DOI: 10.6041/j.issn. 1000-1298.2012.01.013

土壤斥水性对含水率的响应模型研究*

陈俊英¹² 吴普特¹ 张智韬¹ Gideon Oron³ 汪志农¹

(1. 西北农林科技大学水利与建筑工程学院,陕西杨凌 712100; 2. 中国科学院水利部水土保持研究所,陕西杨凌 712100; 3. 本古里安大学 Blaustein 沙漠研究所,思德博克 84990,以色列)

【摘要】 选用以色列 3 类不同质地的 10 种不同斥水性的土壤为研究对象,采用滴水穿透时间法测定土壤斥 水性对含水率的响应关系,得到了不同土壤斥水持续时间随含水率变化的规律,通过 Gaussian 模型、Lorentzian 模型 和 Lognormal 模型对这种规律进行回归分析,最终得出了土壤斥水持续时间随含水率的变化规律符合 Lorentzian 模 型。由此响应模型,就可以根据某种土壤部分斥水性对含水率响应的实测数据,计算出土壤斥水性的峰值含水率、 峰值斥水性以及临界含水率,为不同土壤斥水性进行对比和土壤改良提供理论依据。

关键词: 土壤斥水性 土壤含水率 响应模型 回归 中图分类号: S152.7 文献标识码: A 文章编号: 1000-1298(2012)01-0063-05

Response Models for Soil Water Repellency and Soil Moisture

Chen Junying^{1,2} Wu Pute¹ Zhang Zhitao¹ Gideon Oron³ Wang Zhinong¹

(1. College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China

2. Institute of Soil and Water Conservation , CAS & MWR , Yangling , Shaanxi 712100 , China

3. J. Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede Boker 84990 , Israel)

Abstract

The relationships between the soil water repellency and soil moisture were studied by measuring WDPT using 10 different water repellent soils collected from Israel. A single peak curve correlation of the relationships between the WDPT and soil moisture was obtained after analysis. Three mathematic models , namely Gaussian , Lorentzian and Lognormal distributions were used for fitting the models by regression analysis , and the Lorentzian distribution was found to be the best model for the practical use. The peak soil moisture , the peak WDPT and the critical soil moisture can be computed by the model of part measured WDPT and soil moisture. It can provide the theory for amelioration of soil and compare of the different repellent soils.

Key words Soil water repellency , Soil moisture , Response model , Regression

引言

土壤含水率是影响斥水性的最主要因素之 一^[1~3],并且斥水性的大小随季节性和土壤其他物 理性质的变化而变化^[4]。这使得研究者很难获取 土壤的峰值斥水性和土壤斥水性消失时的临界含水 率,为土壤的改良和斥水性的有效控制带来很大的 困难。Bond 和 Harris 发现,土壤斥水性随含水率的 减小而逐渐增加,最后到达极值,但当土壤达到一定 湿度时,土壤斥水性消失^[5]。King 和 Dekker 在描述 土壤斥水性与含水率之间的关系时指出,土壤斥水 性消失时的临界土壤含水率为 34% ~ 38%^[6~7]。 但 Dekker 和 Ritsema 在研究荷兰砂质土斥水性消失 时的临界含水率时发现,当土壤含水率(体积含水

* 中国博士后科学基金资助项目(20110491700)、武汉大学水资源与水电工程科学国家重点实验室开放基金资助项目(2010B070)和 西北农林科技大学人才专项资金资助项目(2009)

作者简介: 陈俊英,讲师,中国科学院水利部水土保持研究所博士后,主要从事水利工程和农业水土工程研究, E-mail: cjyrose@126.com 通讯作者: 吴普特,研究员,博士生导师,主要从事节水农业与水土资源高效利用研究, E-mail: gjzwpt@vip.sina.com

收稿日期: 2011-08-12 修回日期: 2011-08-23

率)小于2%时,某些荷兰砂质土的土壤斥水性也消 失了^[8]。然而,对于这类土壤,斥水性随土壤含水 率的变化关系及其响应关系是否有所不同,并没有 详细报道。陈俊英等以以色列南部基布兹Berry一 个柚子园的原状土壤为例,详细描述了土壤斥水持 续时间随含水率的变化关系,并指出土壤斥水性随 含水率的变化关系呈正态分布^[9],但模型只以壤土 为基础建立的,对其他不同性质的土壤和不同斥水 性大小土壤的应用误差较大。

本文选用以色列3类不同质地的10种不同斥 水性土壤为对象,研究土壤斥水性对土壤含水率的 响应关系,并对此关系进行数学模型回归,找出这种 响应规律符合的数学模型,以便根据含水率所对应 的土壤斥水持续时间计算出该土样的峰值斥水性和 土壤斥水性消失时的临界含水率等参数,为斥水土 壤的改良提供依据。

1 材料与方法

1.1 土壤样品采集

研究所用土壤样品采自以色列4个不同地方的 3 类不同质地的表层土,即基布兹 Beery、基布兹 Bitzaron、基布兹 Seder Boker 和基布兹 Magen 4 个地 方共取了10 种土样,土壤类型、代码及相关参数见 表1。所采取的土壤均为处理后污水滴灌的果园, 而且灌溉时间年限不同,最短的有7年,最长达30 年,在所灌溉的年内土地均未翻耕过。

表1 土壤采集地及土壤相关参数

rab. 1 Son spots and the related parameters										
地々	亿件库	上博立生汉府	土壤	件可	灌溉时	有机质质量	土壤组成质量分数/%			
地台	经纬度	上墙木朱冰反	类型	1019	长/a	分数/%	粘粒	粉粒	砂粒	
D	东经 34°29′43.15″	抽同 0 5 am	+韓 +-	D1	15	有机质质量 分数/% 8.30 9.31 8.23 4.50 4.50 4.50 59 1.89 9.58 7.12 5.49	15	15	70	
Deery	北纬 31°25´14.06″			DI	15		15	15	70	
Bitzaron		柚园 ,0~2.5 cm	粘性土	BO1	20	9.31	36	17	47	
	东经 34°43′33.13″	柚园 , 2. 5 ~ 5 cm	粘性土	BO2	20	8.23	34	17	49	
	北纬 31°47′44.93″	柿子园 0~2.5 cm	粘性土	BP1	7	4.50	32	18	50	
		柿子园 2.5~5 cm	粘性土	BP2	7	4.01	31	18	51	
Sede Boker	东经 34°47´35.10″	草坪 0~2.5 cm	粘性土	SY	20	2.59	5	7	88	
boat bonor	北纬 30°52´24.98″	树林 0~2.5 cm	粘性土	SB	30	8.30 9.31 8.23 4.50 4.01 2.59 1.89 9.58 7.12	5	8	87	
	+ 47 24024/10 A5"	橙园 ,0~2.5 cm	砂质土	M1	15	9.58	30	17	53	
Magen	朱经 34°24°19.45°	橙园,2.5~5 cm	砂质土	M2	15	7.12	28	21	51	
	JC27 31~1/17.63"	柚园 ,0~2.5 cm	砂质土	M3	8	5.49	3	5	92	

1.2 土壤样品处理

将采集的 10 种斥水性土壤样品分别放在长方 形的塑料盆中,盆宽 20 cm,长 30 cm,土壤深度 15 cm。先模拟田间滴灌方式,使盆中斥水性土壤达 到饱和土壤含水率,这时土壤斥水性消失。将样品 放在室温为 25℃的实验室内进行避光风干,以减少 温度对土壤斥水性的潜在影响^[10~11]。当土壤斥水 性再次出现时,测定此时的土壤斥水持续时间和土 壤含水率,然后每隔 12 h,测定一次土壤的斥水持续 时间和含水率,直到土壤含水率不再变化,测定最后 一次土壤斥水持续时间和含水率。

1.3 土壤斥水持续时间测定

对土壤斥水性进行测定时,采用滴水穿透时间 (WDPT)法测定,滴定用水为纯净水。用一个标准 的滴定管分别将10滴水(每滴约0.05 mL)滴到每 种土壤样本表面,测定水滴渗入土壤所需要的时间, 取10滴水入渗时间的算术平均值作为每个样品的 最终结果。

1.4 土壤含水率测定

在进行土壤斥水性测定的同时,取表层0~ 1 cm土壤约20g测定土壤含水率,土壤含水率测定 采用105℃干燥法,使土壤达到质量恒定后,计算土 壤含水率(本文用到的均为质量含水率)。

2 数学模型基础

从土壤斥水性对土壤含水率的响应关系(图1) 可以看出,其关系为单峰曲线,根据响应的单峰曲线 特征,分别采用 Sigmaplot 软件单峰曲线模型中的 Gaussian 模型、Lorentzian 模型和 Lognormal(对数正 态分布)模型对响应关系进行回归分析。

Gaussian 三参数模型方程^[12]为

$$Y = a e^{-0.5 \left(\frac{x - x_0}{b}\right)^2}$$
(1)

式中 Y-----土壤斥水持续时间(滴水穿透时间) s x-----土壤含水率,% x₀、a、b-----待定参数

Lorentzian 三参数模型^[12]为

$$Y = \frac{a}{1 + \left(\frac{x - x_0}{b}\right)^2}$$
(2)
Lognormal 三参数模型^[12]为

$$Y = a e^{-0.5 \left[\frac{\ln(x/x_0)}{b}\right]^2}$$
(3)

3 结果与分析

3.1 实验结果

经过对 10 种不同土壤在不同含水率时测定的 土壤斥水性,其结果如图 1 中实测数据点所示。

从图1可以看出,对于壤土、粘性土和砂质土, 虽然土壤的有机质含量和斥水性不同,但土壤斥水 持续时间随土壤含水率的变化均有非常显著的关 系。即当土壤含水率为0时,土壤斥水持续时间很 小或者消失;随着土壤含水率的增加,土壤斥水持续 时间也呈增加趋势;当土壤含水率达到某一特定值 时,土壤斥水持续时间达到最大,即出现一个峰值; 当土壤含水率大于峰值含水率时,随着土壤含水率 的增加,土壤斥水持续时间呈减小趋势;当土壤含水 率达到临界含水率时,斥水性消失。

从图 1 还可看出,对于不同土壤,斥水持续时间 出现峰值时的含水率不同,即使是同种土壤,由于土 壤斥水性大小不同,出现峰值斥水性时的含水率也 不同;同时,土壤斥水性消失的临界含水率也随不同 土壤和相同土壤不同斥水性的变化而变化。

虽然土壤斥水性的峰值点和临界点都随土壤的 不同而不同,但总的来看,斥水持续时间随含水率的

(a) B1 (b) B01 (c) B02 (d) BP1 (e) BP2 (f) SY (g) SB (h) M1 (i) M2 (j) M3

变化趋势呈单峰曲线。

3.2 模型回归分析

研究采用 Sigmaplot 统计分析软件对数据进行 处理分析。在对 Gaussian 模型、Lorentzian 模型和 Lognormal 模型回归分析时,土壤含水率为自变量, 土壤斥水性为因变量,用各模型分别回归各种土壤 的斥水性对含水率的响应关系^[13],其回归结果见 图1,各回归模型的相关性及显著性分析见表2。

	表 2	模型对	「不同土壤」	回归参	参数日	り相关性	生乃	な显著	著性分析	Г	
Tab. 2	Regi	ression	parameters	and	test	values	of	the	models	for	soils

土壤代码	模型	样本数	a	b	<i>x</i> ₀	R^2	F	Р	F _{0.05}	F _{0.01}	显著性
B1	Gaussian	23	791. 435	0. 993	10. 568	0. 747	30. 993	< 0. 0001		5.78	* *
	Lorentzian	23	877.047	1.022	10.551	0.814	45.986	< 0. 0001			* * *
	Gaussian	48	619.93	5.86	14. 51	0. 691	51.49	< 0. 0001			* *
BO1	Lorentzian	48	668.11	5.40	13.66	0. 691	51.52	< 0. 0001		5.08	* *
	Lognormal	48	621.24	0.45	12.73	0. 758	71.98	< 0. 0001			* * *
	Gaussian	43	552. 895	3.502	14.053	0.807	85.940	< 0. 0001			* *
BO2	Lorentzian	43	585.715	3.576	14.021	0.815	90. 547	< 0. 0001		5.17	* * *
	Lognormal	43	554. 157	0. 261	13. 541	0. 786	75.326	< 0. 0001			* *
	Gaussian	28	72.645	7.749	9. 698	0. 252	4. 384	0. 0229			*
BP1	Lorentzian	28	74. 429	8.785	9. 282	0. 252	4. 387	0. 0228	3.37	5.53	*
	Lognormal	28	75.871	0.707	7.966	0. 280	5.061	0. 0139			*
	Gaussian	30	52. 983	3. 201	8.256	0. 230	4. 182	0. 0258			*
BP2	Lorentzian	30	57.061	2.884	7.656	0.276	5.332	0.0109	3.34	5.45	*
	Lognormal	30	52. 696	0.418	7.641	0. 281	5.477	0.0098			*
	Gaussian	44	443. 893	5. 791	15.424	0. 727	55.826	< 0. 0001		5.15	* * *
SB	Lorentzian	44	475. 501	5.726	15.333	0. 701	50. 298	< 0. 0001			* * *
	Gaussian	45	798.720	3.372	9.476	0.703	50.933	< 0. 0001			* * *
SY	Lorentzian	45	925. 515	3.133	9.680	0.710	52. 567	< 0. 0001		5.13	* * *
	Lognormal	45	754.362	0.390	8.609	0. 647	39.476	< 0. 0001			* *
	Gaussian	41	1913.463	2.070	3. 593	0.679	41.311	< 0. 0001			* * *
M1	Lorentzian	41	1993.971	2.167	3.401	0. 683	42.093	< 0. 0001		5.20	* * *
	Lognormal	41	1766. 347	0.676	2.765	0. 628	32. 915	< 0. 0001			* *
M2	Gaussian	35	446. 901	0. 795	1.844	0. 575	22. 288	< 0. 0001			* *
	Lorentzian	35	464. 595	0.870	1.777	0. 565	21.400	< 0. 0001		5.32	* *
	Lognormal	35	449. 592	0. 483	1.668	0.620	26. 891	< 0. 0001			* * *
	Gaussian	14	64. 787	1.030	2. 771	0.560	8. 984	0.0041			* *
M3	Lorentzian	14	76. 225	0.962	2.682	0.632	10. 327	0.0025		6.93	* *
	Lognormal	14	62.306	0. 421	2.504	0. 688	13.216	0.0009			* * *

注: * * * 显著性非常好 ,* * 显著性好 ,* 显著性一般。

从图 1 和表 2 可以看出,在 3 种数学模型中, Lorentzian 模型对壤土、粘性土和砂质土这 3 类土壤 的回归最好,其中这 3 类土质中的 5 种土壤样品回 归结果为非常好,3 种土样为好,2 种土样为一般; Gaussian 模型对 10 种土样中的 3 种回归结果为非 常好 5 种土样为好,2 种土样为一般; Lognormal 模 型对 10 种土样中的 3 种回归结果为非常好,3 种土 样为好,2 种土样为一般,但有 2 种土样没有回归结 果。从图 1 和表 2 还可以看出,3 种数学模型对粘 性土 BP1 和 BP2 回归的结果均不理想,主要原因是 该土壤的斥水持续时间对含水率响应时的差异性较 大。

经过3种数学模型对3类不同质地的10种土 样回归参数的比较得出,土壤斥水性对含水率的响 应关系符合 Lorentzian 模型和 Gaussian 模型,但 Lorentzian 模型最优。

依据土壤斥水性对含水率的响应数学模型,就 可以根据部分土壤斥水性对含水率响应的实测数 据 精确计算出土壤斥水性的峰值含水率、峰值斥水 性、临界含水率和任一含水率对应的土壤斥水持续 时间。现用 Lorentzain 模型对 10 种土样进行回归, 计算各土样的峰值含水率、峰值斥水性以及临界含 水率。计算结果见表3。

表 3 用 Lorentzian 模型回归的几个参数 Tab. 3 Some parameters got by Lorentzian model

土壤 代码	回归的峰值 含水率/%	回归的最大斥 水持续时间/s	临界含 水率1/%	临界含 水率2/%
B1	10. 55	867	0	23.8
BO1	13.66	668	0	40
BO2	14.02	586	0	32.5
BP1	9. 28	74	0	28
BP2	7.66	57	0	16.9
SY	9.68	926	3	30
SB	15.33	476	0	40
M1	3.40	1994		25
M2	1.78	465		10
M3	2.68	76		6.3

从表 3 可以看出,砂质土峰值含水率明显比粘 性土和壤土的峰值含水率小。砂质土的峰值含水率 在 1% ~3.5% 之间 粘性土和壤土的峰值含水率在 10%~20%之间。砂质土的临界含水率比粘性土和 壤土的也小,但临界含水率的差异性较大。从表3 还可看出,当土壤含水率为0时,粘性土和壤土的斥 水持续时间已经小于5s,但砂质土的斥水性仍然存 在。从表1和表3可看出,同种类型的土壤,有机质 含量越高的,其最大斥水持续时间也越大,临界含水 率也越大。

4 结论

(1)通过3类土壤的10种土样研究得出,土壤 斥水性对含水率的响应关系呈单峰曲线。无论是壤 土、粘性土,还是砂质土,当土壤含水率在0到峰值 含水率之间,随着含水率增加,土壤斥水性呈增加趋势,在峰值含水率时土壤斥水性达到最大值;当土壤 含水率大于峰值含水率时,随着含水率增加,土壤斥 水性逐渐减小,直至含水率达到临界含水率时,土壤 斥水性消失。

(2) 在 3 种模型中, Lorentzian 模型对不同类型 和不同斥水性大小的土壤的回归适应性最好,可以 采用 Lorentzian 模型来拟合斥水性对含水率的响应 关系,并可计算土壤斥水性的峰值含水率、峰值斥水 性以及临界含水率等,为斥水性土壤的改良提供理 论依据。

参考文献

- 陈俊英 涨智韬 汪志农 ,等. 土壤斥水性影响因素及改良措施的研究进展 [J]. 农业机械学报 2010 ,41(5): 84~89.
 Chen Junying , Zhang Zhitao , Wang Zhinong , et al. Influencing factors and amelioration of soil water repellency [J].
 Transactions of the Chinese Society for Agricultural Machinery ,2010 ,41(5): 84~89. (in Chinese)
- 2 Doerra S H , Thomasb A D. The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal [J]. Journal of Hydrology , 2000 , 231 ~ 232: 134 ~ 147.
- 3 Carrillo M L K , Letey J , Yates S R. Unstable water flow in a layered soil: effects of a stable water repellent [J]. Soil Sci. Soc. Am. J. ,2000 ,64(2): 450 ~455.
- 4 Uwe Buczko, Oliver Bens, Wolfgang Durner. Spatial and temporal variability of water repellency in a sandy soil contaminated with tar oil and heavy metals [J]. Journal of Contaminant Hydrology, 2006, 88(3 ~ 4): 249 ~ 268.
- 5 Bond R D , Harris J R. The influence of the microflora on physical properties of soils. Effects associated with filamentous algae and fungi [J]. Australian Journal of Soil Research , 1964 , 2(1): 111 ~ 122.
- 6 King P M. Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement [J]. Australian Journal of Soil Research. 1981, 19(3): 275 ~ 285.
- 7 Dekker L W, Ritsema C J. How water moves in a water repellent sandy soil potential and actual waterrepellency [J]. Water Resources Research, 1994, 30(9): 2 507 ~ 2 517.
- 8 Dekker L W, Ritsema C J. Wetting patterns and moisture variability in water repellent Dutch soils [J]. Journal of Hydrology, 2000 231 ~ 232: 148 ~ 164.
- 9 陈俊英 涨智韬 杨飞 等. 土壤斥水性和含水率变化关系的数学模型[J]. 灌溉排水学报 2009,28(6):35~38. Chen Junying, Zhang Zhitao, Yang Fei, et al. Modeling water repellency and water content of a sand soil [J]. Journal of Irrigation and Drainage, 2009,28(6):35~38. (in Chinese)
- 10 Dekker L W, Ritsema C J, Oostindie K, et al. Effect of drying temperature on the severity of soil water repellency [J]. Soil Science, 1998, 163(10): 780 ~ 796.

(下转第82页)

Jie Xiaolei , Li Youtian , Han Yanlai , et al. Effects of water-retaining agents on water retention properties of soil [J]. Journal of Henan Agricultural University , 2000 , 34(1):22 ~ 24. (in Chinese)

- 19 孙健. 吸水剂对土壤某些物理特性影响的初步研究[J]. 北京林学院学报,1985(4): 38~44. Sun Jian. A Preliminary Study on the effects of hygroscopic agents on some physical properties of soil [J]. Journal of Beijing Forestry University, 1985(4): 38~44. (in Chinese)
- 20 李景生,黄韵珠. 土壤保水剂的吸水保水性能研究动态[J]. 中国沙漠,1996,16(1): 86~91. Li Jingsheng, Huang Yunzhu. Present status of soil water-holding agent study [J]. Journal of Desert Research, 1996, 16(1): 86~91. (in Chinese)
- 21 马爱生,刘思春,吕家珑,等. 黄土高原地区几种土壤的水分状况与能量水平[J]. 西北农林科技大学学报,2005,33(11):117~120.
 Ma Aisheng, Liu Sichun, Lü Jialong, et al. Moisture characteristics and energy balance of several soils in Loess Plateau [J]. Journal of Northwest A & F University, 2005, 33 (11):117~120. (in Chinese)
- 22 全斌 陈健飞 郭成达. 福建赤红壤旱地与红壤旱地水分特性的比较[J]. 土壤与环境 2001,10(2):115~120. Quan Bin, Chen Jianfei, Guo Chengda. A comparative study on soil water characteristics of lateritic red earth dryland and red earth dryland in Fujian Province [J]. Soil and Environmental Sciences, 2001,10(2):115~120. (in Chinese)

(上接第67页)

- 11 吴延磊,李子忠 龚元石.两种常用方法测定土壤斥水性结果的相关性研究[J].农业工程学报 2007 23(7): 8~13. Wu Yanlei, Li Zizhong, Gong Yuanshi. Correlation of soil water repellency measurements from two typical methods [J]. Transactions of the CSAE, 2007, 23(7): 8~13. (in Chinese)
- 12 Charland M Brent. Sigmaplot for scientists [M]. Boston: Wm. C. Brown ,1995.
- 13 李春喜,姜丽娜,邵云,等. 生物统计学[M].3版.北京:科学出版社,2005.
- 14 任鑫 李毅 李敏 筹.次生盐渍土垂向剖面斥水性及其与理化性质关系 [J].农业机械学报 2011 42(3):58~64. Ren Xin, Li Yi, Li Min, et al. Relationship between soil water repellency and soil physical-chemical properties for vertical profiles in secondary saline field [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011 42(3):58~64. (in Chinese)