻²)	穗粒数 Number of grains per spike	穗粒重 Kernel mass per spike (g)	千粒重 1000-grain mass (g)	产量 Yield (kg • hm ⁻²)
西农 979 Xinong 979	704. 1 ± 32. 0a	$42.0\pm1.8\mathrm{d}$	1.8 $\pm 0.1 \mathrm{d}$	$41.0\pm0.6\mathrm{e}$	9656. 5 ± 560. 4a
2005	396. 8 \pm 16. 8bc	57.1 ± 2.6 ab	2.6 ± 0.1 abc	44.2 $\pm 0.9 \mathrm{de}$	8244. 8 ± 465. 9a
2013	384. 1 \pm 22. 3 c	57.6 \pm 3.2 ab	$2.9 \pm 0.2a$	50. 2 ± 1.2 ab	8979. 7 ±1352. 7a
2026	445.4 $\pm 26.0 \rm bc$	51. 3 $\pm 2.0 \rm bc$	$2.5\pm0.1\mathrm{bc}$	46.8 $\pm 0.8\mathrm{cd}$	9000. 3 ± 620. 6a
2036	441.3 \pm 32.9bc	$45.\ 6 \pm 1.\ 9 \mathrm{cd}$	2.3 ±0.1c	52. $2 \pm 0.5 a$	9960. 6 ± 500. 2a
2037	$475.\ 9\pm17.\ 7\mathrm{bc}$	51.0 $\pm 2.2 \rm bc$	2.3 $\pm 0.1 \mathrm{bc}$	47.1 $\pm 1.7 \rm bcd$	11572. 1 ± 581. 6a
2038	480.7 $\pm 89.8 \mathrm{bc}$	56. 3 $\pm 1.8 \mathrm{ab}$	2.7 $\pm 0.1\mathrm{abc}$	46.2 \pm 1.3 cd	$10703.0 \pm 2113.7a$
2039	$488.\ 6\pm 38.\ 9\mathrm{bc}$	60. 1 \pm 2. 4a	2.7 $\pm 0.1 \mathrm{ab}$	43.8 $\pm 0.9 \mathrm{de}$	10774. 2 ± 838. 8a
2040	532. 7 \pm 53. 1b	52.4 $\pm 1.7\mathrm{b}$	2.7 ± 0.1 ab	48.7 $\pm 0.7 \rm bc$	11318. 7 ±1260. 6a

同列不同小写字母表示品种间差异显著(P<0.05) Different small letters in the same column meant significant difference among different cultivars at 0.05 level. 下同 The same below.

表3 小麦不同生育期叶绿素含量

Table 3	Chlorophyll o	contents of	wheat at	different	growth	stages (SPAD)
---------	---------------	-------------	----------	-----------	--------	----------	------	---

品种(系) Cultivar	拔节期 Jointing	抽穗期 Heading	开花期 Flowering	灌浆前期 Pre-ripening	灌浆中期 Mid-ripening	灌浆中后期 Late-ripening	平均 Mean
西农 979Xinong 979	$51.83 \pm 0.70e$	$55.\ 87 \pm 1.\ 08c$	52.78 ± 0.72 d	54.44 ± 0.73 d	56. 10 \pm 0. 72e	53.86 ± 0.65 d	54.15
2005	64. 38 $\pm 0.88a$	66. 61 $\pm 0.78a$	65. 58 $\pm 0.54a$	64. 26 $\pm 0.$ 49ab	62.64 $\pm 0.46 \rm bc$	59.62 $\pm 0.85 \mathrm{bc}$	63.85
2013	58.48 $\pm 0.49 \mathrm{d}$	$61.84\pm1.28\mathrm{b}$	59.00 $\pm 0.59\mathrm{c}$	58.46 $\pm 0.54\mathrm{c}$	57.98 $\pm0.59\mathrm{de}$	57.46 $\pm 0.92 \mathrm{c}$	58.87
2026	$61.\ 72\ \pm 1.\ 01 \mathrm{abc}$	66. 91 $\pm 1.04a$	62.38 $\pm 0.43 \mathrm{b}$	$65.96 \pm 0.33a$	62.46 $\pm 0.87\mathrm{c}$	61.10 $\pm 0.61 \mathrm{b}$	63.42
2036	59.05 $\pm 1.37 \mathrm{bed}$	$59.93\pm1.41\mathrm{b}$	58.76 $\pm 0.79\mathrm{c}$	59.24 $\pm 0.59\mathrm{c}$	58.63 $\pm 1.04{\rm d}$	54.92 ± 0.38 d	58.42
2037	62. $00 \pm 0.85 \mathrm{ab}$	65. 69 $\pm 0.90a$	63.16 $\pm 0.46\mathrm{b}$	65.48 $\pm 0.31\mathrm{ab}$	65.56 $\pm 0.67a$	59.76 $\pm 1.37\mathrm{b}$	63.61
2038	58.73 $\pm 1.21\mathrm{cd}$	61.40 $\pm 0.82\mathrm{b}$	61.82 $\pm 0.78 \mathrm{b}$	64. $80\pm0.67\mathrm{ab}$	62.58 $\pm 1.06 \rm bc$	60.76 $\pm 0.47 \mathrm{b}$	61.68
2039	$61.80 \pm 1.01 \mathrm{ab}$	64.83 $\pm 1.06a$	59.98 $\pm 0.57\mathrm{c}$	63.90 $\pm 0.70\mathrm{b}$	62.90 $\pm 0.62 \rm bc$	61.08 $\pm 0.50\mathrm{b}$	62.42
2040	61.35 $\pm 0.94 \mathrm{abcd}$	66. 50 $\pm 0.50 a$	65. 32 $\pm 0.57a$	64.28 $\pm 0.74\mathrm{ab}$	64.82 $\pm 0.29 \mathrm{ab}$	64. 50 $\pm 0.17a$	64.46

值出现在开花期,这可能与小麦品种本身的遗传特性有关.在整个生长期,西农979的平均P_n最高,但 不同品种(系)间P_n差异均不显著.

2.4 不同生育期小麦叶片荧光参数变化

在小麦不同生育期,各品种(系)叶片的叶绿素 荧光参数效率为 0.831~0.868,开放的 PS II 反映中 心的能量捕捉效率较高,表明植物生长期间未受到 明显的环境胁迫(表 5).随生育期的推移,叶片 F_v/F_m 呈先下降后上升再下降的趋势,拔节期叶片 F_v/F_m 最高.

从拔节期到灌浆前期,大穗型小麦品系的 F_v/F_m 均高于西农979.在拔节期,品系2026和2040 的 F_v/F_m 与西农979差异显著;在开花期,品系2013 和2036的 F_v/F_m 与西农979差异显著;在灌浆前 期除品系2013和2040外,其他品系的 F_v/F_m 与西 农979差异均显著;在抽穗期和灌浆中期 & 个大穗 型品系的 F_v/F_m 与西农979差异均不显著.在整个 生长期,平均 F_v/F_m 的大小顺序为2040>2039>2036 >2038>2026>2037>2013>2005>西农979,表明 大穗型小麦品系和西农979相比具有较大的潜在 PSII光化学效率. 随小麦生育期的推移,叶片 PS II 电子传递量子 效率(Φ_{PSII}) 呈先下降后再上升下降的趋势, Φ_{PSII} 在 拔节期最高(表 6).在整个生长期,平均 Φ_{PSII} 的大 小顺序为2037 > 2005 > 2039 > 2013 > 2038 > 2026 > 2036 > 2040 > 西农 979,8 个大穗型品系的平均 Φ_{PSII} 均高于西农979,表明大穗型小麦品系的 PS II 反映中心进行光化学反应的效率和开放程度均高于 西农979.

随小麦生育期的推移,叶片光化学猝灭系数 (q_P)呈先下降后上升再下降的趋势,q_P在拔节期最 高(表7).在整个生长期,平均 q_P的大小顺序为 2037 > 2005 > 2039 > 2038 > 2013 > 2040 > 2026 > 西农 979 > 2036 表明大穗型小麦品系 PS II 反映中心处 于开放状态时除品系 2036 外天线色素吸收的光能 用于光化学电子传递的份额均比西农 979 高.

由表 8 可以看出,在拔节期、抽穗期和灌浆中期,大穗型小麦品系的 F_v , F_m , 与西农 979 差异不显著;在开花期,品系 2005、2013、2036、2037 和 2039的 F_v , F_m , 显著高于西农 979;在灌浆前期,品系 2036 和 2037 的 F_v , F_m , 显著高于西农 979.在整个 生长期,平均 F_v , F_m , 的大小顺序为2036 > 2039 >

表4 不同生育期小麦叶片净光合速率

Table 4 Leaf photosynthetic rates of wheat at different growth stages (μ mol CO₂ · m⁻² · s⁻¹)

-	•	0	е .			
品种(系) Cultivar	拔节期 Jointing	抽穗期 Heading	开花期 Flowering	灌浆初期 Pre-ripening	灌浆中期 Mid-ripening	平均 Mean
西农 979 Xinong 979	18.2 \pm 0.4b	$21.0\pm0.2\mathrm{cd}$	21. 2 ±0. 6a	22. 1 ± 1. 7a	16. 3 ± 1. 4a	19.8
2005	16.0 $\pm 0.4 \rm bc$	21.9 $\pm 0.1 \mathrm{bc}$	19.2 ± 0.6 ab	20. 5 $\pm 0.8 \mathrm{ab}$	12.8 $\pm 0.4 \rm bc$	18.1
2013	$21.0 \pm 0.5a$	$17.8 \pm 0.3f$	14.7 $\pm 0.4 \mathrm{d}$	21. 9 \pm 0. 4a	$11.65 \pm 0.5c$	17.4
2026	15.0 \pm 1.1 cd	21.2 $\pm 0.4\mathrm{cd}$	19.4 ± 0.4 ab	17.8 $\pm 0.5 \mathrm{b}$	15. 2 \pm 0. 8ab	17.7
2036	14.5 $\pm 0.5\mathrm{cd}$	20.6 $\pm 0.2 \mathrm{d}$	16.7 $\pm 0.7\mathrm{cd}$	18.9 ± 0.7 ab	12.9 $\pm 1.4 \rm bc$	16.7
2037	17.8 $\pm 0.9 \mathrm{b}$	22.7 ± 0.1 ab	19.7 $\pm 0.8ab$	16.7 $\pm 0.6 \mathrm{b}$	14.1 ±0.7abc	18.2
2038	16.4 $\pm 0.2 \rm bc$	19.7 $\pm 0.1e$	20. 8 ± 1. 6a	19.8 ± 2.6ab	11.7 $\pm 0.6 \mathrm{c}$	17.7
2039	14.6 \pm 1.0cd	18.2 ± 0.7 f	17.78 $\pm 0.5 \rm bc$	19. 0 \pm 0. 2ab	13.9 \pm 1.8 abc	16.7
2040	13.6 $\pm 0.7 \mathrm{d}$	$23.2 \pm 0.4a$	$21.0 \pm 0.2a$	18.2 ± 0.6 ab	13.1 $\pm 0.8 \rm bc$	17.8

表 5 不同生育期小麦 PS II 最大光能转换效率 (F_v/F_m)

Table 5	PS II	maximum	energy	conversion	efficiency	(F_v)	$/F_{\rm m}$) of	wheat	at	different	growth	stag	es
---------	-------	---------	--------	------------	------------	---------	--------------	------	-------	----	-----------	--------	------	----

 品种(系) Cultivar	拔节期 Jointing	抽穗期 Heading	开花期 Flowering	灌浆前期 Pre-ripening	灌浆中期 Mid-ripening	平均 Mean
西农 979 Xinong 979	0.852 ±0.001b	0. 831 ±0. 006a	0.845 ± 0.003 c	0.845 ± 0.005 c	$0.842 \pm 0.002a$	0.843
2005	0. 854 ± 0.009 ab	$0.836 \pm 0.009a$	0.846 $\pm 0.005 \mathrm{bc}$	0. 856 ± 0.001 ab	$0.831 \pm 0.003a$	0.844
2013	0. 861 ± 0.004 ab	0. 843 ±0. 010a	$0.859 \pm 0.001 a$	0.850 $\pm 0.004 \rm bc$	$0.831 \pm 0.006a$	0.849
2026	$0.867 \pm 0.002a$	0. 843 ± 0. 004a	0.846 ± 0.004 bc	0. 861 ± 0. 002a	$0.838 \pm 0.006a$	0.851
2036	0.858 ± 0.003 ab	0. 842 ± 0. 003a	$0.856 \pm 0.003 \mathrm{ab}$	0. 858 ± 0.002 ab	$0.843 \pm 0.013a$	0.852
2037	0. 867 ± 0.006 ab	0. 841 ±0. 003a	$0.850 \pm 0.003 \text{abc}$	0. 857 ± 0.002 ab	$0.838 \pm 0.005a$	0.851
2038	$0.864 \pm 0.002 ab$	0. 844 ± 0. 004a	$0.847 \pm 0.001 \mathrm{bc}$	0. 856 ± 0.003 ab	$0.846 \pm 0.003 a$	0.851
2039	0.861 ± 0.006 ab	0. 848 ± 0. 005a	0.853 ±0.001 abc	$0.856 \pm 0.002 ab$	$0.849 \pm 0.004a$	0.853
2040	$0.868 \pm 0.004a$	$0.847 \pm 0.003 a$	0.854 $\pm 0.002 \mathrm{abc}$	0. 853 ± 0.002 abc	$0.846 \pm 0.003 a$	0.853

	1	-5 (= PS II /	8			
品种(系) Cultivar	拔节期 Jointing	抽穗期 Heading	开花期 Flowering	灌浆前期 Pre-ripening	灌浆中期 Mid-ripening	平均 Mean
西农 979 Xinong 979	$0.72 \pm 0.01 \mathrm{ab}$	$0.\ 47\ \pm 0.\ 03 \rm abc$	$0.59 \pm 0.02 \mathrm{abc}$	$0.\;61\pm0.\;02\mathrm{cd}$	$0.55 \pm 0.03 a$	0. 59
2005	$0.76 \pm 0.01 a$	0.53 $\pm 0.03 \mathrm{ab}$	$0.65 \pm 0.01 a$	0.65 $\pm 0.02 \mathrm{cd}$	$0.59 \pm 0.01 a$	0.64
2013	0. 75 ±0. 01a	$0.\ 45\ \pm 0.\ 03\mathrm{bc}$	$0.\ 59\ \pm 0.\ 02 \rm abc$	0.66 $\pm 0.01\mathrm{cd}$	$0.60 \pm 0.01 a$	0.61
2026	0. 72 $\pm 0.02 \mathrm{ab}$	$0.\ 43\ \pm 0.\ 02c$	$0.\ 63\ \pm 0.\ 03\mathrm{ab}$	$0.\ 67\ \pm 0.\ 01 \mathrm{bc}$	$0.57 \pm 0.03 a$	0.60
2036	$0.74 \pm 0.01 a$	$0.\ 40\ \pm 0.\ 03\mathrm{c}$	$0.\ 60\ \pm 0.\ 02 \rm abc$	0.73 ± 0.01 ab	$0.54 \pm 0.02a$	0.60
2037	$0.76 \pm 0.01 a$	$0.55 \pm 0.02a$	$0.\ 63\ \pm 0.\ 03 \mathrm{abc}$	$0.75 \pm 0.02a$	$0.57 \pm 0.03 a$	0.65
2038	$0.\ 69 \pm 0.\ 02\mathrm{b}$	$0.56 \pm 0.02a$	$0.56 \pm 0.01 c$	0.67 $\pm 0.04 \rm bcd$	$0.55 \pm 0.02a$	0.61
2039	$0.75 \pm 0.02a$	$0.55 \pm 0.02a$	$0.\ 61\ \pm 0.\ 02 \rm abc$	0.67 $\pm 0.01 \rm bcd$	$0.61 \pm 0.01 a$	0.63
2040	$0.72 \pm 0.01 \mathrm{ab}$	$0.55 \pm 0.02a$	$0.\ 57 \pm 0.\ 03 \mathrm{bc}$	$0.60 \pm 0.03 d$	$0.54 \pm 0.01 a$	0.60

表 6 小麦不同生育期 PS II 实际量子效率(Φ_{PS II})

Table 6 PS II actual quantum efficiency ($\phi_{\text{DS},II}$) of wheat at different growth stages

表7 小麦不同生育期光化学猝灭系数(q_P)

Table 7 Photochemical quenching coefficient (q_P) of wheat at different growth stages

品种(系) Cultivar	拔节期 Jointing	抽穗期 Heading	开花期 Flowering	灌浆前期 Pre-ripening	灌浆中期 Mid-ripening	平均 Mean
西农 979 Xinong 979	0. 92 ± 0. 01 a	$0.60 \pm 0.05 \mathrm{c}$	$0.83 \pm 0.03 a$	$0.\ 83 \pm 0.\ 05 \mathrm{bc}$	$0.\ 75 \pm 0.\ 04 \mathrm{ab}$	0.78
2005	$0.94 \pm 0.01 a$	0.73 $\pm 0.03 \mathrm{ab}$	$0.86 \pm 0.01 a$	0.84 $\pm 0.03 \rm abc$	$0.83 \pm 0.03a$	0.84
2013	$0.92 \pm 0.03 a$	0.63 $\pm 0.06 \rm bc$	$0.77 \pm 0.03 a$	0.84 $\pm 0.02 \mathrm{abc}$	$0.\ 82 \pm 0.\ 02ab$	0.80
2026	$0.92 \pm 0.02a$	$0.\ 56\ \pm 0.\ 03\mathrm{c}$	$0.84 \pm 0.03 a$	0.89 $\pm 0.04 \mathrm{ab}$	$0.~73\pm0.~04\mathrm{ab}$	0.79
2036	$0.92 \pm 0.02a$	0. 54 $\pm 0.04\mathrm{c}$	$0.77 \pm 0.04a$	$0.\ 91\ \pm 0.\ 01 \mathrm{ab}$	$0.\ 72 \pm 0.\ 03\mathrm{b}$	0.77
2037	$0.94 \pm 0.02a$	0.75 $\pm 0.03 \mathrm{ab}$	$0.80 \pm 0.04 a$	$0.94 \pm 0.02a$	0.77 $\pm 0.04 \mathrm{ab}$	0.84
2038	$0.\ 85\ \pm 0.\ 03\mathrm{b}$	$0.77 \pm 0.04a$	$0.77 \pm 0.03 a$	$0.\ 88\ \pm 0.\ 03 \mathrm{ab}$	$0.~73 \pm 0.~03 \mathrm{ab}$	0.80
2039	$0.94 \pm 0.01 a$	0.74 $\pm 0.04 \mathrm{ab}$	$0.77 \pm 0.02a$	0.89 $\pm 0.02 \mathrm{ab}$	0.77 ± 0.01 ab	0.82
2040	$0.\ 90\ \pm 0.\ 02 \mathrm{ab}$	$0.79 \pm 0.03 a$	$0.79 \pm 0.03 a$	0.77 $\pm 0.04 \mathrm{c}$	0. 73 $\pm 0.05 \mathrm{ab}$	0.80

表 8 不同生育期小麦 PS II 反映中心活性(F_v'/F_m') Table 8 PS II reaction center activity (F_v'/F_m') of wheat at different growth stages

品种(系)	拔节期	抽穗期	开花期	灌浆前期	灌浆中期	平均
Cultivar	Jointing	Heading	Flowering	Pre-ripening	Mid-ripening	Mean
西农 979 Xinong 979	0. 79 ±0. 00a	0. 79 ±0. 05a	0. 71 \pm 0. 02 d	0.74 ± 0.03 b	0.74 $\pm 0.01 \mathrm{ab}$	0.75
2005	$0.81 \pm 0.00a$	$0.73 \pm 0.02a$	0. 76 \pm 0. 01 abc	0.78 $\pm 0.01 \mathrm{ab}$	0.71 $\pm 0.02 \mathrm{b}$	0.76
2013	$0.81 \pm 0.02a$	$0.73 \pm 0.06a$	0. 77 ± 0.02 ab	0. 79 $\pm 0.01 \mathrm{ab}$	0.73 $\pm 0.02 \mathrm{ab}$	0.77
2026	0. 79 ±0. 01a	$0.76 \pm 0.03 a$	0. 75 $\pm 0.01\mathrm{abcd}$	0.76 $\pm 0.02 \mathrm{ab}$	$0.79 \pm 0.02a$	0.77
2036	$0.80 \pm 0.01 a$	$0.75 \pm 0.02a$	$0.79 \pm 0.02a$	$0.80 \pm 0.01 a$	0.75 $\pm 0.02 \mathrm{ab}$	0.78
2037	$0.80 \pm 0.00a$	$0.73 \pm 0.03 a$	$0.78 \pm 0.01 a$	$0.80 \pm 0.02a$	0.75 $\pm 0.02 \mathrm{ab}$	0.77
2038	$0.81 \pm 0.01 a$	$0.73 \pm 0.03 a$	0.73 $\pm 0.02 \rm bcd$	0.76 $\pm 0.03 \mathrm{ab}$	0.75 $\pm 0.02 \mathrm{ab}$	0.76
2039	$0.79 \pm 0.02a$	$0.74 \pm 0.03 a$	$0.79 \pm 0.02a$	0. 76 $\pm 0.01 \mathrm{ab}$	$0.79 \pm 0.01a$	0.77
2040	$0.80 \pm 0.01 a$	$0.70 \pm 0.03 a$	$0.~72 \pm 0.~01\mathrm{cd}$	0. 79 ± 0.01 ab	0.74 $\pm 0.03 \mathrm{ab}$	0.75

表9 小麦不同生育期叶面积指数(LAI)

	Table 9	LAI of	wheat a	at diffe	rent grow	th stages
--	---------	--------	---------	----------	-----------	-----------

品种(系) Cultivar	拔节期 Jointing	抽穗期 Heading	开花期 Flowering	灌浆前期 Pre-ripening	灌浆中期 Mid-ripening	灌浆后期 Late-ripening	平均 Mean
西农 979 Xinong 979	$2.72\pm0.35\mathrm{bc}$	$5.27\pm0.17\mathrm{b}$	5.15 ±0.11ab	5.33 ±0.11ab	4.76 ±0.16ab	$2.13 \pm 0.45 e$	4.23
2005	$3.00\pm0.44\mathrm{abc}$	$5.24\pm0.05\mathrm{b}$	$4.\ 94 \pm 0.\ 04 \mathrm{b}$	$4.95\pm0.10\mathrm{bcd}$	4.87 $\pm 0.28 \mathrm{ab}$	$3.45\pm 0.36\mathrm{abcd}$	4.41
2013	$3.\ 68 \pm 0.\ 63 \mathrm{ab}$	$5.82 \pm 0.04a$	$5.35 \pm 0.04 a$	5. 27 $\pm 0.17 \mathrm{ab}$	4. 94 ± 0.19 ab	2.56 $\pm 0.42\mathrm{de}$	4.60
2026	4. 38 $\pm 0.79a$	5.36 $\pm 0.14 \mathrm{b}$	5. 15 $\pm 0.07 \mathrm{ab}$	5. 16 \pm 0. 19ab	4.86 ± 0.19 ab	$4.46 \pm 0.33a$	4.90
2036	3.34 $\pm 0.29 \mathrm{abc}$	$5.86 \pm 0.04a$	$5.35 \pm 0.20a$	4.61 ± 0.10 d	4.66 $\pm 0.18 \mathrm{b}$	$3.\ 63\ \pm 0.\ 53 \mathrm{abcd}$	4.58
2037	$2.\ 13 \pm 0.\ 30c$	$5.44\pm0.05\mathrm{b}$	5. 17 ± 0.13 ab	$4.96\pm0.14\mathrm{bcd}$	$5.\ 09 \pm 0.\ 13 \mathrm{ab}$	$4.\ 33\ \pm 0.\ 32 \mathrm{ab}$	4.52
2038	$3.83 \pm 0.29 \mathrm{ab}$	$5.\ 55 \pm 0.\ 08 \mathrm{ab}$	$5.\ 02 \pm 0.\ 09 \mathrm{ab}$	5.46 ±0.15a	5. 35 $\pm 0.19a$	$3.\ 08\ \pm 0.\ 37\mathrm{cde}$	4.72
2039	$3.\ 02\ \pm 0.\ 38\mathrm{abc}$	5.27 ± 1.14 b	5. 14 ± 0.07 ab	5. 10 $\pm 0.$ 14abc	4.87 ± 0.14 ab	3. 18 $\pm 0.$ 19 bcde	4.43
2040	2.88 $\pm 0.09 \mathrm{abc}$	$5.33\pm0.07\mathrm{b}$	$5.28 \pm 0.10a$	$4.\ 69 \pm 0.\ 13 \mathrm{cd}$	4.70 $\pm 0.21 \mathrm{ab}$	$4.\ 25\ \pm 0.\ 52 \mathrm{abc}$	4. 52
2037 > 2026 > 20	013 > 2005 > 20	38 > 西农 979	>2040 ,	表明大穗型小麦	除品系 2040	外反映中心天线	浅色素

的尺度与西农 979 相比较小,这可能与天线色素的 尺寸增大,D1 蛋白更新速率降低,PS Ⅱ水分解中心 钝化失活等原因有关^[20-21].

2.5 不同生育期小麦叶面积系数的动态变化

随小麦生育期的推移,叶面积指数(LAI)呈先 上升后下降的趋势,LAI 在抽穗期较高(表9).在整 个生长期,平均LAI 的大小顺序为2026 > 2038 > 2013 > 2036 > 2040 > 2037 > 2039 > 2005 > 西农979 & 个大穗型品系的平均LAI 均高于西农979,表明在 一定范围内大穗型品系在群体条件下对光能的利用 能力比西农979强.

3 讨 论

本研究中,与多穗型品种西农979相比,大穗型 小麦新品系的穗粒数、穗粒重和千粒重平均增加 11.89、0.82g和6.35g,具有较明显的高产穗部特 征.品系2037、2040、2039、2038和2036的产量显著 高于西农979,说明大穗型小麦在保持大穗性状优 势的前提下,通过单位面积穗数的提高,小麦产量会 有明显增高.郭天财等^[22]认为,大穗型小麦在相同 条件下要实现高产应在确保穗粒重较高的前提下, 尽可能增加单位面积成穗数.品系2005、2013和 2026的产量低于西农979,其原因可能与品系自身 遗传特性有关,本试验条件可能不利于其生产潜力 的发挥.

随着生产和育种水平的提高,高光效品种在生 产上愈来愈受到重视,农作物的产量根本上依赖于 植物进行光合作用的能力并取决于光合系统的大小 和效率^[23],通过施氮、喷雾等措施可以改善光合性 能、保持叶片较高的光合能力及较长的功能期来提 高穗粒重和产量.本研究中,在整个生长期,西农 979 的平均 P_n最高,不同品种(系)间 P_n差异均不显 著,这与庞红喜等^[24]的研究结果不同.其原因可能 与大穗型小麦自身形态建成相关的呼吸作用有关, 由于大穗型小麦较大的个体特征和库容量使叶片制 造的光合产物大量供应自身植株和籽粒,导致叶片 由于营养亏缺而引起光合速率低于西农 979.因此, 培育光合性能与较大库容相协调的大穗型小麦品种 类型,是实现大穗型小麦穗大粒饱和高产潜力的有 效途径之一.

叶绿素荧光动力学参数能够准确反映叶片吸收 光能的分配去向^[25],其中 $_{A_{P}}$ 反映了光能向光合碳 同化方向转移的比率^[26-27], $\Phi_{_{PSII}}$ 代表 PS II 非环式 电子传递效率或光能捕获的效率^[28],高 $\Phi_{_{PSII}}$ 有利 于提高作物的光能转化效率,为暗反应的碳同化积 累更多能量. 郭天财等^[29]研究认为,大穗型品种的 旗叶叶绿素含量、PS II 潜在活性、PS II 光化学的最 大效率、荧光光化学猝灭系数以及荧光非光化学猝 灭系数等性状均优于多穗型品种,且 PS II 量子效率 和光合速率在灌浆中后期具有明显优势,从而有利 于大穗型小麦高穗粒重的形成.本研究中,大穗型小 麦品系的 F_{v}/F_{m} 显著高于对照,除品系 2036 和 2040 外,其他品系的 q_{P} 和 F_{v}/F_{m} 均高于多穗型小 麦品种.大穗型小麦品系较高的实际光化学效率和 向光化学碳同化方向的分配比例,可以增强小麦的 营养生长,为以后的生殖发育奠定良好基础.

作为光合色素中重要的色素分子,叶绿素参与 光合作用中光能的吸收、转换和传递等过程 叶片单 位面积叶绿素含量的增加,有利于提高光能的利用 能力,从而保证叶片吸收更多的光能用于光合作用, 且与光化学效率、 P_n 、胞间 CO2分压和光合酶活性有 关^[30]. 光合色素含量对叶片叶绿素荧光参数有明显 的调节作用^[31].本研究中,大穗型小麦品系在生长 发育过程中叶绿素含量均高于多穗型小麦品种西农 979. 小麦群体是一个获取和转化太阳辐射能的体 系 培育合理的群体结构 改善冠层分布 提高光能 利用效率是获取高产的基础^[32].作物冠层光截获率 与群体光合生理特性及籽粒产量间存在显著的正相 关^[6].本研究发现,大穗型小麦品系的平均 LAI 高 于多穗型品种 而且灌浆后期仍具有较高的 LAI 这 可能是大穗型小麦品系的籽粒产量高于多穗型小麦 品种的重要原因.

参考文献

- [1] Fu Z-L (傅兆麟), Li H-Q (李洪琴). Discussion on some problems of super-high yield wheat in Huang-huai valley winter wheat areas. *Journal of Triticeae Crops* (麦 类作物学报), 1998, 18(6): 48 – 51 (in Chinese)
- [2] Zhang Q-D (张其德), Jiang G-M (蒋高明), Zhu X-G (朱新广), et al. Photosynthetic capability of 12 genotypes of Triticum aestivum. Acta Phytoecologica Sinica (植物生态学报), 2001, 25(5): 532 – 536 (in Chinese)
- [3] Cai K-Z (蔡昆争), Luo S-M (骆世明). Effect of shading on growth, development and yield formation of rice. *Chinese Journal of Applied Ecology* (应用生态学 报), 1999, 10(2): 193 – 196 (in Chinese)
- [4] Wang Q-C (王庆成), Wang Z-X (王忠孝). Research Progress on High Yield and High Efficiency Physiology for Crop Plants. Beijing: Science Press, 1994 (in Chinese)
- [5] Guo W-S (郭文善), Feng C-N (封超年), Yan L-L (严六零), et al. Analysis on source-sink relationship

after anthesis in wheat. *Acta Agronomica Sinica* (作物 学报), 1995, **21**(3): 334-340 (in Chinese)

- [6] Ling Q-H (凌启鸿). Crops Population Quality. Shanghai: Shanghai Science and Technology Press, 2000 (in Chinese)
- [7] Sui N(隋 娜), Li M(李 萌), Tian J-C(田纪春), et al. Photosynthetic characteristics of super high yield wheat cultivars at late growth period. Acta Agro-nomica Sinica (作物学报), 2005, 31(6): 808-814 (in Chinese)
- [8] Ju Z-C (鞠正春), Yu Z-W (于振文). Effects of nitrogen topdressing at different growth stage on chlorophyll fluorescence of winter wheat flag leaves. *Chinese Journal of Applied Ecology* (应用生态学报), 2006, 17 (3): 395-398 (in Chinese)
- [9] Austin RB, Morgan CL, Ford MA, et al. Flag leaf photosynthesis of *Triticum aestivum* and related diploid and tetraploid species. Annals of Botany, 1982, 49: 177 – 189
- [10] Xiao K (肖 凯), Gu J-T (谷俊涛), Zhang R-X (张 荣铣), et al. The preliminary study on the leaf photosynthetic characteristics of hybrid wheat. Acta Agronomica Sinica (作物学报), 1997, 23(4): 425 – 431 (in Chinese)
- [11] Shangguan ZP, Shao MA, Dyckmans J. Effect of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. *Journal of Plant Physiology*, 2000, 56: 46-51
- [12] Ma F-J(马富举), Li D-D(李丹丹), Cai J(蔡 剑), et al. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. *Chinese Jour*nal of Applied Ecology (应用生态学报), 2012, 23 (3): 724-730 (in Chinese)
- [13] Zhang L-L(张玲丽), Wang H(王 辉), Sun D-J (孙道杰), et al. A comparative study on the photo-biological characters of two different spike-type cultivars in wheat. Journal of Northwest A & F University (Natural Science)(西北农林科技大学学报•自然科学版), 2003, 31(3): 51-53 (in Chinese)
- [14] Luo A-H (罗爱花), Chai S-X (柴守玺), Guo X-S (郭贤仕). Study on difference of photophysiological characters of different spring wheat varieties. *Journal of Gansu Agricultural University* (甘肃农业大学学报), 2004, **39**(3): 306-311 (in Chinese)
- [15] Gifford RM. Barriers to increasing crop productivity by genetic improvement in photosynthesis // Biggins J, ed. Progress in Photosynthesis Research, Vol IV. Dordrecht: Martinus Nijhoff Publishers, 1987: 377 - 384
- [16] Nelson CJ. Genetic associations between photosynthetic characteristics and yield: Review of the evidence. *Plant Physiology and Biochemistry*, 1988, **26**: 543-554
- [17] Qin J (秦 娟), Shangguan Z-P (上官周平). Leaf nutrient contents and photosynthetic physiological characteristics of Ulmus pumila-Robinia pseudoacacia mixed forests. Chinese Journal of Applied Ecology (应用生态 学报), 2010, 21(9): 2228 - 2234 (in Chinese)
- [18] Wang Z-J(王之杰), Guo T-C(郭天财), Wang H-C (王化岑), et al. Effect of planting density on photosynthetic characteristics and grain yield of super high yield winter wheat at late growth stages. Journal of Triticeae Crops (麦类作物学报), 2001, 21(3): 64 - 67

(in Chinese)

- [19] Krall JP, Edward GE. Relationship between photosystem II activity and CO₂ fixation in leaves. *Physiologia Plantarum*, 1992, 86: 180 – 187
- [20] Rockholm DC, Yamamoto HY. Violaxanthin de-epoxidase. Plant Physiology, 1996, 110: 697 - 703
- [21] Harbinson J, Genty B, Baker NR. Relationship between the quantum efficiency of photosystem I and II in pea leaves. *Plant Physiology*, 1989, 90: 1029-1034
- [22] Guo T-C(郭天财), Wang Z-J(王之杰), Hu T-J(胡廷积), et al. Study on canopy apparent photosynthesis characteristics and grain yield traits of two winter wheat cultivars with different spike type. Acta Agronomica Sinica (作物学报), 2001, 27(5): 633-639 (in Chinese)
- [23] Gardner FP, Pearce RB, Mitchell RL. Physiology of Crop Plants. Ames: Iowa State University Press, 1985
- [24] Pang H-X (庞红喜), Song Z-M (宋哲民), Yang Z-Q (杨智全). Studies on some physiological properties of big spike wheat. Acta Botanica Boreali-Occidentalia Sincia (西北植物学报), 1998, 18(3): 411-416 (in Chinese)
- [25] Sayed OH. Chlorophyll fluorescence as a tool in cereal crop research. *Photosynthetica*, 2003, 41: 321 – 330
- [26] Krause GH, Weis E. Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 313 – 349
- [27] Hong SS, Xu DQ. Light-induced increase in initial fluorescence parameters to strong light between wheat and soybean leaves. *Photosynthesis Research*, 1999, 61: 269 – 280
- [28] Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. *Biochimica et Biophysica Acta*, 1989, **900**: 87 – 92
- [29] Guo T-C(郭天财), Feng W(冯伟), Zhao H-J (赵会杰), et al. Photosynthetic characteristics of flag leaves and nitrogen effects in two winter wheat cultivars with different spike type. Acta Agronomica Sinica (作物 学报), 2004, 30(2): 115-121 (in Chinese)
- [30] Takashima T, Hikosake K, Hirose T. Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous *Quercus* species. *Plant*, *Cell & Environment*, 2004, 27: 1047 – 1054
- [31] Pogson BJ, Niyogi KK, Björkman O, et al. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proceedings of the National Academy of Sciences of the Untied States of America, 1998, 95: 13324 – 13329
- [32] Dong S-T (董树亭). Studies on the relationship between canopy apparent photosynthesis and grain yield in high-yielding winter wheat. Acta Agronomica Sinica (作 物学报), 1991, 17(6): 461-468 (in Chinese)

作者简介 王丽芳,女,1988年生,硕士研究生.主要从事小 麦栽培生理生态研究. E-mail: wanglifang605@126.com 责任编辑 孙 菊