黄土高原不同土壤微生物量碳、 氮与氮素矿化势的差异

金发会13,李世清1,23*,卢红玲2,李生秀3

(1. 西北农林科技大学 黄土高原土壤侵蚀与旱地农业国家重点实验室, 杨陵 712100

2 中国科学院水利部 水土保持研究所,杨陵 712100,3.西北农林科技大学 资源环境学院,陕西杨陵 712100)

摘要: 以采自于黄土高原差异较大的 25个农田石灰性耕层土壤为供试土样, 对黄土高原主要类型土壤中微生物量碳 (B_c)、微 生物量氮 (B_N)和氮素矿化势 (N₀)的差异性进行了比较研究。结果表明, B_c、B_N和 N₀在不同类型土壤间存在显著差异, 由关中 平原至陕北风沙区, B_c、B_N和 N₀总体呈现下降趋势, 其中以土垫旱耕人为土最高, 简育干润均腐土最低, 黄土正常新成土和干润 砂质新成土居中: 土垫旱耕人为土、简育干润均腐土、黄土正常新成土和干润砂质新成土等各土类平均 B_c分别为 305 2^µg g⁻¹, 108 4^µg g⁻¹, 161. 7^µg g⁻¹和 125. 4^µg g⁻¹, B_N分别为 43. 8^µg g⁻¹, 20 3^µg g⁻¹, 26 0^µg g⁻¹和 30 6^µg g⁻¹, N₀分别为 223 μ g g⁻¹, 161. 7^µg g⁻¹和 193^µg g⁻¹。土壤氮素矿化速率 (*k*)则以简育干润均腐土最大, 干润砂质新成土最低, 土垫旱耕 人为土和黄土正常新成土居中: 土垫旱耕人为土、简育干润均腐土、黄土正常新成土和干润砂质新成土的 *k*分别为 0 039 w⁻¹, 0 044 w⁻¹, 0 031 w⁻¹和 0 019w⁻¹。不同类型土壤 B_c、B_N与 N₀的差异, 主要与土壤形成过程、输入土壤的植物同化产物和土壤 有机质的差异等有关, 从较大尺度进一步证明了在黄土高原, 土壤有机质是影响 B_c、B_N的主要因子。研究结果对分析黄土高原 土壤生产力形成过程具有一定参考价值。

关键词: 土壤微生物量碳; 微生物量氮; 氮素矿化势

文章编号: 1000-0933 (2008) 01-0227-10 中图分类号: 0142, 0145, 0938, S154 1, S158. 2 文献标识码: A

Variation of soil microbial biomass carbon, soil microbial biomass nitrogen and nitrogen mineralization potential in different soil types on the Loess Plateau

JIN Fa-Hu^{1,3}, LI Sh i Q ing^{1,2,3,*}, LU Hong-Ling², LI Sheng-X ii³

1 Northwest Science and Technology University of Agriculture and Forestry, State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Yangling Shaanxi 712100, China

2 Institute of Soil and Water Conservation, Chinese A caden y of Sciences and Ministry of Water Resources, Yangling Shaanxi 712100, China

3 College of Resources and Environmental Sciences, Northwest Science and Technology University of Agriculture and Forestry, Yangling Shaanxi 712100, China

Acta Ecologica Sinica 2008 28(1): 0227~ 0236

Abstract Studying soil microbial biomass carbon (B_c) , microbial biomass nitrogen (B_N) and nitrogen mineralization potential (N_0) has significance for evaluating the nitrogen supplying capacity of soil We measured B_c , B_N and N_0 of four main soil types on the Loess Plateau Eum Orthic Anthrosols, Hap Ustic Isohum isols, Los Orthic Entisols and Ust Sandic Entisols. Soil samples were collected from the surface of twenty-five locations. The chbroform furnigation extraction method

收稿日期: 2006-10-31; 修订日期: 2007-05-09

Received date 2006-10-31; A ccepted date 2007-05-09

基金项目: 国家自然科学基金资助项目 (90502006, 30571116)

作者简介:金发会 (1975~), 女, 湖北枣阳人, 硕士, 主要从事土壤-植物氮素营养研究. E-m aid jinzil 9751009@163. com

^{*} 通讯作者 Corresponding author. E-mail sql@ms iswc. ac. cn

Foundation item: The project was financially supported by National Natural Science Foundation of China (No. 90502006, 30571116)

Biography: JN FarHui, Master, mainly engaged in nitrogen nutrition in soils and plants E-mail jinzil9751009@163.com

was used to measurem icrobial carbon and microbial nitrogen in the soils A long-term alternate leaching aerobic incubation method was used to measure nitrogen mineralization potential of the soils. The results indicated that there were significant differences in the B_c, B_N, and N₀ among the soil types The values of B_c, B_N, and N₀ declined as the sampling locations m oved northward from the Guanzhong plain to the sandy regions in northern Shaanxi Province. The values of B_c , B_N and N_0 were highest in Euro Orthic Anthrosols intermediate in Los Orthic Entisols and Ust Sandic Entisols, and lowest in Hap Ustic Isohum isols The values of B_c averaged 305 2 μ g g⁻¹ for Eum Orthic Anthrosols, 108 4 μ g g⁻¹ for Hap Ustic Isohum isols, 161. $7\mu g g^{-1}$ for Los Orth ic Entisols and 125. $4\mu g g^{-1}$ for U st Sandic Entisols. The values of B_N were 43. 8 μ g \bar{g}^{-1} for Eum Orthic Anthrosols, 20 3 μ g \bar{g}^{-1} for H ap U stic Isohum isols, 26 0 μ g \bar{g}^{-1} for Los Orthic Entisols, and 30.6 $\mu g g^{-1}$ for U st Sandic Entisols The values of N₀ were 223 $\mu g g^{-1}$ for Eum Orthic Anthrosols, 75 $\mu g g^{-1}$ for H ap U stic Isohum isols, 163 μ g g⁻¹ for Los Orthic Entisols, and 193 μ g g⁻¹ for Ust Sandic Entisols. The mineralization rate constants (k) were highest in Hap U stic Isohum isols, intermediate in Euro Orthic Anthrosols and Los Orthic Entisols, and lowest in Ust Sandic Entisols Them ineralization rate constants were 0, 039 w⁻¹ for Eum Orthic Anthrosols, 0, 044 w⁻¹ for Hap Ustic Isohum isols, 0.031 w^{-1} for Los Orthic Entisols, and 0.019 w^{-1} for U st Sandic Entisols. The differences of B_c, B_N and N₀ among most soil types on the Loess Plateau result from the effect of soil forming factors such as climate, topography, parent material, and living organisms. The latter factor includes human activities such as the application of organic fertilizer and the reshaping of the land form through the construction of terraces. This paper provides a reference and guide for analyzing the processes affecting soil fertility on the Loess Plateau

KeyWords soil microbial biomass carbon, soil microbial biomass nitrogen, nitrogen mineralization potential

土壤微生物量碳 (M icrob ial b ion ass carbon 简写 B_c)、微生物量氮 (M icrob ial b ion ass nitrogen 简写 B_h)和 可矿化氮是土壤肥力的重要组成部分,土壤 B_c 、 B_h 和土壤氮素矿化势 (N itrogen m ineralization potential 简写 N_0)与土壤有机质和全氮密切相关^[1]。土壤微生物量的多少在一定程度上反映着土壤有机碳、氮同化和矿化 能力的大小,是土壤生物活性大小的标志。土壤微生物群体通过不断新老更替、分解外界物质,吸收、同化无 机养分,合成自身物质,同时又向外界不断释放其代谢产物等途径,赋予土壤肥力和生产力^[2]。土壤微生物 尽管所占比例很小,但由于其对外界条件变化敏感,其大小、活性、组成及周转强烈受生物因素 (耕作、施肥、 土地利用变化、土壤污染等人为因素及植被类型)和非生物因素 (环境温度、湿度、土壤类型等)影响,因而能 够及时反映土壤质量状况。因此, B_c 、 B_h 已成为国际土壤与植物营养学研究的热点问题^[3-7]。土壤氮素矿化 是在微生物参与下的生物化学过程,是有机氮转化为矿质氮,为植物提供可吸收利用氮素的关键过程。在一 定条件下,土壤有机氮通过矿化可释放的最大氮量,被称为氮素矿化势^[8],常用 N_o 表示。 N_o 不仅取决于有机 氮源和碳源的多少,而且还受土壤微生物活性及微生物量以及影响微生物活动的外部条件等因素影响^[910]。因 此,将 B_c , B_h 与 N_o 联系起来进行研究,更有利于揭示土壤氮素供应本质。但这一领域的研究报道相对较少,特别 是有关黄土高原不同土壤 B_c 、 B_h 和 N_o 差异的影响因素是什么,研究资料更加缺乏。本研究以黄土高 原主要石灰性土壤为对象,通过测定 B_c 、 B_h 和 N_o 、以期回答上述问题,为改善土壤质量提供一定理论依据。

- 1 材料和方法
- 11 研究区概况

黄土高原地区位于我国内陆腹地,地处黄河中上游与海河上游地区,东起太行山,西至乌鞘岭,南达秦岭, 北至阴山,位于东经 100°54′~114°33′,北纬 33°43′~41°16′之间,面积为 62 80×10⁴ km²,占国土面积的 6.54%。该区地貌、气候、植被和土壤均具有明显的分异特征:从南至北,地貌由渭河阶地、黄土台塬、高原沟 壑、丘陵沟壑及风沙丘陵过渡;气候属典型的干旱半干旱湿润性季风气候,雨热同期,由东南部的暖温带半湿 润区向西北部中温带干旱半干旱区过渡。年均气温为 3 6~14 3℃,年均降水量为 150~750 mm,降水主要集

12 供试土壤

根据黄土高原不同土壤类型分布情况确定采样点,采用区从北向南包括了北部半干旱风沙区至南部暖温 带半湿润区的全部区域。以从北(神木县)至南(关中平原)采取的 15个主要农业耕层(0~20 m)土壤样品 为供试土样(表 1)。每个采样点选中农田地块后,采取 S型路线多点采样,组成混合土样。采样时间为 2005

土号	采样地点	植被	土壤类型	经、纬度	海拔	地形
SoilNa	Location	С гор	So il type	Longitude, Latitude	A ltitude(m)	T erra in
·	神木	玉米	干润砂质新成土	E110. 35933°	11.0	坝地
1	Shenmu	M aize	U st Sand ic En tisols	N 38 79335°	1168	Dam land
2	榆林	玉米	干润砂质新成土	E109. 76865°	1002	川道地
2	Yulin	M aize	U st Sand ic En tisols	N38 17197°	1003	Plain
2	绥德	玉米	干润砂质新成土	E110. 21375°	943	川道地
5	Suide	M aize	U st Sand ic En tisols	N 37. 62961°	842	Plain
4	清涧	玉米	干润砂质新成土	E110. 15075°	1055	川道地
-	Q ingjian	M aize	U st Sand ic En tiso b	N 37. 27946°	1055	Plain
5	延川	谷子	干润砂质新成土	E110. 03996°	886	梯田
5	Yanchuan	Foxtailmillet	U st Sand ic En tisols	N 36 86145°	880	T errac e
6	安塞	玉米	黄土正常新成土	E109. 32613°	1056	河床地
0	Ansai	M aize	Los Orthic Entisols	N 36 85542°	1050	R ive b ed
7	延安	玉米	黄土正常新成土	E109. 50151°	1041	梯田
,	Yanan	Maize	Los Orthic Entisols	N 36 53706°	1011	T errac e
8	延安	玉米	黄土正常新成土	E109. 60307°	1120	坝地
-	Yanan	Maize	Los Orthic Entisols	N36 45247°		Dam land
9	富县	玉米	黄土止常新成土	E109. 50000°	800	川道地
	Fuxian	M aize	Los Orthic Entisols	N 36 00000°		Plain
10	洛川	玉芣	简肖十润均腐土	E109. 44707	475	
	Luochu an	M aize	Hap Ustic Isohum isols	N 35 82978°		Table land
11	国君	玉米	简育干润均腐土	E109. 17564°	899	上陵
	Y ijun	M aize	Hap Ustic Isohum isols	N35 54181°		H ill
12	耀县	本米	简肖十润均腐土	E108. 96573°	639	半原地
	Y aox ian		Hap Ustic Isohum sols	N 34 83986		Plan Trestu
13	二原	玉木	工空手树入为工	E108. 96926	413	平原地
	Sanyuan tz`去	Maze	Lum Onthic Anthrosols 一切。目前 し 当一	N 34 02144		Plan 一治垢
14	100/25 Vanalina	玉木 M aire	工空手材八万工 Furmi Outhin Authorem la	E100.07040 N 24.25686°	443	—坦你 Tabla bad
	杨法	m aze ∓¥	上山の市にAndrosons 十执旦社人为十	F108_00208°		Table Land 、可辨th
15	Yangling	Maize	工业中初八功工 Fum Orthic Anthropole	N 34 23808°	432	Fhod knd
	杨法	₩ aze ∓*	十执旦批人为十	F108 12613°		一道恆
16	Yangling	工 Maize	工业中初7八万工 Eum Orthic Anthrosols	N 34 26138°	436	Table land
	杨凌	玉米	十执星耕人为十	E108_08631°		二道頃
17	Yangling	Maize	Eum Orthic Anthrosols	N 34 28454°	514	Table land
	杨凌	玉米	土垫旱耕人为土	E108. 10677°		三道塬
18	Yangling	Maize	Eum Orthic Anthrosols	N 34 29472°	499	Table land
	杨凌	猕猴桃	土垫旱耕人为土	E108. 09984°		三道塬
19	Yangling	Wiki	Eurn Orthic Anthrosols	N 34 29657°	522	Table land
20	杨凌	玉米	土垫旱耕人为土	E108. 06008°	161	二道塬
20	Yangling	M aize	Eum Orthic Anthrosols	N 34 27832°	464	Table land
21	杨凌	玉米	土垫旱耕人为土	E108. 02204°	517	三道塬
21	Yangling	M aize	Eum Orthic Anthrosols	N 34 29215°	517	Table land
22	杨凌	〕 武黄	土垫旱耕人为土	E108. 05779°	452	二道塬
22	Yangling	Cucum ber	Eum Orthic Anthrosols	N 34 26596°	452	Table land
23	杨凌	玉米	土垫旱耕人为土	E108. 06126°	448	二道塬
25	Yangling	M aize	Eum Orthic Anthrosols	N 34 25800°	0	Table land
24	周至	玉米	土垫旱耕人为土	E108. 20583°	452	平原地
27	Zhouzh i	Maize	Eum Orthic Anthrosols	N34 13527°	152	Plain
25	25 武功	武功 玉米	土垫旱耕人为土	E108. 22028°	433	平原地
20	Wugong	M aize	Eum Orthic Anthrosols	N 34 21973°		Plain

表 1 样地概况

able 1 Conditions of the studied so ils

年 6月底至 7月初。土样采回迅速过 6 mm 筛,充分混匀。取部分混匀鲜土样过 2 mm 筛,放入冰柜中冷藏保 存,用作测定 Bc、Bx及 No;取部分土样风干,用作测定理化性质。

所采土样为黄土高原主要土壤类型,包括干润砂质新成土、黄土正常新成土、简育干润均腐土和土垫旱耕 人为土。供试土壤基本性质差异较大:有机质含量变化在 7.11~25.58 g⁻¹之间,全氮含量变化在 0.58~ 1.64 g⁻¹之间; pH 6.0~8.4(除 24号土样呈酸性外,其余土样均为石灰性土壤)。

土样	有机质 Organ <i>i</i> c	全氮 TotalN (g kg ⁻¹)	C /N	矿质氮 Nm in (μg g ⁻¹)	有效磷 Avai P (µg g ⁻¹) (%)	C aCO ₃	рН (H ₂ O)	颗粒组成 (%) Soil particle constitute		
So il Na	m atter ($g kg^{-1}$)		C/N			(%)		< 0. 01mm (1)	> 0 01mm (2)	(1)/(2)
1	11.32	0. 82	8. 02	81 7	27.06	4.31	8. 0	47.4	52 3	0 91
2	15 47	0.94	9.49	43 2	10 64	5. 31	8.3	49 0	50 9	0 96
3	7.11	0.50	8. 21	58 9	13 04	8. 30	8.3	43 9	56 0	0 79
4	9 81	0.67	8.48	40 2	3 48	9. 02	8. 2	39 0	60 9	0 64
5	8 42	0. 68	7.18	43 2	9 57	10. 15	8.4	32 1	67.9	0 47
6	12 61	0.82	8.95	27.2	4 88	10. 38	8.4	34 3	65 7	0 52
7	11.12	1. 02	6.34	49 8	12 14	8.96	8.1	41 9	57.7	0 73
8	12 29	0.80	8.95	43 9	5 22	10.86	8.4	35 1	64 9	0 54
9	20 85	1. 02	11.89	88 0	6 55	10. 24	8.3	39 8	60 2	0 66
10	11.66	0.82	8. 27	20 3	9 59	5. 30	8.4	43 0	56 9	0 76
11	8 47	0.81	6.10	27. 1	13 89	9.89	8.3	43 4	56 4	0 77
12	7.95	0. 58	8.01	23 7	7.91	13. 28	8.3	43 7	55 8	0 78
13	25 58	1. 64	9.05	33 3	17.00	12.50	8.3	54 3	45 5	1 19
14	21 87	1. 47	8.62	38 8	15 11	8.94	8. 2	52 4	47.5	1 10
15	15 21	1. 17	7.55	21 0	18 03	8. 05	8.4	48 9	50 7	0 96
16	21 62	1. 44	8.68	26 1	22 67	9.61	8.1	55 0	44 7	1 23
17	20 53	1. 26	5. 21	25 7	16 43	7.77	8. 2	49 5	50 2	0 99
18	18 13	1. 33	7.90	33 1	62 43	9.77	8.1	51 3	48 6	1 06
19	17.56	1. 23	8. 29	39 1	77.43	8.44	8. 2	50 9	48 7	1 04
20	16 78	1. 12	8.73	27.7	13 15	8.59	8. 2	55 3	44 4	1 25
21	21 01	1. 52	8. 02	37. 2	9 37	5.95	8. 0	51 6	48 4	1 07
22	16 42	1. 58	6.04	101 7	190 71	9.50	7.8	52 8	46 9	1 13
23	10 26	1. 40	4. 26	29 5	15 95	8.35	8. 2	55 0	44 7	1 23
24	17.40	1. 29	7.82	46 2	12 46	0. 29	6.0	48 8	51 0	0 96
25	20 17	1. 47	7.95	23 5	22 07	7.44	8. 2	53 1	46 7	1 14
平均 M ean	15 18	1. 10	7. 92	41 2	24 7	8.4	8. 1	46 9	52 9	0 91

表 2 供试土壤基本理化性质 Table 2 Properties of soils used

13 试验方法

131 供试土壤基本性质

有机质用外加热重铬酸钾容量法测定; 全氮用开氏法消解, K2300型全自动定氮仪测定; 矿质氮用 2 mot L^{-1} KC l浸提, 连续流动分析仪测定; 有效磷用 0.5 mot L^{-1} NaHCO₃提取-钼蓝比色法, 即 O lsen法测定; 不溶性碳酸盐总量用气量法测定; rH 值用电位法 (rH 计)测定。

132 颗粒分析

用激光粒度仪分析。称过 1 mm 筛干土 2 00 g 加水湿润浸泡过夜后在电炉上煮沸, 加 6% H₂O₂消除有 机质 (用异戊醇消泡),处理完毕后用 2000型激光粒度仪测定不同粒级颗粒组成。

1 3 3 微生物量碳(B_c)

用熏蒸提取法^[11]。称 20 00 g鲜土放入 100 m l塑料瓶中,在 50 % 湿度环境下预培养 7d(培养时与土样 共同放入一杯清水和一杯浓度为 1 mot L⁻¹的 NaOH 溶液)。预培养结束后,将装有土样的小塑料瓶,连同盛 有 60 m l左右无酒精氯仿的小烧杯 (里面放入少量抗暴沸物质),一起放入真空干燥器内。用真空泵抽至真 空,使氯仿沸腾 5 m in后关闭真空干燥器阀门,将真空干燥器放入 25 ℃培养箱中熏蒸 24 h。同时做不用氯仿 熏蒸处理的对照。熏蒸结束后,取出氯仿,用真空泵反复抽气,直到土壤闻不到氯仿味后,用 0 5 mot L⁻¹ K₂SO4溶液浸提,提取液中的有机碳 (TOC)用总有机碳分析仪 (Phoen ix 800TOC)测定。根据下式计算^[12] Bc:

$$B_c = 2 64 F_c$$

式中, 2 64为 Bc换算系数, Fc为熏蒸与未熏蒸土壤 K $_2$ SO4提取液中有机碳含量的差值。

1 3 4 微生物量氮(B_N)

用熏蒸提取法^[13]。土壤预培养、氯仿熏蒸处理及 0 5 mot L^{-1} K₂ SO₄溶液浸提同土壤 B_c的测定。取提取 液 10 m l于 50 m l三角瓶中, 加入 0 22 m l CuSO₄(0 19 mot L^{-1})溶液和 2 m l浓硫酸, 在电热板上用沙浴加热 消化。三角瓶中溶液在沸腾变成无色后, 计时再加热 1 5 h后取出。将消化液转移至 50 m l容量瓶中, 定容, 用连续流动分析仪测定滤液中的 NH⁺₄-N。根据下式计算^[14] B_x:

$B_{\rm N} = 1.85 F_{\rm N}$

式中, 1.85为 B_N转化系数, F_N为熏蒸和未熏蒸土壤 K₂SO₄提取液氮含量的差值。

135 土壤氮素矿化势(N₀)

采用 Stanford和 Sn ih提出的方法测定^[8]。称 15 00 g鲜土与等量石英砂 (2 mm < d < 3 mm)混合, 加入 少量蒸馏水, 搅拌使其形成良好粘结的土砂混合物, 将此混合物装入 50 m 培养管内。培养管预先装入 10 g 石英砂, 上垫一层玻璃纤维。土砂混合物加入后, 轻振几下, 再在上面盖一层玻璃纤维和石英砂, 以防淋洗时 对土壤的冲溅。用 100 m 10.01 m ot L⁻¹C aC b以 5~ 10 m 增量淋洗土壤起始矿质氮。接着加 25 m l无氮营养 液 (0 002 m ot L⁻¹C aSO₄. 2H₂O, 0 002 m ot L⁻¹ M gSO₄ 7H₂O, 0 005 m ot L⁻¹ Ca(H₂PO₄)? H₂O, 0 0025 m ot L⁻¹ K₂SO₄的混合液)。多余水分在 80 kPa负压下抽去。然后培养管口用塑料膜密封, 再扎一小孔, 保持 培养管内良好通气。将装有土砂混合介质的培养管置于 (35 ± 1) C恒温培养箱中培养。分别在培养到第 2 4 & 12 16 22周和 30周时同前进行淋洗, 移去培养期间土壤产生的矿质氮, 淋洗液用 100 m l容量瓶接收, 最 后定容至 100 mJ 淋洗液中矿质氮 (NH⁴ -N 和 NO³ -N)用连续流动分析仪分别测定。

根据 Stan ford和 Sm ih提出的方法计算 N₀值。N₀是指在一定条件下, 土壤有机氮素可矿化的最大量。具体求法如下:

由于累积矿化氮倒数 (1 /N₁)与培养时间 (周数)的倒数 (1/t)呈极显著正相关线性关系。以 1/N₁为纵坐标, 1/t为横坐标, 就可以得到一条斜率为 b的直线, 当 $t^{\rightarrow} \infty$ 时, 1/t极限为 0,这时斜率为 b的回归线便内延与纵坐标相交于一点, 即为 1/N₀。它的倒数便是所求的 N₀。这个经验公式可以写成:

$$1 N_{t} = 1 N_{0} + b / t \tag{1}$$

根据(1)式可计算出 №的第一个近似值。

间歇淋洗通气培养 30周所获得的累积净矿化氮量与时间的关系用一级动力学方程来描述:

 $N_t = N_0 (1 - e^{-kt}),$

取对数得:

$$\log (N_0 - N_t) = \log N_0 - k t/2.303$$

(2)

(1)式和(2)式中, N为时间 t(周数)内累积净矿化氮量, k为氮素矿化速率常数, N₀为土壤氮矿化势。

代入 N₀的第一个近似值, 以 log (N₀ - N_t)对 t回归, 求 log (N₀ - N_t)与 t之间的相关系数, 然后增减 N₀ 值, 当 log (N₀ - N_t)与 t之间的相关系数达到最高、 k_t /S E k最大时 (k_t 为每次确定的斜率, 即矿化速率, S. E k为 k_t 的标准差), 即为优选出的 N₀值及 k值。

ℓ值是土壤有机氮矿化快慢的标志、由优选出的 №值和累积净矿化氮量代入(2)式求得。

14 数据分析

用 Excel软件,对 B_c 、 B_x 、 N_0 、K 等与土壤全氮、有机质、土壤颗粒组成、经纬度、海拔等指标进行相关性分析;用 SAS软件对 4种类型土壤之间全氮、有机质、 B_c 、 B_r 和 N_0 等指标进行显著性检验。

2 结果与分析

供试土壤微生物量碳(Bc)、微生物量氮(Bn)、氮素矿化势(No)和矿化速率(k)见表 3。

表 3 土壤微生物量碳、氮和氮素矿化势、矿化速率

Table 3 The values of microbial biomass carbon, microbial biomass nitrogen mineralization potential and mineralization rate constant of soil used

土样号 So il N a	微生物 量碳 B _C (µg g ⁻¹)	微生物 量氮 B _N (µgg ⁻¹)	氮素 矿化势 N ₀ (µgg ⁻¹)	矿化速率 (k±SK)	土样号 SoilN o	微生物 量碳 B _C (µg g ⁻¹)	微生物 量氮 B _N (µgg ⁻¹)	氮矿化势 N ₀ (µg g- 1)	矿化速率 (<i>k</i> ±SK)
1	185.3	22. 2	270	0.025±0.006	14	413. 3	61 9	285	0 040±0.012
2	141. 1	32.3	180	0.025 ± 0.006	15	167. 2	31.9	160	0 038±0.008
3	122. 3	30. 4	180	0.008 ± 0.001	16	298. 6	42 3	240	0 043±0.009
4	153.4	38. 6	185	0.014±0 001	17	364. 1	56 3	250	0 038±0.009
5	24. 8	29. 3	150	0.024±0.006	18	317.0	43 0	180	0 045±0.009
6	168. 3	36. 9	140	0.029 ± 0.004	19	203. 4	33 4	220	0 031±0.010
7	162.6	22. 6	140	0.032 ± 0.003	20	293. 1	39 3	175	0 050±0.009
8	149.1	25. 2	140	0.039 ± 0.003	21	383. 6	44 6	235	0 029±0.002
9	166.8	19. 3	230	0.024 ± 0.003	22	318.4	38 2	270	0 045±0.010
10	151. 0	25. 3	110	0.033 ± 0.004	23	332. 1	46 9	190	0 042±0.010
11	63. 0	8.4	55	0.047±0 016	24	134.4	26 1	160	0 035±0.005
12	111. 3	27. 2	60	0.051±0 009	25	299. 2	45 6	240	0 032±0.003
13	442.4	59.8	290	0.041±0 006	平均 M ean	222. 6	35 5	189	0 034±0.007

2 1 不同土壤微生物量碳、氮的差异

表 3表明, 黄土高原石灰性土壤 B_C、B₄存在较大差异。供试土壤 B_c变化范围为 24 8~442 4 mg kg⁻¹, 是土壤有机碳的 0 5%~5 6%。相关分析表明 (表 4), B_c与土壤有机质含量密切相关, 说明 B_c与有机质变 化趋势基本一致。 B_N变化范围在 8 4~61.9 mg kg⁻¹之间, 是土壤全氮的 1.0%~6 1%; B_N与土壤全氮和有 机质变化一致, 它们之间呈极显著正相关 (表 4), B_N与 B_c高度相关。 B_c、B_N与海拔、经纬度均呈显著或极显著 负相关 (表 4)。总体上随海拔升高和纬度增加, B_c、B_N呈下降趋势, 即从南至北, 从关中平原到陕北风沙区呈 下降趋势; 从西到东, 亦呈下降趋势。 B_c、B_N与 < 0.01 mm 的物理性粘粒呈极显著正相关性, 与 > 0.01 mm 的 物理性砂粒呈极显著负相关性, 与物理性粘粒和物理性砂粒之比例 (< 0.01 mm /> 0.01 mm)呈极显著正相 关性 (表 4), 这可能与土壤微生物主要附着于土壤小颗粒上有关。

B_c在不同土壤类型中的含量变化范围分别为: 干润砂质新成土为 24 8~ 185 3 µg g⁻¹, 黄土正常新成土 为 149 1~ 168 3 µg g⁻¹, 简育干润均腐土为 63 0~ 151 0 µg g⁻¹, 土垫旱耕人为土为 134 4~ 442 4µg g⁻¹ (表 3)。从平均看, 不同类型土壤 B_c存在显著差异, 表现为土垫旱耕人为土(305 2 µg g⁻¹) > 黄土正常新成 土(161 7 µg g⁻¹) > 干润砂质新成土(125 4 µg g⁻¹) > 简育干润均腐土(108 4 µg g⁻¹)(表 5)。 B_x在不同 类型土壤中的含量变化范围分别为: 干润砂质新成土为 2 2~ 38 6 µg g⁻¹, 黄土正常新成土为 9. 3~ 36 9 µg g⁻¹, 简育干润均腐土为 8 4~ 27. 2 µg g⁻¹, 土垫旱耕人为土为 6 1~ 61. 9 µg g⁻¹(表 3)。从平均看, 其最 大与最小含量土壤类型与 B_c一致, 中间含量的两类土壤顺序虽然有所差别, 但差异不明显, 表现为为土垫旱 耕人为土(43 8 µg g⁻¹) > 干润砂质新成土(30 6 µg g⁻¹) > 黄土正常新成土(26 0 µg g⁻¹) > 简育干润均腐 $\pm (20 3 \mu g g^{-1})$ (表 5)。

表 4 土壤各养分指标与海拔、经纬度和颗粒组成等的相关系数 (r)

Table 4 Correlations between the nutrition of soils and the altitude latitude longitude, so il particle composition

			,	, 0 ,	<u> </u>	
项目 Iten	全氮 Total N	有机质 Organ icm atter	微生物量碳 B _C	微生物量氮 B _N	氮素矿化势 N_{0}	矿化速率 <i>k</i>
微生物量碳 B _C	0 846	0 765	_	_	0 741	0 364
微生物量氮 B_N	0 661	0 631	0. 864	-	0 665	0 181
氮矿化势 N_0	0 672	0 659	-	-	-	- 0 133
海拔 A ltitude	- 0 729	- 0 587	- 0. 624	- 0 557	- 0 320	- 0 522
纬度 Latitude	- 0 739	- 0 568	- 0. 594	- 0 481	- 0 190	- 0 691
经度 Longitude	- 0 800	- 0 602	- 0. 655	- 0 527	- 0 285	- 0 600
物理性粘粒 Physical clay < 0.01mm	0 780	0 598	0. 748	0 562	0 542	0 453
物理性砂粒 Physical silt > 0.01mm	- 0 777	- 0 591	- 0. 743	- 0 556	- 0 535	- 0 459
< 0 01mm /> 0 01mm	0 803	0 613	0. 771	0 601	0 558	0 475

 $n = 25, r_{0.05} = 0.369, r_{0.01} = 0.505$

表 5 不同类型土壤肥力指标及氮素矿化特征

Table 5 The soft lefting index and infrogen in ineralization characteristics of different soft types									
土样号 SoilNa	土壤类型 Soil types	有机质 [*] O rgan ic matter (µg g ⁻¹)	全氮 [*] TotalN (µg g ⁻¹)	微生物量碳 [*] B _C (µgg ⁻¹)	微生物量氮* B _N (µgg ⁻¹)	氮矿化势* N ₀ (µg g ⁻¹)	矿化速率 [*] <i>k</i> (周 ^{- 1})		
1~ 5	干润砂质新成土 U st Sand ic En tisols	10 42 b	0.72 b	125 4 b	30 6 b	193 a	0. 019 c		
6~ 9	黄土正常新成土 Los Orthic Entisols	14 22 ab	0.91 b	161 7 b	26 0 b	163 a	0. 031 b		
10~ 12	简育干润均腐土 HapUstic Isohumisols	9 36 b	0.73 b	108 4 b	20 3 b	75 b	0. 044 a		
13~ 25	土垫旱耕人为土 Eum Onthic Anthrosols	18 66 a	1. 38 a	305 2 a	43 8 a	223 а	0. 039 ab		

* 用 Duncan 新复极差法作多重比较,同一列字母相同的表示差异不显著,字母不同的表示差异显著 (p< 0 05) Duncan' SSR test The same letters with in each column indicate no significantly difference at 5% level

2 2 不同土壤氮素矿化势及矿化速率的差异

不同土壤 N₀存在较大差异,从南到北,总体呈下降趋势,与有机碳和氮的变化趋势一致;对相同土类,也存在较大差异,干润砂质新成土变化在 150~270 µg g⁻¹,黄土正常新成土变化在 140~230 µg g⁻¹,简育干润 均腐土变化在 55~110 µg g⁻¹,土垫旱耕人为土变化在 160~290 µg g⁻¹(表 3)。相关分析表明(表 4), N₀与 海拔、经纬度均呈弱负相关,相关系数均未达到 5% 显著水平,总体上说明随着海拔升高和纬度增加,即从南 至北,从西部到东部, N₀呈现下降趋势,但下降趋势不及有机质、全氮及 B_c和 B_x显著。从不同类型土壤平均 看,N₀存在显著差异,表现为土垫旱耕人为土(223 µg g⁻¹)>干润砂质新成土(193 µg g⁻¹)>黄土正常新成 土(163 µg g⁻¹)>简育干润均腐土(75 µg g⁻¹),其差异与 B_x相一致(表 5)。

相关分析表明 (表 4), N_0 与 < 0 01 mm 的物理性粘粒呈现极显著正相关关系, 与 > 0 01 mm 的物理性砂 粒呈现极显著负相关关系, 与物理性粘粒和物理性砂粒的比例 (< 0 01 mm /> 0 01 mm)呈极显著正相关关 系, 这说明可矿化氮主要与小粒级颗粒 (< 0 01 mm)有关, 这可能与有机氮及微生物主要附着与小粒级颗粒 有关。

*k*值在干润砂质新成土中变化在 0 008~ 0 025 w⁻¹之间,在黄土正常新成土中变化在 0 024~ 0 039 w⁻¹ 之间,在简育干润均腐土中变化在 0 033~ 0 051 w⁻¹之间,在土垫旱耕人为中变化土在 0 029~ 0 050 w⁻¹之 间(表 3)。*k*值从简育干润均腐土、土垫旱耕人为土、黄土正常新成土、干润砂质新成土依次减小(表 5)。

28卷

3 讨论

 B_{c} 、B_x对环境因子 (如土壤温度和湿度)和管理措施 (如耕作和施肥等)非常敏感^[15~19], 是易变动的源和 库^[20/21], 同时也与土壤有机质 (或全氮)密切相关^[22/23]。 B rook es等用 20种土壤研究表明, B_x与土壤全氮呈极 显著正相关关系, 相关系数达 0 95以上^[24]; 还有证据表明, 天然植被开垦后, 由于土壤有机质迅速减少, B_c (或 B_x)随之锐减^[22]; 耕层有机质丰富, B_c和 B_x也较下层高^[25~27]; 森林土壤 B_x随土层深度增加依双曲线关系 递减^[26]。一般认为, 种植根系庞大作物, 因提供有机物质较多, B_x较栽培小根系作物农田高^[21]。黄土高原地 区气候属典型的干旱半干旱湿润性季风气候, 雨热同期, 由东南部暖温带半湿润区向西北部中温带干旱半干 旱区过渡, 存在显著差异性。本研究采样区包括黄土高原北部风沙区、中部黄土丘陵沟壑、渭北黄土高原沟壑 区及关中盆地, 降水量从北部的 400 mm到南部的 650 mm范围; 陕北地区年均气温为 6~8 °C, , 关中地区年 均气温为 12~14 °C, 因此采样区包括了中温带半干旱气候区及暖温带半湿润气候区。由于南、北气候差异, 每年因植物同化向土壤输入的有机物质也不同, 表现为北部小于南部, 因而北部土壤有机质、全氮及可矿化氮 低于南部, 从而也导致北部 B_c、B_x低于南部。

 B_{c} 、 B_{x} 与土壤温度和水分关系的研究报导虽然不断涌现^[20, 25, 28~30], 但至今仍无可靠结论。一些研究者 认为, 田间土壤 B_{x} 相对稳定^[28,31], 与温度和湿度之间无密切关系; 而另一些研究者认为, 田间 B_{x} 呈明显的季 节性变化。 Singh等^[20]对高度风化及淋溶、养分缺乏的热带干旱区林地及草地土壤 B_{x} 变化的研究发现, 在干 旱炎热的夏季, B_{x} 最高, 原因是干旱缺水限制了植物正常生长, 而微生物仍可利用土壤水分, 土壤养分被微生 物固定; 雨季 (秋季和冬季) 矿化作用强, 植物生长旺盛, 土壤养分被旺盛生长的植物吸收, B_{x} 最低。 Kaiser 等^[30]得到了类似的结论, 认为温度和作物生长是影响 B_{x} 的主要因子。 Van G estel^{25]}的研究结果相反, 认为在 湿润的冬季和初春 B_{x} 最高, 而在干旱的夏季最低, 土壤水分是主要影响因子。 Garcia等^[27]研究表明, 早春 B_{x} 较高, 随着植物生长和氮素吸收, B_{x} 下降; 在夏季和秋季之交, B_{x} 会回复到较高水平, 减少的与植物吸氮量有 关。本研究采样时间为 2005年 6月底至 7月初, 这一时期土壤温度在陕北及关中地区均较高, 而且土壤水分 状况也较好, 因此, 不同土壤 B_{c} 、 B_{x} 的差异, 受田间水分和温度影响较小。

黄土高原从南至北,地貌由渭河阶地、黄土台塬、高原沟壑、丘陵沟壑及风沙丘陵过渡,具有明显的分异特征。陕北地区属于风沙丘陵过渡区、丘陵沟壑及高原沟壑。风沙丘陵过渡区受水蚀、风蚀的共同作用,丘陵沟 壑及高原沟壑区土壤水蚀亦严重,水土流失在成土过程中作用显著,因此在风积沙和马兰黄土母质上发育而 成的幼年性土壤干润砂质新成土和黄土正常新成土受长期土壤侵蚀的影响,表层土壤有机质和全氮含量偏 低。关中地区母质为黄土状母质或黄土母质,且地处黄土台塬和渭河阶地,养分流失较少,有机质、全氮含量 较高。

本研究表明 (表 4), B_c , B_N 及 N_0 与 < 0 01 mm 的物理性粘粒呈极显著正相关性, 与 > 0 01 mm 的物理性 砂粒呈极显著负相关性, 与物理性粘粒和物理性砂粒之比例 (< 0 01 mm /> 0 01 mm)呈极显著正相关性, 这 显然是土壤有机质、有机氮及微生物同时主要附着于小粒级颗粒的结果。本研究同时表明 (表 4), 土壤全氮、 有机质、 B_c , B_N 与海拔、经纬度均呈显著或极显著负相关。实际上, 纬度、经度和海拔仍然通过影响土壤有机 质而影响 B_c , B_N 。

土地利用是人类干预土壤质量最重要、最直接的活动,通过对不同物质的时空配置和循环,干扰和调整土 壤生物地质循环过程,从而导致土壤生物学质量发生改变。黄土高原人类活动历史悠久,对土壤影响深刻。 陕北神木处于风沙、水土流失交错带,风蚀和水蚀作用强烈,但该区 1号土壤采集于坝地,每年大量施用有机 肥及化肥,年输入土壤的植物同化产物也较高,因此 B_c、B_k和 N₀均偏高。干润砂质新成土中的 5号土壤采集 于新造梯田,其土壤 B_c、B_k和 N₀在同类型土壤中最低。简育干润均腐土中 11号土壤采集于坡地, B_c、B_k和 N₀ 在同类型土壤中最低;黄土正常新成土中 7号土壤采集于新造梯田, B_c、B_k和 N₀亦偏低,说明坡地和新造梯田 的这些指标均较低,而川道地和坝地较高。原因在于坡耕地严重的土壤侵蚀造成土壤有机碳、氮减少,新造梯 田由于受到扰动,耕层土壤有机碳、氮水平亦较低,从而导致 B_c、B_k和 N₀较低。关中土垫旱耕人为土是在原

自然土的基础上形成的现代土壤,是土粪、风尘堆积和农耕活动的综合产物,因此土壤有机质、有机氮较高,与 其密切相关的 B_{cx} , B_{h} 和 N_{0} 也相应较高。

总体看来, B_c、B_n和 N₀均以土垫旱耕人为土最高,简育干润均腐土最低,黄土正常新成土和干润砂质新成 土居中。*k* 值则以简育干润均腐土最大,干润砂质新成土最低,土垫旱耕人为土和黄土正常新成土居中。说 明简育干润均腐土 *k* 值最大,干润砂质新成土 *k* 值最小。简育干润均腐土中 B_c、B_n和 N₀最低,可能与其 *k* 值 最大有关。从上面分析发现,不同类型土壤 B_c、B_n与 N₀的差异,主要与土壤形成过程、输入土壤植物同化产 物和土壤有机质的差异有关,从较大尺度进一步证明了在黄土高原,土壤有机质是影响 B_c、B_n的主要因子,以 上研究结果对分析黄土高原土壤生产力形成过程具有一定参考价值。

4 结论

通过研究,获得以下主要结论:

(1) B_c, B_N和 N₀在不同类型土壤间存在显著差异,由关中平原至陕北风沙区, B_c, B_N和 N₀总体呈现下降 趋势,其中以土垫旱耕人为土最高,简育干润均腐土最低,黄土正常新成土和干润砂质新成土和干润砂质新成土居中:土垫旱耕 人为土、简育干润均腐土、黄土正常新成土和干润砂质新成土的 B_c分别为 305 2 μ g g⁻¹, 108 4 μ g g⁻¹, 161.7 μ g g⁻¹和 125 4 μ g g⁻¹, B_N分别为 43.8 μ g g⁻¹, 20 3 μ g g⁻¹, 26 0 μ g g⁻¹和 30 6 μ g g⁻¹, N₀分别为 223 μ g g⁻¹, 75 μ g g⁻¹, 163 μ g g⁻¹和 193 μ g g⁻¹。

(2) *k* 值则以简育干润均腐土最大,干润砂质新成土最低,土垫旱耕人为土和黄土正常新成土居中;土垫 旱耕人为土、简育干润均腐土、黄土正常新成土和干润砂质新成土的 *k* 值分别为 0 039 w⁻¹, 0 044 w⁻¹, 0 031 w⁻¹和 0 019 w⁻¹。

R eferences

- L i S Q, Li S X, Zhang X C. D ifference of soil microbial biomass nitrogen under different ecological systems Journal of Soil Eros ion and Soil and Water Conservation, 1999, 5(1): 69-73
- [2] Zhao X L, Cheng H T, Lv G H, et al. Advances in soil microbial biomass Journal of Meteorology and Environment 2006, 22(4): 68-72
- [3] LiS Q, Lin L, LiS X. Review on the factors affecting soil microbial biomass nitrogen. Soil and Environmental Sciences, 2000, 9(2): 158-162
- [4] Wang C, LiS Q, Wang Q, et al Studies on influencing factors of organism-nitrogen in the field soil Journal of Xinjiang Agricultural University, 2003, 26(2): 20-24.
- [5] Lin L, Yan X, Li L H, et al. Study on variation of soil microbial birm as snitrogen of fam land in Guanzhong region Agricultural Research in the Arid Area, 2000, 18(3): 32-36
- [6] Patra D D, Bhandaris C, M isra A. Effects of plant residues on the size of microbial biomass and nitrogen mineralization in soil-in corporation of cowpea and wheat straw. Soil Science and Plant Nutrition, 1992, 30, 1-6
- [7] Kaiser E A, Martens R, Heinem eyer O. Temporal changes in soil microbial carbon in anable soil consequence for soil sampling Plant and Soil 1995, 170, 287-295.
- [8] Stanford G, Smith S J Nitrogen mineralization potential of soil Science Society of America Proceedings 1972, 36:465-472
- [9] Ju X T, Bian X J Liu X J et al. Relationship between soil nitrogen mineralization parameter with several nitrogen forms Plant Nutrition and Fertilizer Science, 2000, 6(3): 251-259
- [10] Zhang J B, Song C C Advances in soil nitrogen transform. Journal of Jilin Agricultural Sciences 2004, 29(1): 38-43
- [11] Lin Q M, W u Y G, Liu H L. Modification of fumigation extraction method for measuring soil microbial bitmass carbon. Chinese Journal of Ecobgy, 1999, 18(2): 63-66
- [12] Vance, E.D., Brookes, P.C., Jenkinson, D.C. An extraction method form easuring soil microbial birm ass C. Soil Bio bgy and Biochemistry, 1987, 19, 703-707.
- [13] Brook es P C, Landmann A, Pruden G, et al. Chloroform fum igation and the release of soil nitrogen: A Rapid direct extraction method to measure microbial binn ass nitrogen in soil SoilBibbgy and Biochemistry, 1985, 17: 837-842.
- [14] Jenk in son D S, Brookes P C, Pow lson D S. M easuring so ilm icrobial birm ass Soil Biology and Biochem istry, 2004, 36 5-7.
- [15] Jenkinson D.S., Ladd J.N. Microbial biomass in soil measurement and turnover In E.A. Paul and J.N. Ladd eds Soil biochemistry. Marcel

Dekker New York, 1981 5 415-471

- [16] Collins H P, Rasmussen P E and Doughs Jr C L. Crop rotation and residue management effects on soil carbon and microbial dynamics. Soil Science Society of America Journal, 1992, 56, 783-788.
- [17] Witter E, Mortensson AM, Garcia FV. Size of the soil microbial binn ass in a long-term field experiment as affected by different N-fertilizers and organic manures. Soil Biology and Biochemistry 1993, 25: 659-669.
- [18] Hu C, Cao Z P, Ye Z N, et al Impact of soil fertility maintaining practice on soil microbial bitm ass carbon in low production agro-ecosystem in northerm China Acta Ecologica Sinica, 2006, 26(3): 808-814
- [19] Zhang P J LiL Q, Pan G X, et al. Influence of long-term fertilizer m anagement on topsoil microbial biomass and genetic diversity of a paddy soil from the TaiLake region, China Acta Ecologica Sinica, 2004, 24 (12): 2818-2824
- [20] Singh J S, Raghubanshi A S, Singh R S, et al. Microbial binn assacts as a source of plant nutrients in dry tropical forest and savanna Nature, 1989, 338, 499-500.
- [21] Sm ih J I, PaulE A. The significance of soil microbial binn ass. In: JM Bollag. G Stotzky eds. Soil Biochem is try. M arcel Dekker, New York, 1990, 357-396.
- [22] Sparling G. P. The soil binn ass In: D. Vaughan, and R. E. M. ako In. eds. Soil organic matter and biological activity. Martinus Nijhoff/DrW Junk Publishers, Dordrecht, Netherland, 1985, 223-265.
- [23] And erson F, Dom sch K H. R atio ofm icrobial biom ass carbon to tota lorganic carbon in a rable soils Soil Bio bgy and Bioch emistry, 1989, 21 471-479
- [24] Brook es P C, Pow Ison D S, Jenk inson D S. The m icrobial biom ass in soil Rotham sted Experimental Station, Harpenden, Hertts, AL. 1985, 52 D.
- [25] Van GestelM, Ladd JN, AmatoM. Microbial bim ass response to seasonal change and in posed drying regines at increasing depths of undisturbed topsoil profiles. So il B iobgy and B iochem istry, 1992, 24: 103-111.
- [26] Gallardo A, Schlesioger W H. Estimating m icrobial biomass nitrogen using the fun igation in cubation and fun igation extraction methods in a warmtemperate forest soil Soil Biology and Biochemistry 1990, 22 927-932
- [27] Garcia F, Rice C.W. Microbial biomass dynamics in tallgrass prairie Soil Science Society of America Journal 1994 58: 816-823
- [28] Patra D D, Brookes P C, Coleman K, et al. Seasonal changes of soil microbial birmass in an arable and a grassland soil which have been under uniform management form any years Soil Biology and Biochemistry, 1990, 22 739-742.
- [29] HolensW E, Zak D R. Soilmicrobial bim assignamics and net nitrogen mineralization in northern hardwood ecosystem. Soil Science Society of America Journal, 1994 58: 238-243
- [30] Kaiser E A, Martens R and Heinem eyer O. Temporal changes in soil microbial carbon in arable soil Consequence for soil sampling Plant and Soil 1995 170: 287-295
- [31] Bottner P.R. Response of m icrobial biom ass to alternate moist and dry conditions in a soil incubated with ¹⁴C and ¹⁵N-labelled plant material Soil B io bgy and B ioch em istry, 1985, 17, 329-337.

参考文献:

- [1] 李世清,李生秀,张兴昌.不同生态系统土壤微生物体氮的差异.土壤侵蚀与水土保持学报,1999,5(1):69~73.
- [2] 赵先丽,程海涛,吕国红,等.土壤微生物生物量研究进展.气象与环境学报,2006,22(4):8~72
- [3] 李世清, 凌莉, 李生秀. 影响土壤中微生物体氮的因子. 土壤与环境, 2000, 9(2): 158~ 162.
- [4] 王成,李世清,王强,等.田间土壤生物体氮的影响因子研究.新疆农业大学学报,2003,26(2):20~24
- [5] 凌莉, 闫湘, 李鲁华, 等. 关中地区农田生态系统土壤微生物体氮分异性研究. 干旱地区农业研究, 2000 18(3): 32~36
- [9] 巨晓棠,边秀举,刘学军,等.旱地土壤氮素矿化参数与氮素形态的关系.植物营养与肥料学报,2000,6(3):251~259.
- [10] 张金波, 宋长春. 土壤氮素转化研究进展. 吉林农业科学, 2004, 29(1): 38~43
- [11] 林启美,吴玉光,刘焕龙. 熏蒸法测定土壤微生物量碳的改进. 生态学杂志, 1999, 18(2): 63~66.
- [18] 胡诚,曹志平,叶钟年,等.不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响.生态学报,2006_26(3):808~814.
- [19] 张平究,李恋卿,潘根兴,等.长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化.生态学报,2004,24(12):2818
 ~ 2824