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A B S T R A C T   

Agricultural erosion leads to degradation of hydraulic properties and further affects agroecosystem hydrological 
cycling. How such properties respond to intensities of erosion remain unclear, hindering the understanding of the 
mechanisms behind agroecosystem hydrological cycling. Herein, we investigated the variations in soil hydraulic 
and physical properties at different slope positions that subjected to various intensities of soil erosion (non- 
erosion, light erosion, moderate erosion, and heavy erosion) and deposition positions along a maize field in the 
agricultural region. The average erosion moduli were <200, 700, 1800 and 4200 t km− 2 a− 1 at the non-erosion, 
light erosion, moderate erosion, and heavy erosion sites, respectively. The measured soil properties included soil 
organic matter, bulk density, saturated hydraulic conductivity (Ks), soil water content, capillary moisture ca-
pacity, field capacity, parameters of the soil water retention curve and water-stable aggregates. Our results 
showed that organic matter, Ks, soil water content, capillary moisture capacity, field capacity and most pa-
rameters of soil water retention curve (i.e., θr, θs and n) decreased, but bulk density increased with soil depth at 
the eroding and non-erosion sites. Soil erosion decreased organic matter, Ks, soil water content, capillary 
moisture capacity, field capacity and the ability of soils to retain water but increased soil bulk density. The 
proportions of aggregates were not affected by soil depth or its interaction with soil erosion, while soil erosion 
decreased microaggregates but increased macroaggregates. Overall, in this study, agricultural erosion resulted in 
the degradation of soil hydraulic and physical properties, which may increase the risk of the agricultural 
ecosystem to suffer drought.   

1. Introduction 

In arid and semi-arid regions, inter-annual and seasonal variations of 
rainfall often lead to annual and seasonal soil drought and thus nega-
tively affects the growth of crops in agricultural land (Kume. et al., 2007; 
Wang et al., 2015a). Meanwhile, in recent years, the frequent occurrence 
of extreme precipitation events has profoundly accelerated soil erosion 
(Markus, 2008; Manyevere et al., 2016), changed agricultural hydro-
logical cycles (Chahine, 1992; Lal, 2001; Ouyang et al., 2018), and 
further decreased stability of agroecosystem (Onet et al., 2019; Xiao 
et al., 2020). Previous observations indicated that agricultural soil 
erosion has short-term effects on loss of soil water and long-term effects 
on reduction of available water content, thereby increasing soil drought 
in agricultural ecosystem (Lal, 2001; Li et al., 2018; Ouyang et al., 
2018). Additionally, soil erosion changes soil hydraulic and physical 

properties, i.e., soil particle size distribution, bulk density (BD), aggre-
gates size distribution, and unsaturated and saturated hydraulic con-
ductivity (Reganold et al., 1987; Sarapatka et al., 2018; Gu et al., 2018; 
Borrelli et al., 2018). Such changes will in turn influence rainwater 
infiltration and surface runoff and thus soil drought (Ouyang et al., 
2018). Thus, understanding erosion-induced changes in soil hydraulic 
and physical properties is imperative for assessing the risks of agricul-
tural ecosystem to suffer drought. 

The responses of soil hydraulic and physical properties to soil erosion 
vary with soil texture (Mamedov and Levy, 2001; Lado et al., 2004; 
Letey et al., 2001; Wang et al., 2018). It has been reported that fine 
particles enter macropores and seal surface soils during water erosion 
(Ben-Hur et al., 2009; Mamedov and Levy, 2001), which reduces 
porosity, pore size and community (Assouline, 2006; Huang and Brad-
ford, 1993) and water permeability into soils (Ahuja, 1983). The sealed 
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macropores and reduction in soil porosity could result in an increase in 
BD (Assouline, 2006; Eynard et al., 2004) and thus reduce unsatur-
ated/saturated hydraulic conductivity (Biddoccu et al., 2017; Thomaz, 
2017; Sobieraj et al., 2002). Soil compaction by mechanized tillage is 
also apt to occur in clay soils with high water content, which directly 
destroys soil structure, reduces porosity, and increases bulk density 
(Abrol et al., 2016; Bogunović et al., 2018). However, most previous 
studies have been conducted on soils with low clay content (<20 %) 
(Larson and Padilla, 1990; Harris and Ragusa, 2001; Sharma and Verma, 
1977; Zhao et al., 2018). Therefore, it is urgently needed to understand 
how soil hydraulic and physical properties respond to agricultural soil 
erosion in heavy clay soils. 

The effects of tillage erosion (Islam and Weil, 2000; Logsdon, 2013; 
Hong et al., 2017), wind erosion (Belnap and Gillette, 1998; Breshears, 
2010; Zhao et al., 2005), and most types of water erosion (Bryan, 2000; 
Wirtz et al., 2012) on soil physical, chemical and biological properties 
were intensively investigated in surface soils (0− 20 cm). For instance, 
Zhao et al. (2006) showed that long-term severe wind erosion reduced 
soil clay content and soil water content and decreased soil fertility at the 
0− 20 cm depth compared with non-eroded farmland in Inner Mongolia. 
McDonald et al. (2002) indicated that tillage could result in declines of 
soil organic carbon and nutrients contents but increase of soil bulk 
density at a depth of 0− 10 cm over 5-year period in the Blue Mountains 
of Jamaica. Tuo et al. (2018) reported that wind and water erosion 
increased the spatial variability of soil properties and seriously 
decreased the nutrient contents in 0− 20 soils in sloping fields on the 
Chinese Loess Plateau. However, the changes in physical and hydraulic 
properties in deep soils will affect infiltration through soil profiles and 
have the potential to influence runoff and produce erosion risks. For 
example, the low soil BD and high saturated hydraulic conductivity in 
deep soils will favor the drainage of soil water and thus decrease runoff 
and soil erosion (Choudhary et al., 1997; Ouyang et al., 2018). Similarly, 
compaction due to mechanical tillage will result in high BD and low 
saturated hydraulic conductivity (Ks) in deep soils (Arachchi, 2009; 
Rehder, 1995; Sanford et al., 2008; Sobieraj et al., 2002; Yang et al., 
2017) and hence decrease the infiltration of rainwater and increase 
overland flow (Ouyang et al., 2018). Therefore, the responses of soil 
properties in deep soils (generally below 30 cm) to erosion at different 
topographic positions along a transect merit thorough understanding. 

In this study, we present the results of the soil hydraulic and physical 
properties in 0− 100 cm soil profiles in sites suffering from various in-
tensities of soil erosion (from non-erosion to heavy erosion) along a 
cropland transect in Northeast China. The soils were collected to 
determine soil BD, aggregates size distribution, Ks, soil water retention 
curves, and soil water parameters. The main objectives of this study 
were to address how soil hydraulic and physical properties respond to 
erosion in agroecosystem, and to identify whether such responses vary 
with soil depth, i.e., surface soil vs. subsoil. Such knowledges are 
essential for the understanding of agroecosystem hydrological cycling as 
affected by erosion. 

2. Materials and methods 

2.1. Study site 

The study site was located in Hebei watershed (48◦59′-49◦03′N, 
125◦16′-125◦21′E) in Heilongjiang Province in Northeast China. Ac-
cording to the description by Li et al. (2019 and 2020), the topography 
in the study area is characterized by long slopes (up to 2 km) and gentle 
(1− 4◦) with an elevation of 310− 390 m asl. The study site has a cold and 
semiarid climate. The mean annual temperature, precipitation and 
frost-free period is approximately 0.4 ◦C, 500 mm and 115–120 days, 
respectively (Hu et al., 2007; Qiu et al., 2021a). The soil in the study site 
is classified as Mollisols with a texture of clay loam (USDA, 1975). The 
clay content ranges from 30 % to 49 % (Zhao et al., 2006a, 2006b; Li 
et al., 2019), allowing us to test the responses in soils with heavy texture. 

2.2. Soil sampling 

In this study, we established our sampling plots in a maize (Zea mays 
L.) field (900 × 260 m) that was converted from forest for crop pro-
duction approximately 60 years ago, and it is near the JiuSan Soil and 
Water Conservation Experimental Station of Beijing Normal University. 
Soil erosion in the area has been intensively studied and monitored by 
scientists since the early 2000s (Dong et al., 2019; Wu et al., 2008; 
Zhang et al., 2007; Li et al., 2012). In the harvest season of 2017 (early 
October), following previous observational data, we selected four soil 
erosion intensities, i.e., non-erosion sites (NE), light erosion sites (LE), 
moderate erosion sites (ME), and heavy erosion sites (HE), at four slope 
positions along a cropland transect (Fig. 1) (Li et al., 2020; Qiu et al., 
2021a). The erosion muduli was smaller than 200 t km− 2 a− 1 at the NE. 
The average erosion moduli were 700, 1800 and 4200 t km− 2 a− 1 at the 
LE, ME and HE, respectively (unpublished data from Beijing Normal 
University). In addition, we also selected the deposition sites (DS) at the 
bottom of the slope to assess the effects of sediment deposition on soil 
properties according to the observational data (Dong et al., 2019; Wu 
et al., 2008; Zhang et al., 2007; Li et al., 2012). 

Three subplots (10 × 10 m) as replicates at each of the different slope 
positions were established for soil sampling. The sampling plots in each 
erosion phase were randomly established and were at least 10 m apart 
from each other. According to sampling method described by Li et al. 
(2019), in each subplot, undisturbed soil cores were collected from soil 
depths of 0− 15, 15− 30, 30− 50, 50− 70 and 70− 100 cm using 100 cm3 

stainless-steel cylinders (with 5.0-cm height). Additionally, five 
disturbed soil samples were collected from each depth within each 
subplot using a 5.0-cm diameter soil auger and were combined to form a 
composite sample. The undisturbed soil cores and composite soil sam-
ples were carefully taken to the laboratory. The undisturbed soil cores 
were used to determine saturated hydraulic conductivity (Ks, cm d− 1), 
capillary moisture capacity (CMC, %), field capacity (FC, %), the soil 
water retention curve (SWRC) and bulk density (BD, g cm− 3). The 
composite samples were used for measurement of the soil organic matter 
(SOM) content, soil water content (SWC), and water-stable aggregates 
(Li et al., 2019). 

2.3. Measurements of soil hydraulic and physical properties 

A small fraction of each composite sample was used to determine 
SWC by oven-drying at 105 ◦C for 24 h. The remaining composite 
samples were air-dried and then ground to pass through 8.0-, 2.0- and 
0.25-mm sieves to analyze aggregates, particle composition, and organic 
matter content, respectively. The SOM was measured using the Walkley- 
Black method (Nelson et al., 1996). The water-stable aggregate distri-
bution was analyzed by a revised wet-sieving method (Six et al., 1998; Li 
et al., 2019). The four aggregate size classes, i.e., large macroaggregate 
(LMA, >2 mm), small macroaggregate (SMA, 0.25− 2 mm), micro-
aggregate (MI, 0.25− 0.053 mm), and silt + clay fraction (SC, <0.053 
mm), were separated. This measurement procedures of water-stable 
aggregate have been described in detail by Li et al. (2019). Although 
this method might overestimate the proportion of small size aggregates 
due to the excessive disturbance of this fraction, we reported results 
from this most commonly used method so that our results would be 
comparable with others. 

The undisturbed soil cores firstly were saturated at room tempera-
ture for 24 h and then the Ks of the undisturbed soil cores were measured 
with the falling-head method based on Darcy’s law (Klute and Dirksen, 
1986). According to the measurement procedures of FC and CMC 
described in detail by Li et al. (2019), the FC and CMC were determined 
using the same soil core samples after the measurement of Ks. 

The SWRC for each undisturbed soil core was determined by the 
centrifugation method adapted by Reatto et al. (2008). For further de-
tails of the centrifuge method for determining soil water retention 
properties, see Li et al. (2019). The van Genuchten model (van 
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Genuchten 1984) was used to fit the measured soil water retention data 
to the suction pressures of 1–800 kPa, thereby deriving the parameters 
of VG equation (i.e., θr, θs, α, and n) for each undisturbed soil core (Li 
et al., 2019). 

Generally, the CMC and FC could also be obtained by fitting the soil 
water retention curve (SWRC) with head pressures of 10 and 33 kPa 
(Wilkinson and Klute, 1959; Chen and Wagenet, 1992), respectively. 
The measured CMC and FC were positively correlated with the calcu-
lated CMC and FC, respectively. For example, in this study, we found a 
positive relationship between the measured CMC and FC and the 
calculated CMC and FC, respectively, and the metrics obtained by direct 
measurement and fitting SWRC had similar response patterns to soil 
erosion. In our study, most soil metrics we present were directly 
measured; herein, we provide the measured CMC and FC rather than 
calculated ones, but we do not intend this as an indication that measured 
CMC and FC are preferable to calculated ones. 

2.4. Statistical analysis 

In this study, the thickness of the Mollisols layer was 40− 50 cm at the 
NE and 30− 40 cm at the eroding sites. Given that we sampled soils from 
depths of 0− 15, 15− 30, 30− 50, 50− 70 and 70− 100 cm, the difference 
in the thickness of the Mollisols layer among the sites should have 
minimum influence on the effects of soil depth or its interaction with 
erosion. Therefore, we neglected this difference in Mollisols layer 
thickness when analyzing the effects of erosion. Two-way analysis of 
variance (ANOVA) was used to test the effect of slope position (soil 
erosion), soil depth, and their interactive effects on soil hydraulic and 
physical properties. Pearson’s correlation analyses were conducted to 
establish relationships among soil properties. The Shapiro-Wilk test was 
used to test for normality, and data were log-transformed when neces-
sary. All statistical analyses were conducted using SPSS 13.0. 

3. Results 

3.1. Effects of erosion on soil organic matter, bulk density and saturated 
hydraulic conductivity 

The SOM, BD and Ks were significantly affected by soil depth, soil 
erosion, and their interactions (Table 1). Generally, SOM was not 
affected by soil depth at the DS (24.9-34.6 g kg− 1 among soil depths) but 
decreased significantly with soil depth in NE and eroding sites at the 
0− 50 cm depth and remained relatively constant below 50 cm, ranging 
from 39.6 g kg− 1 at the 0− 15 cm depth to 11.8 g kg− 1 at the 30− 50 cm 
depth and 2.5 g kg− 1 at the 70− 100 cm depth (Fig. 2a). Soil erosion 
resulted in a significant decrease in SOM compared with that at the NE, 
and the highest decrease occurred at the 0− 30 cm depth. When 
compared with the NE, the LE, ME and HE resulted in 7.0, 20.1, and 20.7 
g kg− 1 decreases in SOM in the 0− 15 cm soils and 2.8, 14.3, and 16.3 g 
kg− 1 decreases in the 15− 30 cm soils, respectively (Fig. 2a). For soils at 
the 30− 70 cm depths, SOM was significantly higher at the DS than at 
either the NE or eroding sites (3.4 to 27.3 g kg− 1), indicating the burial 
of SOM at the DS. 

Similar to SOM, Ks significantly decreased with soil depth, with a 
value of 7.9 cm d− 1 at the 0− 15 cm depth but 3.8 cm d− 1 at the 15− 30 
cm depth and 2.2 cm d− 1 at the 70− 100 cm depth when averaged across 
the NE, eroding sites and DS. Moreover, soil erosion significantly 
decreased Ks, and this effect mainly occurred at the 0− 70 cm depth. For 
example, the Ks in the 0− 70 cm soils from the LE, ME and HE was 
2.1–7.01, 3.3–7.3, and 2.43-13.2 cm d− 1 lower, respectively, than the Ks 
at the NE (Fig. 2c). The Ks at the 15− 70 cm depth from the DS (4.1 cm 
d− 1 to 6.8 cm d− 1) was significantly higher than that from the eroding 
sites (0.9 cm d− 1 to 4.1 cm d− 1) (Fig. 2c). 

In contrast to SOM and Ks, soil BD increased with soil depth and 
erosion (Fig. 2b). When averaged across the NE, eroding sites and DS, BD 
increased from 1.5 g cm− 3 at the 0− 15 cm depth to 1.6 g cm− 3 at the 
15− 30 cm depth and 1.73 g cm-3 at the 70− 100 cm depth. The BD at the 
LE, ME and HE at the 0− 70 cm depth was 0.09− 0.22, 0.15− 0.38 and 
0.17− 0.41 g cm− 3 higher than that at the NE, respectively (Fig. 2b). 
Moreover, the averaged BD at the 15− 70 cm depth was 0.10− 0.37 g 

Fig. 1. Location of each intensity of soil erosion and deposition at five slope positions along a cropland transect. NE: non-erosion site; LE: light erosion site; ME: 
moderate erosion site; HE: heavy erosion site; DS: deposition site. 

Table 1 
Results of variance analysis (F-values and P-values) for the effects of soil erosion and soil depths on soil properties.   

SWC BD FC CMC Ks LMA SMA MI SC θr θs α n SOM 

F               
Soil erosion 42.85 30.32 66.18 57.70 14.05 21.61 17.71 21.67 8.91 14.85 36.63 25.96 24.21 14.82 
Soil depth 5.88 21.65 24.31 23.33 11.41 0.44 3.39 1.59 2.21 11.87 30.63 26.78 17.30 21.95 
Soil erosion × soil depth 0.70 3.60 8.59 4.45 2.72 0.28 0.32 0.28 0.40 2.18 2.63 3.76 2.61 2.17  

P               
Soil erosion < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 
Soil depth < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.78 0.02 0.20 0.09 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 
Soil erosion × soil depth 0.77 0.04 < 0.01 < 0.01 0.01 0.99 0.99 0.99 0.97 0.04 0.01 < 0.01 0.01 0.04 

SWC: soil water content; BD: bulk density; FC: field capacity; CMC: capillary moisture capacity; Ks: saturated hydraulic conductivity; LMA: large macroaggregate (> 2 
mm); SMA: small macroaggregate (0.25− 2 mm); MI: microaggregate (0.053− 2 mm); SC: silt + clay fraction (< 0.053 mm); θr: residual soil water content; θs: saturated 
soil water content; α: scaling parameter related to the inverse of the air entry pressure; n: curve-shape parameters related to the pore size distribution; SOM: soil organic 
matter. 
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cm− 3 higher at the eroding sites than at the DS. 

3.2. Effects of erosion on water-stable aggregates 

The proportions of aggregates of different sizes were significantly 
affected by soil erosion but were not affected by soil depth or its inter-
action with soil erosion, except for SMA, which was significantly higher 
at the 70− 100 cm depth (67.2–79.9 %) than at the 0− 70 cm depth 
(55.6–78.1 %) (Table 1, Fig. 3a). When averaged across the NE, eroding 
sites and DS, the ranges of the proportions of LMA, SMA, MI, and SC 
were 5.1–7.5 %, 63.6–74.2 %, 12.0− 20.0%, and 6.3–8.1 %, respectively, 
across the 0− 100 cm depths. 

Soil erosion increased the proportions of LMA and SMA but 
decreased the proportion of MI in the 0− 100 cm soils (Fig. 3), and most 
of these effects were consistent with soil depth (P > 0.05 for interaction 
between soil depth and erosion, Table 1). When compared with the NE, 
LMA was 1.0–4.7, 3.9–8.1, and 5.2–9.4 % higher at the LE, ME and HE, 
respectively, and SMA was 2.1–8.3, 6.5–10.5, and 11.1–22.5 % higher, 
respectively. However, MI was 6.1–11.8, 8.0− 15.8 and 11.7–23.6 % 
lower, respectively (Fig. 3). The SC was smaller at the ME and HE 

(5.9–8.2 % and 4.9–7.8 %) but higher (9.1–13.5 %) at the LE than at the 
NE (7.6–8.6 %). Moreover, SOM content for total soil was negatively 
correlated with the proportion of LMA, SMA, and SC but positively 
correlated with MI (Table 1, P > 0.05). 

The soils at the DS generally had lower proportions of LMA and SMA 
than those at the HE but higher proportions than those at the NE and LE. 
The MI and SC at the DS were higher than those at the HE but lower than 
those at the NE, LE and ME (Fig. 3). 

3.3. Effects of erosion on the parameters of soil water retention curve 

The parameters (θr, θs, α and n) describing soil water retention curves 
(SWRC) were significantly affected by soil depth, soil erosion and their 
interactions (Table 1). Generally, θr, θs and n decreased, while α 
increased with increasing soil depth (Fig. 4). For example, when aver-
aged across the NE, eroding sites and DS, θr, θs and n decreased from 
0.087 cm3 cm− 3, 0.45 cm3 cm− 3 and 1.4 at the 0− 15 cm depth to 0.082 
cm3 cm− 3, 0.41 cm3 cm− 3 and 1.33 at the 15− 30 cm depth and 0.072 
cm3 cm− 3, 0.35 cm3 cm− 3 and 1.2 at the 70− 100 cm depth, respectively. 
Correspondingly, the value of α increased from 0.0127 cm− 1 at the 0− 15 

Fig. 2. The soil organic matter, bulk density and saturated hydraulic conductivity (Ks) along soil profiles as affected by agricultural soil erosion. The error bars are 
two standard errors of the means. NE: non-erosion site; LE: light erosion site; ME: moderate erosion site; HE: heavy erosion site; DS: deposition site. 

Fig. 3. The distribution of water-stable aggregates along soil profiles as affected by agricultural soil erosion. The error bars are two standard errors of the means. NE: 
non-erosion site; LE: light erosion site; ME: moderate erosion site; HE: heavy erosion site; DS: deposition site. 
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cm depth to 0.0145 cm− 1 at the 15− 30 cm depth and 0.0223 cm− 1 at the 
70− 100 cm depth. 

Generally, θr, θs and n were significantly lower, whereas α was 
significantly higher at the eroding sites than at the NE. For instance, in 
the 0− 100 cm soils, θr was 0.001− 0.002, 0.002− 0.007 and 0.4-1.2 cm3 

cm− 3 lower at the LE, ME and HE than at the NE, respectively, θs was 
0.006− 0.03, 0.01− 0.04 and 3.3-6.0 cm3 cm− 3 lower, and n was 
0.021− 0.053, 0.036− 0.069 and 0.077− 0.114 lower. On the contrary, α 
was 0.0005− 0.0043, 0.003− 0.0053 and 0.0014− 0.0096 cm− 1 higher. 
Moreover, most of these effects were greater at depths of 50− 70 cm than 
at the other depths. 

The values of θr, θs, and n at the 0− 15 cm depth were smaller at the 
DS than those at the eroding sites, while the values at the 15− 70 cm 
depth were greater than those at the eroding sites (Fig. 4). α at the DS 
was greater than those at the LE and ME at the 0− 15 cm depth but was 
smaller than those at the eroding sites at the 15− 70 cm depth (Fig. 4). 

3.4. Effects of erosion on soil water conditions 

The SWC consistently decreased with soil depth at each site 
(Table 1), with values of 0.244 and 0.238 cm3 cm− 3 at depths of 0− 15 

and 15− 30 cm, respectively, but 0.181 cm3 cm− 3 at depths of 70− 100 
cm. Soil erosion resulted in a significant decrease in SWC, with 
0.051− 0.112, 0.053− 0.132 and 0.161− 0.224 cm3 cm− 3 lower SWC at 
the LE, ME and HE than at the NE at the 0− 70 cm depth, respectively 
(Fig. 5a). The SWC at the DS was 0.003− 0.09 cm3 cm− 3 lower than that 
at the NE but 0.04− 0.210 cm3 cm− 3 higher than that at the eroding sites 
(Fig. 5a). 

The FC and CMC were significantly affected by soil depth, soil 
erosion and their interaction (Table 1). For the NE and eroding sites, 
both FC and CMC decreased with soil depth, with mean values of 0.275 
cm3 cm− 3 and 0.418 cm3 cm− 3 in the 0− 50 cm soils and 0.22 cm3 cm− 3 

and 0.371 cm3 cm− 3 in the soils below 50 cm when averaged across the 
sites, respectively. For the DS, however, the mean values of FC and CMC 
were lower in the 0− 50 cm soils (0.258 cm3 cm− 3 and 0.408 cm3 cm− 3, 
respectively) than in the 50− 70 cm soils (0.35 cm3 cm− 3 and 0.466 cm3 

cm− 3, respectively, Fig. 5b and c). Similar to SWC, FC and CMC signif-
icantly decreased by erosion (Fig. 5). For example, at the 0− 100 cm 
depth, the FC was 0.013− 0.133, 0.046− 0.205 and 0.115− 0.226 cm3 

cm− 3 lower at the LE, ME and HE than at the NE, respectively, and the 
CMC was 0.019− 0.109, 0.067− 0.147 and 0.095− 0.15 cm3 cm− 3 lower 
than that at the NE, respectively. The FC and CMC were 0.172− 0.178 

Fig. 4. The parameters (θr, θs, α and n) 
describing the soil water retention curves 
(SWRCs) along soil profiles as affected by 
agricultural soil erosion. The error bars are two 
standard errors of the means. NE: non-erosion 
site; LE: light erosion site; ME: moderate 
erosion site; HE: heavy erosion site; DS: depo-
sition site; θr: residual soil water content; θs: 
saturated soil water content; α: scaling param-
eter related to the inverse of the air entry 
pressure; n: curve-shape parameters related to 
the pore size distribution.   

Fig. 5. Soil water content, field capacity and capillary moisture capacity along soil profiles as affected by agricultural soil erosion. The error bars are two standard 
errors of the means. NE: non-erosion site; LE: light erosion site; ME: moderate erosion site; HE: heavy erosion site; DS: deposition site. 
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cm3 cm− 3 and 0.117− 0.129 cm3 cm− 3 lower at the DS than that at the 
NE at the 0− 30 cm depth (P < 0.05), respectively, but were not signif-
icantly different between the two sites at the 30− 70 cm depth (Fig. 5). 
Moreover, the FC and CMC at the DS were relatively lower than those at 
the eroding sites at the 0− 15 cm depth but higher at the 30− 70 cm 
depth (Fig. 5). Therefore, soil erosion and deposition altered the avail-
ability of soil water in this Mollisols. 

4. Discussion 

4.1. Effects of erosion on soil organic matter, bulk density and saturated 
hydraulic conductivity 

The significantly lower content of SOM at the eroding sites compared 
with the NE observed in this study was mainly due to the loss of soils, 
which led to the transportation of SOM and nutrients from the surface 
soils out of the eroding sites (Osman, 2013; Zhao et al., 2018; Sarapatka 
et al., 2018; Qiu et al., 2021b). For example, it has been reported that 
soil erosion results in the loss of 23.7− 120 Pg soil yr− 1 and 0.5–3.7 Pg 
SOM y− 1 in agricultural soils at the global scale (Doetterl et al., 2012). 
Borrelli et al. (2018) reported a loss of 0.16 ± 0.01 Pg soil yr− 1 and 24.99 
Tg SOM yr− 1 associated with runoff and sediments in Europe. Our re-
sults were consistent with previous observations that SOM is usually 
higher in sediments than in soils from eroding sites (Liu et al., 2003; 
Yadav and Malanson, 2009). In addition, SOM in eroded soils is exposed 
to air and microbes and is apt to decompose after erosion (Garciapausas 
et al., 2008) because erosion destroys soil structure and thus the physical 
protection of SOM from decomposition (Sarapatka et al., 2018). For 
instance, Harden et al. (1999) found that erosion resulted in an increase 
in the decomposition of SOM in the eroding croplands of Mississippi. 
Furthermore, the decomposition rate of SOM at the eroding sites was up 
to 2 orders of magnitude higher than that at the NE or DS (Stallard, 
1998; Berhe et al., 2007 and 2012). The higher decomposition rate at the 
eroding sites might provide an alternative explanation for the lower 
SOM content compared with that at the NE and DS (Wang et al., 2013; 
Qiu et al., 2021b). 

We observed an accumulation of SOM at the DS (Fig. 2), mainly due 
to the deposition of SOM associated with sediments at this site. Previous 
studies have demonstrated that more than 70 % of eroded soils and 
associated SOM are deposited in flat or concave areas of a toposequence 
(Stallard, 1998; Yoo et al., 2005) and are progressively buried with 
original material (Berhe et al., 2007 and 2012). Furthermore, the 
decomposition of SOM will significantly decrease after burial at the DS 
because of high soil water (Bryant et al., 1998), poor aeration (Zibilske 
and Materon, 2005), and low temperatures (Risch et al., 2007). This 
lower decomposition rate could result in a decrease in SOM loss and thus 
favor the accumulation of SOM at the DS. 

In this study, soil BD increased while Ks decreased with soil depth at 
both the eroding sites and NE (Fig. 2). This profile distribution pattern 
was attributed to the mechanical compaction that resulted in the 
reduction of soil porosity in deep soils and was consistent with previous 
observations in croplands in the Taleghan watershed of Tehran Prov-
ince, Iran (Haghighi et al., 2010), and the West of Oldenburg, Germany 
(Bormann and Klaassen, 2008). 

The significantly higher soil BD at the eroding sites was primarily 
due to the severe losses of surface soils and SOM within surface soils 
compared with the NE (Table 2). Generally, changes in SOM could 
contribute to the response of soil BD to erosion. The accumulation of 
SOM often increases soil porosity and thus decreases soil BD, while the 
loss of SOM often has the opposite influences (Jiang et al., 2018; 
Haghighi et al., 2010; Mamedov and Levy, 2001; Ben-Hur et al., 2009; Li 
et al., 2016). This explanation was supported by our results that soil BD 
was negatively related to SOM (Table 2) and that SOM was significantly 
lower at the eroding sites than at the NE (Fig. 2). In addition, erosion 
also transports surface soils out of eroding sites and thus exposes subsoils 
with higher BD (Quinton et al., 2010). 

The decrease in Ks by erosion (Fig. 2) could be ascribed to the loss of 
SOM and increase in BD at the eroding sites (Table 2, Fig. 2). Such 
changes in SOM and BD will decrease soil porosity (Jiang et al., 2019; 
Wei et al., 2017; Nie et al., 2018; Mamedov and Levy, 2001; Li et al., 
2016; Scheffler et al., 2011) and thus Ks (Reichert et al., 2014), as 
supported by our observation that soil Ks increased with SOM but 
decreased with soil BD (Tables 1 and 2, Fig. 2). In contrast, the higher Ks 
at the DS compared with the other sites was attributed to the accumu-
lation of SOM and coarse particles (silt + sand) and lower soil BD. 

4.2. Effects of erosion on water-stable aggregates 

In this study, soil erosion resulted in increases in LMA and SMA but a 
decrease in MI at the 0− 100 cm depth (Fig. 3), probably due to the 
preferential transport of small size aggregates from the eroding sites but 
deposition at the DS. Our explanation about the influences of soil erosion 
on the redistribution of LMA, SMA and MI was supported by our 
observation that the SOM content for the total soil was positively 
correlated with MI within eroded soils (P > 0.05). The mechanism for 
the effects of soil erosion on aggregates in the Mollisols was different 
from those in other soils, i.e., loess soils. For loess soils, soil aggregates 
are dispersed by erosion and then transported out of eroding sites (Wang 
and Shi, 2015). For example, Algayer et al. (2014) showed that soil 
erosion resulted in the breakdown of macroaggregates and thus a 
decrease in LMA and SMA but an increase in MI and SC on the Loess 
Plateau. Such negative effects of erosion on LMA and SMA were also 
observed in soils with relatively lower clay contents, e.g., humic loamy 
soils (Le Bissonnais, 1996), Ultisols (Ma et al., 2014; Yan et al., 2008) 

Table 2 
Pearson’s correlation coefficients among soil properties under different soil erosion intensities in the agricultural region of Northeast China (n = 70).   

FC CMC Ks LMA SMA MI SC θr θs α n SOM 

BD ¡0.89** ¡0.93** ¡0.81** 0.49** 0.52** ¡0.57** ¡0.32* ¡0.81** ¡0.91** 0.79** ¡0.84** ¡0.76** 
FC  0.97** 0.76** ¡0.58** ¡0.52** 0.59** 0.34* 0.78** 0.84** ¡0.72** 0.81** 0.68** 
CMC   0.79** ¡0.56** ¡0.53** 0.60** 0.33* 0.79** 0.89** ¡0.75** 0.84** 0.70** 
Ks    ¡0.43** ¡0.37** 0.41** 0.29* 0.57** 0.72** ¡0.52** 0.73** 0.72** 
LMA     0.65** ¡0.80** ¡0.58** ¡0.59** ¡0.54** 0.51** ¡0.36** − 0.17 
SMA      ¡0.95** ¡0.70** ¡0.55** ¡0.53** 0.52** ¡0.47** − 0.2 
MI       0.56** 0.59** 0.59** ¡0.55** 0.50** 0.23 
SC        0.42** 0.32* ¡0.38** 0.20 − 0.07 
θr         0.87** ¡0.87** 0.60** 0.51** 
θs          ¡0.88** 0.87** 0.69** 
α           ¡0.71** ¡0.62** 
n            0.82** 

BD: bulk density; FC: field capacity; CMC: capillary moisture capacity; Ks: saturated hydraulic conductivity; LMA: large macroaggregate (> 2 mm); SMA: small 
macroaggregate (0.25− 2 mm); MI: microaggregate (0.053− 2 mm); SC: silt + clay fraction (< 0.053 mm); θr: residual soil water content; θs: saturated soil water 
content; α: scaling parameter related to the inverse of the air entry pressure; n: curve-shape parameters related to the pore size distribution; SOM: soil organic matter. A 
bold value indicates statistical significance. ** Coefficient is significant at P < 0.01 level. 

H. Li et al.                                                                                                                                                                                                                                        



Agriculture, Ecosystems and Environment 314 (2021) 107388

7

and loamy sand soils (Saygin, et al., 2012). However, for Mollisols, the 
clay content is high (31–49 %), and soil particles are strongly aggre-
gated. Soil erosion is not apt to result in the breakdown of LMA and SMA 
due to the strong association of soil particles with high clay content 
(Denef et al., 2002; Wagner et al., 2010; Bhattacharyya et al., 2009). The 
effects of soil erosion on aggregate size distribution were thus mainly 
exerted by transporting small size aggregates and hence resulted in a 
greater proportion of LMA and SMA at the eroding sites. This mechanism 
was consistent with the observation that erosion results in a greater loss 
of MI in heavy clay soils (i.e., Mollisols) (Opara, 2009; Le Bissonnais, 
1996). Our explanation of the aggregate response to erosion was sup-
ported by the results that the DS had lower proportions of LMA and SMA 
but higher proportions of MI relative to the HE (Fig. 3). Therefore, the 
effects of soil erosion on aggregate size distribution were largely 
dependent on soil texture. 

4.3. Effects of erosion on the parameters of soil water retention curve 

In comparison to those at the eroding sites and DS, the averaged θr, θs 
and n were significantly higher whereas the α was lower at the NE 
(Fig. 4). These responses were mainly attributed to the decreased SOM 
and increased BD by soil erosion, as SWRC are determined by soil 
porosity and soil pore-size distribution (Hartmann et al., 2009). 
Generally, the lower BD and higher SOM result in higher soil porosity 
(Mamedov et al., 2001; Mamedov and Levy, 2001; Li et al., 2016; Wei 
et al., 2017; Ben-Hur et al., 2009) and water penetration and retention 
capacity (Biddoccu et al., 2017; Thomaz, 2017), and thus increase θr and 
θs but decrease α (Wang et al., 2015b). In this study, we found that θr, θs 
and n were negatively correlated with BD (P < 0.01) but positively 
correlated with SOM (P < 0.01) (Table 2), while α was negatively 
correlated with SOM content (P < 0.01) but positively correlated with 
soil BD (P < 0.01) (Table 2), supporting this explanation. 

4.4. Effects of erosion on soil water 

The decreases in soil water (SWC, CMC and FC, Fig. 5) by erosion 
were associated with the changes in soil physical properties. Soil erosion 
led to a higher BD and a lower Ks at the eroding sites than at the NE 
(Fig. 2), which decreased the infiltration of rainwater into the deep soils 
but increased the runoff of rainwater from the eroding sites. The water 
stored in the soils was therefore smaller at the eroding sites than at the 
NE (Fig. 5). Additionally, the losses of SOM and MI fraction but the in-
crease in soil BD by soil erosion (Fig. 2 and 3) decreased the capillary 
porosity and total porosity (Li et al., 2016; Cournane et al., 2011), which 
resulted in a reduction in the retention capacity of water (θr, θs and n of 
SWRC, Fig. 4). Such changes decreased the capacity of the soils to retain 
water at the eroding sites, and thus had lower soil water (SWC, FC, and 
CMC, Fig. 5). Our observations of the differences in soil water between 
the eroding sites and NE were consistent with previous works from the 
Loess Plateau in China (Qiu et al., 2001), Wisconsin in the USA (Hendrix 
et al., 1992) and Ishigaki Island in Japan (Nagumo et al., 2006). 

4.5. Response of hydraulic and physical properties in deep soil to erosion 

One of the surprising results of this study is that soil erosion can have 
significant influences on soil hydraulic and physical properties in deep 
soils (below 30 cm). The possible reason is the interaction of tillage with 
erosion. On the one hand, erosion mostly could transport the relatively 
rich surface soils and expose poor subsoils. On the other hand, at the 
studied sites, the tillage depth was approximately 30 cm. The differences 
in SOM and soil physical properties between the eroding sites and NE 
were generally higher in topsoil (0− 30 cm) than in deep soil (below 30 
cm). However, the difference in the SWRC parameters between the 
eroding sites and non-erosion sites was greater in deep soil than in 
topsoil (Fig. 4). Although the mechanism behind such interaction is 
unknown, these results suggested that soil erosion enhanced the effects 

of mechanical tillage on soil hydraulic and physical properties in 
Northeast China. The degradation of hydrological and physical proper-
ties in deep soils could in turn further increase the risk of surface soils 
experiencing erosion. 

5. Conclusions 

In this study, we addressed the changes in soil hydraulic and physical 
properties at the non-erosion sites, eroding sites and deposition sites 
along a cropland transect to better understand how erosion influences 
agroecosystem hydrological processes. The results demonstrated sig-
nificant effects of soil erosion, soil depth and their interaction on SOM, 
BD, SWC, CMC, FC, Ks and SWRC parameters. The SOM, Ks, SWC, FC, 
CMC, MI and most SWRC parameters (i.e., θr, θs and n) at the eroding 
sites decreased, but BD at the eroding sites increased with soil erosion. 
The higher BD and lower Ks and SWRC parameters (i.e., θr, θs and n) at 
the eroding sites may be attributed to the compaction of tillage man-
agement and loss of SOM with soil erosion. In addition, the proportions 
of aggregates were significantly influenced by soil erosion but were not 
affected by soil depth or its interaction with soil erosion. Erosion 
increased the proportion of macroaggregates compared with the non- 
erosion sites, probably due to the preferential losses of MI and SC at 
the eroding sites. We also showed that soil erosion could have significant 
effects on soil hydraulic and physical properties in deep soils (>30 cm). 
Herein, soil erosion resulted in the degradation of soil hydraulic and 
physical properties in a sloping cropland and further affected the agro-
ecosystem hydrological cycling in agricultural region of Northeast 
China, due to the interaction of erosion (water erosion, wind erosion 
and/or tillage erosion) and mechanized tillage (compaction). 
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