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Nutritional control of root development and itp ecological effect

MU Zi-xin, ZHANG Sui-qi
(Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Northwest Sci-Tech

University of Agriculture and Forestry, Yangling, Shaanxi 712100, China)

Abstract: Root development is remarkably sensitive to variations in the supply and distribution of inorganic
nutrients in the soil. Here we review examples of the ways in which nutrients such as N, P, K and Fe can af-
fect developmental processes such as root branching, root hair production, root diameter, root growth an-
gle, nodulation and proteoid root formation. T he nutrient supply can affect root development either direct-
ly, as a result of changes in the external concentration of the nutrient, or indirectly through changes in the
internal nutrient status of the plant. The direct pathway results in developmental responses that are local-
ized to the part of the root exposed to the nutrient supply;the indirect pathway produces systemic respons-
es and seems to depend on long distance signals arising in the shoot. The phloem carries a number of differ-
ent kind of macromolecules, including peptide, proteins and RNAs(a kind of RNA that is phloem sapspeci-
ficed), which are potentially capable of transmitting long distance signals within the plant. So phloem en-
able developmental events in the various meristems of the plant to be integrated with physiological process-
es in the leaves. The traditional plant hormones such as auxin, cytokinin, ABA and ethylene play an impor-
tant role in the trophomorphogenic response, and there is a extensive cross-talk between nutrient signal
transduction pathways and hormonal response pathways. It has been well know that the root development
varied with species and genotype. For example, the species that bear cluster roots are more efficient in P
and Fe uptake than the species that have not cluster roots. What is more, those root characteristics have a
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high hereditary rates, and there are many good genetic resources growing in extra-environment as well. All
those make it possible for ameliorating plant through genetics. In the other respect, due to the deviation of
environment, resource deficiency, population exploration, it is very necessary for plant amelioration. Root
characteristics not only have productive value in agriculture, but also have ecological worth. For instance,
species with cluster roots are often pioneers in primary or secondary succession, and important in soil sta-
bility and community development, and show potential in bio-remediation projects. Root exudation, includ-
ing some organic acids, can activate the fossil coral limestone quarry or the uneasy mobile nutrition, such as
P and Fe. What exudative burst taken involve a series of chemical reaction, which will have consequences
for community structure and function. Nodulation is the pure and unlimited nitrogen resource on earth. It
can eliminate environment pollution and release the fertilizer press as well. So there is the need to improve
our understanding of root characteristic traits, development biology and ecosystem function. We also recog-
nize, however, that root research has lagged behind its more glamorous bedfellow, shoot research, and tech-
nical difficulties in studying roots have often lain at the heart of this problem, but technology has advanced
in many directions, allowing old challenges to be overcome. T he rapid pace of recent and continuing devel-
opments in the molecular genetics of root development, the cloning and sequencing of membrane trans-
porters, whole plant signaling, and ecological context all bear testimony to the dynamic and expanding char-
acter of root biology. In a word, in this review we mainly discuss what is currently known about the mecha-
nisms of external and internal nutrient sensing, the possible nature of the longdistance signals, the role of
hormones in the trophomorphogenic response, the genotype difference and genetic characteristic of roots
trophomorphogenic response, and the role of roots characteristic in ecosystem rebuilding, environment pol-
lution, climate change and sustained development of the natural resources.
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