文章编号:100024025(2007)0220321207 y

神木水蚀风蚀交错带主要人工 植物细根垂直分布研究

成向荣^{1,2},黄明斌^{1,3*},邵明安^{1,3}

(1 中国科学院 水利部水土保持研究所 黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨陵 712100;2 中国科学院研究生院,北京 100039;3 西北农林科技大学 水土保持研究所,陕西杨陵 712100)

摘 要:选择位于水蚀风蚀交错带强烈侵蚀中心的神木六道沟流域,通过分层挖掘法调查了6种典型人工植物细根垂直分布特征.结果表明;(1)各树、草种的细根垂直分布特征具有相似性,即浅层土壤中细根分布较多,深层土壤少;(2)细根密度(Fine root density, FRD)垂直分布存在较大差异, $0 \sim 2 m \pm 层刺槐(Robinia pseudoacacia)总FRD为1.195 m²! m⁻², 柠条(Caragana korshinskii)为0.927 m²! m⁻², 沙柳(Salix psammophila)为0.941 m²! m⁻², 沙棘(Hippophae rhamnoides)为1.248 m²! m⁻², 沙蒿(Artemisia ordosica)为0.446 m²! m⁻², 紫花苜蓿(Medicago sativa)为0.631 m²! m⁻²;(3)细根垂直分布与土壤水分分布存在显著相关性.$

关键词:水蚀风蚀交错带;细根垂直分布;土壤水分

中图分类号: Q948.118 文献标识码: A

Vertical Distribution of Representative Plantationøs Fine Root in Wind2water Erosion Crisscross Region, Shenmu

CHENG Xiang2rong^{1,2}, HUANG Ming2bin^{1,3*}, SHAO Ming2an^{1,3}

(1 Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, The State Key Labora2 tory of Soil Erosion and Dryland Farming of the Loess Plateau, Yangling, Shaanxi 712100, China; 2 Graduate School of Chinese A2 cademy of Sciences, Beijing 100039, China; 3 Institute of Soil and Water Conservation, Northwest Sci2Tech University of Agricu2 ture and Forestry, Yangling, Shaanxi 712100, China)

Abstract: The research was carried out in Liudaogou watershed, Shenmu County, which is the most serious erosion centre of wind2water erosion crisscross region. Vertical fine roots distribution of 6 main plant spe2 cies were investigated with dig method. The results showed that (1) fine roots of these 6 plant species had similar vertical distribution characteristics, i. e. mainly focused in the upper soil and few in the deep soil; (2) Their fine root density(FRD) had great difference, the total FRD of Robinia pseudoacacia was 1. 195 m²! m⁻² in 0~ 2 m soil, Caragana korshinskii was 0. 927 m²! m⁻², Salix psammophila was 0. 941 m²! m⁻², H ipp op hae rhamnoides was 1. 248 m²! m⁻², Artemisia or dosica was 0. 446 m²! m⁻² and Medicago sativa was 0. 631 m²! m⁻², respectively. There were positive correlation between vertical distribution of fine root and soil water distribution in the profile; (3) Therefore, the further exploration between fine root distribu2 tion of different vegetation and soil water will promote vegetation construction in this region. Key words: wind2water erosion crisscross region; vertical fine root distribution; soil water

y 收稿日期: 200@ 0@09; 修改稿收到日期: 200@ 0201227
 基金项目: 国家自然科学基金(40471062); 西北农林科技大学创新团队项目
 作者简介: 成向荣(1979-), 男(汉族), 在读博士研究生. E2 mail: cxr@nwsuaf. edu. cn
 * 通讯作者: 黄明斌, 研究员, 博士生导师, 研究方向为生态水文和土壤物理. E2 mail: hmbd@n wsuaf. edu. cn
 © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

水蚀风蚀交错带是黄土高原水土流失最严重和 生态环境最脆弱的地区,地形复杂多变、沟壑遍布; 大部分处于半干旱地区,年降雨量一般在400 mm 左右,且年际、年内变率大;气候变化剧烈;植被退 化、沙化严重^[1].全年水蚀风蚀交替进行,且相互促 进,进一步加剧了生态环境的恶化.进行植被恢复与 重建是改善该区域生态环境建设的最有效措施.多 年来,该区开展了大规模的水土保持综合治理,取得 了显著成绩.但近年来部分高度治理区出现了人工 植被逐渐退化的新现象,表现出新的水资源2生态环 境矛盾.其中很重要的一个原因是对该区人工植被 与土壤水分环境间的相互关系缺乏深入研究.

细根是植物吸收水分和养分的主要通道,其分 布特征反映了植物对地下资源的利用状况. 细根垂 直分布与植物种类、年龄、土壤水分、养分和物理性 质(质地等)、地下水位等有关,林木大部分根系位于 50 cm 土层以上, 且多集中于枯落物层和 10 cm 以 上矿质土壤表层[24].细根生物量随深度增加呈指数 递减^[5]. Jackson 等^[6]分析大量研究数据发现, 北方 森林和温带草地细根分布最浅,热带落叶林最深,它 们在表层 30 cm 内的细根分别为 83%、83% 和 42%, 土壤温度从地表向下迅速下降是细根集中于 表层的重要原因^[7,8].提高土壤温度不但使细根生 物量增加,而且使细根趋于深土层分布^[9].此外,细 根垂直分布还与林木耐旱性有关,受干旱胁迫症状 最明显的树种在深土层的细根生物量最小^[3].于旱 胁迫使细根向深土层发展,深土层细根比例增 加^[10]. 尽管在深层土壤中仅有很少比例的细根存 在,但它们对林木水分吸收却发挥着非常重要的作 用^[6,11].近年来,黄土高原林木细根的研究也表明, 不同立地条件下(主要是不同坡向影响), 刺槐细根 垂直分布差异较大,土壤水分环境与细根分布密切 相关[12,13].在黄土高原水蚀风蚀交错带,开展典型 人工植物细根垂直分布的研究,有助于深入了解植

物的耗水特性,也可为林草根系吸水函数的建立和 土壤水分动态模拟提供依据.

本研究选择神木六道沟流域分布的典型人工植物种类,目的是调查不同植物的细根垂直分布特征,初步探讨细根垂直分布与剖面水分的相关性,为今后深入研究植被与水分生态环境的相互作用关系奠定基础.

1 研究区概况

试验区位于陕西神木县以西 14 km 处的六道 沟流域(东经 110b2 k~ 110b23c,北纬 38b46c~ 48b 51c),海拔 1 094.0~ 1 273.9 m. 流域北依长城,地 处毛乌素沙漠的边缘,属于黄土高原水蚀风蚀交错 带的强烈侵蚀中心,流域面积 6.89 km².该区年均 降水量 437.4 mm,年内年际变率大,50%以上集中 在 7~ 8 月份.年均气温 8.4 e,属中温带半干旱气 候.地形较为破碎,沟壑面积占流域面积的 40%~ 50%,年侵蚀模数达 10 000 t! km⁻².主要的人工树、 草种有小叶杨(Populus simonii)、刺槐(Robinia p seudoa ca cia)、柠条(Car a gana kor shinskii)、沙柳 (Salix psamophila)、沙棘(Hippophae rham2 noides)、沙蒿(Artemisia ordosica)和紫花苜蓿 (Medicago sativa)等,多呈片状或斑块状分布.土 壤类型主要为沙黄土和风沙土.

2 材料和方法

2.1 材料与样地设置

选择刺槐、柠条、沙柳、沙棘、沙蒿和紫花苜蓿建 立 20 m @20 m 临时样地,其中沙蒿、沙柳和沙棘分 布在同一坡面,坡上部主要为沙蒿,中部沙蒿、沙柳 混交,下部全为沙棘.样地概况见表 1.

2.2 研究方法

2005年8月下旬在六道沟小流域刺槐、柠条、沙柳、沙棘、沙蒿和紫花苜蓿的临时样地内选择典型

样地编辑 Code of sample	植物种 Plant species	坡向 Exposition	坡度 Gradient (b)	坡位 Position on slope	土壤类型 Soil type	林龄 Standage (a)	平均高 Average height (m)	密度 Density (株/ hm ²)
1	刺槐R.pseudoa cacia	东南Southeast	16	中Middle	风沙土 Seolian soil	24	6.9	260
2	· 柠条 C. kor shi nski i	东北 Northwest	15	中Middle	沙黄土 Sandy loessal soil	15	1.4	1 6 0 0
3	沙柳 S.p sammophil a	东南 Sout heast	20	中Middle	风沙土 Seolian soil	17	2.7	600
4	沙棘H.rhamnoides	东南 Sout heast	20	下Under	风沙土 Seolian soil	15	1.5	3 2 0 0
5	沙蒿 A ord osica	东南 Sout heast	20	上 Above	风沙土 Seolian soil	10	0.5	4 0 00
6	紫花苜蓿 M. sativa	东南Southeast	10	中Middle	沙黄土 Sandy loessal soil	4	0.3	1 5 0 0

表 1 不同树、草种细根调查样地概况 Table 1 A survey of sample plots for fine root system of different tree/grass species

样株,采用剖面法调查各树、草种的细根垂直分布. 在距离样株基部0.1m坡下位方向挖宽1m、长2~ 4m(沿坡下方向)、深2~4m的土壤剖面(视树、草 种而定);从地表分土层(10 cm),取20 cm @30 cm 的样方,捡出所有的根系.将野外带回的根样用蒸馏 水清洗干净后,采用加拿大 REGENT 公司产的根 系形态学和结构分析系统(WINRhizo),按直径[2 mm 和> 2 mm 的标准分为2级,测定各径级的根系 表面积.

将描述细根垂直分布的模型 FRD= $ah^{b}(ch^{3}+dh^{2}+eh+f)^{[13]}$ 简化为 FRD= $h^{a}(bh^{3}+ch^{2}+dh+e)$, 式中 FRD(Fine root density) 为细根密度(m^{2} ! m^{-2}), h 为土壤深度(m), a、b、c、d、e、f 分别为待定参数.

采用÷土钻法" 测定 0~4 m 土层土壤含水量. 在各个林草样地内分 10 cm 土层取样,在 105 e 烘 干至恒重,计算土壤含水量. 2.3 数据分析和处理

使用 Excel 2003 和 Statistica 6.0 统计分析软件.

3 结果与分析

3.1 不同树、草种细根垂直分布特征

六道沟流域不同树、草种细根垂直分布表现出 类似的变化规律,即在土壤表层或浅层土壤中分布 细根较多,而深层土壤分布较少(图 1).刺槐在 0~1 m 土体中分布的细根占整个剖面(3.4 m)的46%, 除在表层 0.1 m 的 FRD 较小外(0.052 m²! m⁻²), 0.2~0.8 m分布的 FRD 相对均匀(0.07~0.08 m² !m⁻²), 1 m 以下 FRD 逐渐减少,至 3.4 m 处仅为 0.005 m²! m⁻². 柠条 FRD 在土壤表层 0.3 m 处达 最大值(0.087 m²! m⁻²), 0~ 1 m 土体中分布的细 根占整个剖面(深 2.7 m)的71.6%, 1.0 m 以下 FRD 迅速减少. 沙柳表现出与柠条类似的变化规 律,约在 0.4 m 处 FRD达最大值(0.071 m²!

图 1 刺槐、柠条、沙柳、沙棘、沙蒿和紫花苜蓿细根密度垂直分布特征

Fig. 1 Vertical fine root distribution of R. pseudoacacia, C. korshinskii, S. psammophila,

H. rhamnoides, A. ordosica and M. sativa

m⁻²), 0~1 m 土体中分布的细根占整个剖面(深 2.7 m)的 61.2%, 1.0 m 以下 FRD 迅速减少. 沙棘 在土壤表层 0.1 m 的 FRD 为 0.032 m²! m⁻², 在 0. 2~1.9 m 的土层中分布相对均匀, 1.9 m 以下急剧 减少, 2.9 m 处 FRD 仅为 0.002 m²! m⁻²; 其中 0~ 1.0 m 土体中分布的细根占整个剖面(深 2.9 m)的 44.2%.沙蒿 FRD 在 0.2 m 的土层中达最大值(0. 064 m²! m⁻²), 0.2 m 以下土层中 FRD 近似线性衰 减, 0~1 m 土体中分布的细根占整个剖面(深 1.9 m)的 82.1%.紫花苜蓿 FRD 在 1 m 处达最大值后 突然下降, 1~2.5 m 土层中分布相对均匀, 2.5 m 以下逐渐减少; 其中 0~1 m 土层中分布的细根占 整个剖面(深 3.9 m)的 36.3%.

从图 1 可以看出, 乔(刺槐、柠条)、灌(沙柳、沙棘)、草(沙蒿和紫花苜蓿)不同植物种类其 FRD 在 剖面的分布也存在较大差异. 0~2 m 土层刺槐总 FRD 为 1. 195 m²! m⁻², 柠条为 0. 927 m²! m⁻², 沙 柳为 0. 941 m²! m⁻², 沙棘为 1. 248 m²! m⁻², 沙蒿为 0. 446 m²! m⁻², 紫花苜蓿为 0. 631 m²! m⁻²; 沙蒿细 根量最小,紫花苜蓿次之,沙棘和刺槐细根量较大, 但沙棘在3m以下几乎没有细根分布,刺槐细根分 布相对深广.就0~1.0m土层中细根分布的比例 而言,沙蒿> 柠条> 沙柳> 刺槐> 沙棘> 紫花苜蓿. 半灌木的沙蒿细根分布较浅,且浅层土壤中分布较 多(1m以内).这种细根分布格局有利于沙蒿充分 利用土壤水分,降水对浅层土壤水分的影响最大.相 对于黄土高原中部和南部地区刺槐细根的垂直分 布,该区刺槐细根分布要深一些^[13].尽管是4年生 的紫花苜蓿,但其细根的分布深度已达4m,在0~ 2.5m土层中均有较多的细根分布.值得提及的是, 笔者在调查过程中发现1~2m土层中土壤大团块 结构的缝隙中细根密布,是紫花苜蓿细根分布的集 中区域,细根的这种分布特征可能与土壤缝隙中获 得相对丰富的水分有关.

6个树、草种细根垂直分布的拟合结果见图 2. 各树、草种细根垂直分布方程的参数见表 2,从表 2 可以看出,模型拟合的细根密度与实测值间的相关 系数(R²)除紫花苜蓿较小为0.6917外,其它5个

图 2 刺槐、柠条、沙柳、沙棘、沙蒿和紫花苜蓿细根测定值与模拟值的比较

Fig. 2 Comparison of measured and simulated values of fine root of R. pseudoacacia, C. korshinskii,

表 2 不同树、草种细根垂直分布拟合参数

Table 2 The fitted parameters for vertical fine root distribution of different tree and grass species

植物种		D2	MBE				
species	a	b	с	d	e	· K ²	$(m^{2}! m^{2})$
刺槐 R. pseudoa cacia	0.4781	- 0.0079	0.061 4	- 0.169 5	0.183 1	0.923 4	0.000 3
柠条 C. korshinski i	0.2943	- 0.0113	0.076 5	- 0.185 4	0.1703	0.9397	- 0.003 7
沙柳 S.psammophila	0.4210	- 0.005 8	0.042 1	- 0.121 3	0.138 7	0.953 5	- 0.000 04
沙棘 H. rhamnoides	0.2225	0.007 3	- 0.044 0	0.044 8	0.063 7	0.867 5	- 0.0012
沙蒿 A. or dosi ca	0.0804	- 0.002 6	0.025 4	- 0.0819	0.083 1	0.947 2	- 0.0013
紫花苜蓿 M. sativa	0. 4982	- 0.0017	- 0.011 8	- 0.0385	0.072 1	0.6917	- 0.004 2

树种的 R² 均在 0.86 以上; 刺槐和沙柳拟合值与实测 值间 平均 偏差(MBE) 最小, 分别为 0.000 3 和 - 0.000 04 m²! m², 沙 棘 和 沙 蒿 的 MBE 为 - 0.001 2和- 0.001 3 m²! m², 柠条和紫花苜蓿的 MBE 相对较大为- 0.003 7和- 0.004 2 m²! m². 研 究结果表明,模型对这 6 个树、草种细根垂直分布的 拟合效果较好.

3.2 不同林草地土壤水分特征

不同林草地 0~4 m 土层土壤含水量的垂直分 布如图 3 所示. 从图 3 可以看出, 各样地 0~4 m 土 层土壤含水量的分布差异较大, 刺槐林地表层土壤 含水量最高达 4.8%, 到 0.5 m 处已减少至 2%, 0.5 m以下含水量缓慢下降,2m以下含水量基本保持 在1.7%左右; 柠条林地也是表层土壤含水量较高, 0.5m处的含水量降低到3.4%, 然后逐渐升高, 2.5m以下含水量又逐渐下降; 沙柳、沙棘和沙蒿均 表现出类似的变化特征, 0~1m土层中土壤含水量 逐渐减少,1m以下含水量又渐渐升高, 其中沙棘林 地的土壤水分状况最好, 沙柳其次, 沙蒿最差; 紫花 苜蓿地从地表到0.5m深处含水量逐渐降低, 然后 又逐渐增大, 到1.3m以下土壤含水量不断下降.

由于前期降雨的补给使得各样地表层土壤含水 量较高,在半干旱区深层土壤(2m以下)一般很难 得到降水补给^[14],故林草细根垂直分布特征对深层

土壤水分的影响很大.对比细根与剖面水分的垂直分 布特征,可以发现,深层土壤中仍有相当数量细根分 布的刺槐和紫花苜蓿地水分含量普遍较低,而其余4 种灌木林地的土壤水分状况相对较好.沙蒿、沙柳和 沙棘分别分布在同一坡面的上、中、下位,相应的剖面 土壤水分状况沙棘最好,沙柳其次,沙蒿最差,细根密 度也是沙棘最大,沙柳其次,沙蒿最小.这一方面与不 同树种的生物学特性有关,另一方面不同坡位土壤水 分状况也是影响细根分布的重要因素.通过细根与土 壤水分(为排除前期降水的影响剔除表层土壤水分数 据)的相关分析也表明,各林草地细根垂直分布与剖 面水分间具有显著相关性,刺槐、柠条、沙柳、沙棘、沙 蒿和紫花苜蓿的相关系数分别为0.557、-0.814、-0.527、-0.876、-0.741和0.486.

4 结论与讨论

对神木六道沟小流域 6 种典型人工树、草种细 根垂直分布研究表明, 浅层土壤中细根密度较大, 随 土壤深度的增加, 细根密度逐渐下降, 不同树、草种 间存在一定的差异. 这与现有的一些研究结果是一 致的^[1218]. Tiarks 等^[19]认为这种分布格局有利于根 系对表层土壤水分和养分的吸收, 往往表层土壤富 含相对丰富的有机质和养分.

调查的 6 种植物中, 半灌木沙蒿细根分布较浅, 且浅层土壤中分布较多(1 m 以内); 柠条、沙柳细根 分布特征类似, 0~ 2.0 m 土层 FRD 分别为 0.927 和 0.941 m²! m⁻², 少于同一深度刺槐和沙棘的细根 量; 紫花苜蓿细根分布相对较深, 增加了对深层(2.0 m 以下) 土壤水分的消耗. 模型 FRD= h^a(bh³+ ch² + dh+ e) 较好地描述了这 6 个树、草种细根垂直分 布特征.不同树、草种细根垂直分布与剖面水分相关 分析表明,植物细根分布与土壤剖面水分含量间存 在显著相关性.

细根空间分布特征不仅由植物本身生物学特性 决定,而且在很大程度上受所处生态环境的影响,刺 槐细根在半湿润的长武平均分布深度为2m.在半 湿润和半干旱过渡区的安塞一般不超过3m^[13].而 在半干旱的神木分布已达 3.4 m. 可见, 在黄土高原 地区,随气候由南向北从半湿润向半干旱发展,刺槐 细根分布深度增加.牛西午等^[20]总结分析了柠条根 系分布研究结果,指出根系密集层主要分布在10~ 100 cm 土层中, 这与本研究的结论一致. 柠条根系 生长动态和土壤水分变化的相关研究表明.含水量 的升高导致根系的大量繁殖,而根系吸水及蒸发散 又导致含水量的减少,说明根系生长和分布与土壤 水分间具有紧密联系[21].从心海等[22]对陕北吴旗不 同林龄沙棘根系分布的调查发现70%以上的根系 集中在 0~100 cm 土层中,本研究中沙棘细根在 0 ~ 2.0 m 土层中分布相对均匀,这可能与沙棘生长 在坡下部以及沙地降水容易下渗从而获得相对丰富 的水分有关,在半干旱地区,紫花苜蓿根系普遍分布 深广,这与在神木调查的结果一致,但大多数研究表 明紫花苜蓿根系主要分布在浅层土壤中^[23],而在神 木由于土壤结构的影响,根系在较深土层(1~2m) 缝隙中密布,这是植物适应特定生境的结果.

尽管针对黄土高原林草细根空间分布已开展了 一些工作,但大多是静态的研究,如何有效地获取细 根生长的动态信息以及细根周转与土壤水分的相互 作用关系,仍是今后这方面研究的重点.

参考文献:

- [1] TANG K L(唐克丽), HOU Q CH(侯庆春), WANG B K(王斌科), et al. The environment and administration way of windwater erosion crisscross region and Shenmu experimental area on the Loess Plateau[A]. Memoir of Northwestern Institute of Soil and Water Conservation, Academia Sinica and Ministry of Water Conservancy(中国科学院水利部西北水土保持研究所集刊)[C]. 1993, 18: 2-15.
- [2] RYTTER R2M, HANSSON A C. Seasonal amount, growth and depth distribution of fine roots in an irrigated and fertilized Salix viminalis
 L. plantation[J]. Biomass and Bioenergy, 1996, 11(223): 129-137.
- [3] FISCH ER S, BRIENZA S JR, VIELH AU ER K, et al. Root distribution in enriched fallow vegetations in NE amazonia, brazil proceedings of the third SH IFT2workshop man aus [A]. March 12 19, 1998, Hans2 Hermann Wulff GKS2 Forschungszentrum Geesthacht Gm bH [C], 181- 184.
- [4] LILH(李凌浩), LINP(林 鹏), XING X R(邢雪荣). Fine root biomass and production of Castanopsis eyrei forests in Wuyi Mountains
 [J]. Chinese Journal of Applied Ecology(应用生态学报), 1998, 9(4): 337-340(in Chinese).
- [5] LAWSON, G J. Roots in tropical agroforestry system [A]. In: CANNELL M G R, CROUT N MJ, DEWAR R C et al (eds.), Annual re port June 1992 June 1994 of agroforestry modelling and research coordination, ODA forestry research programme RS651[R], 1995: 1- 25. 01994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- [6] JACKSON R B, MOONEY H A, SCHULZE E2D. A global budget for fine root biomass, surface area and nutrient contents [J]. Proceed2 ings of Natural Science. USA, 1997, 94: 7 362- 7 366.
- [7] TRYON P R, CHAPIN F S. Temperature control over root growth and root biomass in taiga forest trees[J]. Canadian Journal of Forest Research, 1983, 13: 827-833.
- [8] STEELE S J, GOWER S T, VOGEL J G, et al. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Sask atchewan and Manitoba, Canada[J]. Tree Physiology, 1997, 17: 577-587.
- [9] RUIJTER F J, VEEN B W, VAN OIJEN M. A comparison of soil core sampling and minir hizotrons to quantify root development of field grown potatoes[J]. Plant and Soil, 1996, 182: 301-312.
- [10] PERSSON H, FIRCKS YV, MAJDI H, et al. Root distribution in a Norway spruce (Pinus abies (L.) Karst.) stank subjected to drought and am monium2sulphate application[J]. Plant and Soil, 1995, 169: 161-165.
- [11] LACLAU J P, ARNAUD M, BOUILLET J P, et al. Spatial distribution of Eucalyptus roots in a deep sandy soil in Congo: relationships with the ability of the stand to take up water and nutrients[J]. Tree P hysiology, 2001, 21: 129-136.
- [12] CHENG X R(成向荣), ZHAO ZH(赵 忠), GUO M C(郭满才), et al. Researches on model for fine root vertical distribution of Robinia pseu doacacia plantation [J]. Scientia Silvae Sinicae(林业科学), 2006, 42(6): 41-48(in Chinese).
- [13] ZHAO ZH(赵 忠), CHENG X R(成向荣), XUE W P(薛文鹏), et al. Difference of fine root vertical distribution of Robinia pseu doaca2 cia under the different climate regions in the Loess Plateau [J]. Scientia Silvae Sinicae(林业科学), 2006, 42(11): 1-7(in Chinese).
- [14] GUO ZH SH(郭忠升), SHAO M A(邵明安). Soil water carrying capacity of vegetation and soil desiccation in artificial forestry and grassland in sem2 arid regions of the Loess Plateau[J]. Acta Ecologica Sinica(生态学报), 2003, 23(8):1 640-1 647(in Chinese).
- [15] JAMA B, NDUFA J K, SHEPHERD K D. Vertical distribution of roots and soil nitrate: tree species and phosphorus effects [J]. Soil Sci2 ence Society of American Journal, 1998, 62: 280-286.
- [16] ZHAO ZH(赵 忠), LI P(李 鹏), WANG N J(王乃江). Distribution patterns of root systems of main planting tree species in Weibei Loess Plateau [J]. Chinese Journal of Applied Ecology (应用生态学报), 2000, 11(1): 37-39 (in Chinese).
- [17] WANG J X(王进鑫), WANG D H(王迪海), LIU G Q(刘广全). Distribution characteristics of effective root density in the planted Rob2 inia pseudoacacia and Platycladus orientalis forest site[J].Acta Bot. Bor eal. 20ccident. Sin. (西北植物学报), 2004, 24(12): 2 208-2 214(in Chinese).
- [18] JI ZH P(季志平), SU Y Q(苏印泉), et al. Root system and organic carbon distributions in soil profiles of several plantations of northern slope of Qinling mountains[J]. Acta Bot. Boreal. 20ccident. Sin. (西北植物学报), 2006, 26(10): 2 155- 2 158(in Chinese).
- [19] TIARKS A, NAMBIAR E K S, COSSALTER C. Site management and productivity in tropical forest plantations. CIFOR Occasional Pa2 per[C]. 1998, 16, 11.
- [20] NIU X W(牛西午), DING Y CH(丁玉川), ZH ANG Q(张 强), et al. Studies on the characteristics of Caragana root development and some relevant physiology[J]. Acta Bot. Boreal. 20ccident. Sin. (西北植物学报), 2003, 23(5): 860-865(in Chinese).
- [21] ZHANG ZH SH (张志山), LIXR(李新荣), ZHANG JG(张景光), et al. Root growth dynamics of Caragana korshinskii using minirh2 zotrons[J] Journal of Plant Ecology(植物生态学报), 2006, 30(3): 457-464(in Chinese).
- [22] CONG X H(从心海), LIANG Y M(梁一民), LI D Q(李代琼). Root system characteristics of Hippophaerhamnoides and dynamics of soil water on the semiarid region of the Loess Plateau[J].Bulletin of Soil and Water Conservation(水土保持通报), 1990, 10(6):98-103(in Chinese).
- [23] HAN D L(韩德梁), WANG Y R(王彦荣). Adaptability of Medicago sativa under water stress[J]. Acta Pratacul Turae Sinica (草业学报), 2005, 14(6): 7-13(in Chinese).