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Identifying the scale effect of relationships between ecosystem services (ESs), and determiningwhich factors af-
fect such relationships and the spatial distribution patterns of these effects can assist in the sustainable manage-
ment of ESs. Taking the Loess Plateau (LP) as a study area,we compared and analyzed the change in the trade-offs
and synergies between four ESs (i.e. water yield, net primary production, soil conservation, and grain production)
at seven different scales. In addition, the spatial correlations between these trade-offs/synergies and factors re-
lated to climate, vegetation restoration and urbanization at the county administrative scale were analyzed
using a geographically weighted regression (GWR) model. The results showed that most relationships between
ESs were synergistic and robust across all seven scales, and most correlations between ESs are enhanced as the
scale increases, as a result of the “peak cutting and valley filling” process of scale synthesis. In addition, almost
all the relationships between ESs had the strongest synergies or the weakest trade-offs at the municipality ad-
ministrative scale. The occurrence of trade-offs/synergies between ESswas closely related to climatic factors, veg-
etation restoration factors and urbanization factors, and, in addition, properties and intensity of the correlations
varied spatially. Among these factors, vegetation cover (VEG), annual average temperature (TEM), and construc-
tion land percentage (CLP) were more highly correlated with the trade-offs/synergies. This study contributes to
extending our understanding of the way in which interactions between ESs depend on spatial scale, and could
inform decision-makers about how to control various influencing factors to improve the local ecology under
local conditions.

© 2021 Elsevier B.V. All rights reserved.
ling, Shaanxi Province 712100,
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1. Introduction

Ecosystem services (ESs) refer to the environmental conditions and
utilities provided by ecosystems that can sustain human life (Costanza
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et al., 1997; MA, 2005). Deterioration in ecosystem services has been
recognized from the global scale (MA, 2005; Costanza et al., 2014) to re-
gional and local scales (Mendoza-González et al., 2012; Helfenstein and
Kienast, 2014; Su et al., 2014). Action is urgently needed to support sus-
tainable use of ecological resources. However, inappropriate ecological
management strategies may cause harm to the ecology of systems. For
example, decision-makers tend to ignore trade-offs and synergies be-
tween ESs and blindly pursue the maximization of the supply of one
ecosystem service (ES), often resulting in a significant reduction in the
supply capacity of another (Bennett et al., 2009; Feng et al., 2017). In ad-
dition, understanding the trade-offs and synergies at a single scale is
often insufficient, as cross-scale interactions between ecological pro-
cesses tend to produce outcomes that cannot be predicted on a single
scale (Wu, 2004), which will not provide effective information for
decision-makers of different scales. Therefore, it is necessary to explore
trade-offs and synergies from a multi-scales perspective, to identify the
factors related to them, and to determine how they are related. In this
way, decision-makers can scientifically manage the local ecology by en-
couraging producing certain services or controlling certain influencing
factors according to local conditions, thus maintaining the stability of
the ecosystem and delivering ecosystem services sustainably.

The synergy, which denotes a situation in which two services
increase or decrease at the same time; and trade-off, inwhich one ES in-
creases as another ES decreases (Bennett et al., 2009; Raudsepp-Hearne
et al., 2010). Numerous researchers have reported trade-offs and syner-
gies with respect to the relationships between ESs (Howe et al., 2014;
Jiang et al., 2016;Wu et al., 2017; Liu et al., 2018), butmost literature re-
lates to a specific single scale, whichmay distort ormiss interactions be-
tween ESs (Raudsepp-Hearne and Peterson, 2016). One study in the
Baota District of the Loess Plateau has found that there are trade-offs be-
tween water yield, habitat quality and evapotranspiration at the pixel
scale, but these disappeared when expanded to the town scale (Hou
et al., 2017). Another study showed that the correlation between eco-
logical diversity and grassland productivity varied with changes in the
observation scale (Yue et al., 2005). Therefore, scientists should be
aware that trade-offs and synergies may change across spatial scales,
so considering scale effect on interactions between ESs is beneficial to
ecosystem management.

Decision-makers have long sought to maximize the delivery of ESs
through effective management policies (Xiao et al., 2016; Tammi et al.,
2017). Based on this, in addition to considering the relationship be-
tween ESs, further work is need to identify the main drivers that lead
to changes in such relationships, which is essential when making deci-
sions about interventions that could enhance positive effects and mini-
mize negative effects (Gong et al., 2017; Zhang et al., 2020). However,
research concerning the drivers of such relationships is very limited.
Feng et al. (2017) made an attempt to address this issue, and identified
global relationships between environmental factors and ESs. Qiu and
Turner (2013) found several explanatory variables for the global rela-
tionships between ESs at the local (cell) and landscape scales. However,
these studies were based on global regression without considering the
variation of regression parameters with geographic location, so the re-
sult is an average for the whole study area. Since potentially correlated
factors, such as precipitation, temperature, etc., are not uniformly dis-
tributed in space (Turner et al., 2013), the correlations between ES rela-
tionships and these factors are also spatially heterogeneous (Zhang
et al., 2020). In this case, global regressions (e.g. ordinary least squares
regression (OLS)), which can only reflect the “average” or “global” of pa-
rameters, mask the local characteristics of any relationships between
variables, thus masking the actual phenomena (Fotheringham and
Brunsdon, 1999). Local regression, especially the geographically
weighted regression (GWR) model, has gradually replaced global re-
gression for analyzing spatial relationships in ecological processes
(Fotheringham and Brunsdon, 1999; Jetz et al., 2005), since an increas-
ing number of studies have proved the ability of the GWRmodel to ad-
dress the aforementioned problem (Han et al., 2019; Zhang et al., 2020).
2

Due to the fragile ecological environment and high-intensity human
activities on the Loess Plateau (LP) of China, this area has become an
ideal area for conducting research on ESs, and research results have
been abundant (Su and Fu, 2013; Jiang et al., 2018; Liu et al., 2018). Un-
fortunately, to our knowledge, only a small number of studies have con-
sidered the spatial-scale effect on trade-offs and synergies between ESs,
and there are few studies that consider the administrative division scale.
In addition, the fact that the response of ES relationships to the influenc-
ing factors may be spatially heterogeneous is often neglected in quanti-
tative studies of driving factors (Turner et al., 2013). These research
deficiencies prevent us gaining a comprehensive understanding of the
way in which complex interactions between ESs depend on spatial
scale. In addition, if we neglect spatial heterogeneity that can induce
errors in statistical analysis of the impacts of related factors on such re-
lationships, meaning that decisions regarding ecosystem service man-
agement may be flawed because they are based on incorrect results.
We thus chose to focus on these issues in relation to the LP. We com-
pared and analyzed the scale effect on relationships between four key
ESs (water yield, net primary production, soil conservation, and grain
production) using two kinds of scale: a grid scale based on 1, 5, 10, 15
and 20 km grid squares, and an administrative division scale, including
the county level and municipality level. Based on the county level scale,
which is the basic scale of ecological management decision-making in
China, we calculated spatial correlations between ESs relationships
and multiple factors related to climate, vegetation restoration, and ur-
banization, using a GWR model. We aimed to determine: (1) how the
relationships between ESs on the LP behave at different scales; and
(2) the spatial non-stationary correlations between such relationships
and the influencing factors considered.

2. Study area

The LP (33°43′7″–41°16′7″N, 100°54′7″–114°33′7″E) is located
around the upper and middle reaches of the Yellow River in
central China (Fig. 1a). It is the most concentrated and largest distri-
bution of loess material in the world, covering an area of about
640,000 km2, with an elevation range of 60–5200 m (Fig. 1b). The
LP contains 44 municipalities (Fig. 1c) and 286 counties (Fig. 1d),
comprising 6.67% of the territory of China and supporting 8.5% of
the country's population. The main land use classes on the LP are ag-
ricultural land, grass land and forested land (Fig. 1e). It experiences a
continental monsoon climate. Annual precipitation is commonly
<500 mm, increasing from 200 mm in the northwest to about
700 mm in the southeast (Fu et al., 2017). Annual average tempera-
ture is about 3.6 to 14.3°C (Jia et al., 2019, 2020).

The LP is characterized by severe water shortages and soil erosion
(Wang et al., 2006; Feng et al., 2016). According to the research of Cai
(2001), the average erosion modulus of the LP is in the range
5000–10,000 t·km−2·yr−1, with the highest value being up to
20,000–30,000 t·km−2·yr−1; the area is the main source of sediment
reaching the Yellow River. The problems are compounded by the rela-
tively arid climatic conditions and significantly increased population
pressure.

3. Data and methods

3.1. Data sources and descriptions

We used two types of data— spatial data and statistical data. Spatial
data included: (1) land use/cover data for the years 2000 and 2015 at a
spatial resolution of 30 m × 30 m, supplied by the Resources and
Environmental Science and Data Center, Chinese Academy of Sciences
(http://www.resdc.cn/); (2) soil data at a spatial resolution of about
1000 m × 1000 m, including soil depth, soil organic carbon, soil type,
and soil particle composition, extracted from the China soil map based
on the harmonized world soil database (HWSD) (v1.1), supplied by

http://www.resdc.cn/


Fig. 1. Overview of the study area: a) geographical location, b) digital elevation model, c) municipality boundaries, d) county boundaries, and e) land use classes in 2015 on the Loess
Plateau (AL: agricultural land; FL: forested land; GL: grassland; WL: water bodies; CL: construction land; UL: unused land).
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the National Tibetan Plateau Data Center (http://westdc.westgis.ac.cn);
(3) digital elevation model (DEM) data at a spatial resolution of 90 m ×
90 m, supplied by Geospatial Data Cloud (http://www.gscloud.cn/);
(4) normalized difference vegetation index (NDVI) data for the years
2000 and 2015 at a spatial resolution of 1 km × 1 km, supplied by the
Resources and Environmental Science and Data Center, Chinese
Academy of Sciences (http://www.resdc.cn/); and (5) meteorological
data for the years 2000 and 2015, including monthly rainfall, monthly
mean temperature, and monthly total solar radiation, supplied by the
China Meteorological Data Sharing Service System (http://data.cma.
cn). The data were interpolated using the ordinary Kriging method,
which is effective for the LP (Su et al., 2020), in order to cover the
whole area to allow further spatial analysis in ArcGIS 10.2. The statistical
data included grain yield, GDP, and population at the county adminis-
trative scale and was obtained from the ‘Data Set of Rural Social and
Economic Development and New Rural Construction in the Loess
Plateau from 1990 to 2015’, supplied by National Earth System Science
Data Center, National Science & Technology Infrastructure of China
(http://www.geodata.cn). When calculating the ESs, the data sets used
were converted to a 1 km grid resolution, and were projected onto the
same coordinate system.
3

3.2. Methods

The study was conducted based on the following four steps: (1) the
quantification of ESs; (2) the integration of different scales; (3) deter-
mining the relationships between ESs at different scales; and (4) geo-
graphically weighted regression between identified relationships and
the multiple influencing factors. The following sections give details of
each of these steps.

3.2.1. The quantification of ESs
Due to the differences in the main ESs of different ecosystems,

choosing appropriate indicators to quantify the ESs in the study area is
a huge challenge. Choosing too many indicators may confuse the public
and decision-makers, while choosing too few may mean that the re-
search results do not actually reflect the real situation (Su et al., 2012).
Therefore, we need to choose ESs that best reflect the ecological prob-
lems faced by the study area (Wallace, 2007). There are many severe
ecological problems on the LP, such as spatially and temporally uneven
precipitation, a serious shortage of water resources, erosion of the loess
soil, and vegetation degradation. In order to consider these local prob-
lems, especially the serious water shortage, soil erosion and vegetation
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degradation (Su et al., 2012), we selected three ESs: water yield (WY),
net primary production (NPP) and soil conservation (SC) to assess the
ecological status of the LP. In addition, following the implementation
of the Grain for Green Program (GFGP) on the LP since 1999, a large
amount of cultivated land was converted to forest and grassland,
which affected the grain security of the study area. Therefore, we also
selected grain production (GP) as an indicator of the ecosystem service
reflecting this issue. We believe that these four ESs are key in relation
the ecosystem supporting humans in the study area, and these four
ESs can quite comprehensively represent the urgent demands of the
population of the LP for ESs (Su and Fu, 2013; Geng et al., 2020; Su
et al., 2020). The detailed calculation of the four ESs is too lengthy to in-
clude here, so the following is a brief explanation of their derivation.

3.2.1.1. Water yield (WY). In this study, the Integrated Valuation of
EcosystemServices and Trade-offs (InVEST)model based on the Budyko
curve equation was used to assessed water yield. The main model is as
follows:

Yx ¼ 1−
AETx

Px

� �
� Px ð1Þ

where Yx is the annual water yield for pixel x (mm), AETx is the annual
actual evapotranspiration for pixel x (mm) and Px is the annual precip-
itation for pixel x (mm). Details of the calculation forAETxcan be found
in the InVEST 3.5.0 User's Guide. Reference evapotranspiration was de-
termined by a “modified Hargreaves” equation (Droogers and Allen,
2002). Vegetation rooting depth and the evapotranspiration coefficient
were obtained from local literature (Yang et al., 2020). Plant available
water content (PAWC) was calculated on the basis of soil texture and
soil organic matter content (Zhou et al., 2005).

3.2.1.2. Net primary production (NPP). In this study, the Carnegie-Ames-
Stanford Approach (CASA) model was used to calculated the NPP
(Potter et al., 1993). Three basic equations are involved:

NPP x; tð Þ ¼
X

APAR x; tð Þ � ε x; tð Þ½ � ð2Þ

APAR x; tð Þ ¼ SOL x; tð Þ � FPAR x; tð Þ � 0:5 ð3Þ

ε x; tð Þ ¼ Tε1 x; tð Þ � Tε2 x; tð Þ �Wε x; tð Þ � ε� ð4Þ

where APAR(x,t) is the photosynthetically active radiation absorbed by
pixel x in month t (MJ·m−2), and its value is calculated by the total solar
radiation (SOL) (MJ·m−2) and the proportion of the incident photosyn-
thetic active radiation absorbedbyplants (FRAR); the constant 0.5 reflects
the proportion of effective solar radiation that can be used by vegetation
in comparison to total solar radiation; ε(x,t) represents the actual light en-
ergy utilization rate of pixel x in month t (g·MJ−1); Tε1(x,t), Tε2(x,t) and
Wε(x, t) are parameters describing the stress coefficients of the highest
temperature and the lowest temperature and the water stress coefficient
for pixel x in month t, respectively; ε∗ refers to the possible efficiency of
different vegetation types under ideal conditions.

3.2.1.3. Soil conservation (SC). In this study,weused theRevisedUniversal
Soil Loss Equation (RUSLE) to estimate the amount of potential and actual
soil erosion on the LP (Renard, 1997). The amount of potential soil ero-
sion minus the amount of actual soil erosion represents the amount of
soil conservation in the ecosystem. It is calculated as follows:

Ac ¼ Ap−A ¼ R� K � LS� 1−C � Pð Þ ð5Þ

where Ac is the soil conservation (t·ha−1·yr−1); Ap is the potential soil
erosion (t·ha−1·yr−1); A is the actual soil erosion (t·ha−1·yr−1); R is
the rainfall erosivity factor (MJ·mm·ha−1·h−1·yr−1);K is the soil erod-
ibility factor (t·ha·h·ha−1·MJ−1·mm−1); L is the slope length factor; S
is the slope steepness factor; C is the vegetation cover andmanagement
4

factor; and P is the conservation support practice factor. L, S, C, and P are
dimensionless factors. For themore detailed information on calculation
of the key parameters, please refer to Supplementary material.

3.2.1.4. Grain productivity (GP).GP is an important supply service of eco-
systems, especially agricultural ecosystems. Based on land use classifica-
tion, GP is allocated to agricultural land. Since there is a significant linear
relationship between grain yield and the NDVI (Kuri et al., 2014; Peng
et al., 2017), by referencing thework ofWu et al. (2017), we spatialized
the grain yield statistics based on the NDVI with positive values for ag-
ricultural land. On this basis, the GP supply capacity of the LP was eval-
uated. The specific formula is as follows:

GPx ¼ NDVIx
NDVIsum; i

� GPsum; i ð6Þ

whereGPx is the grain yield of pixel x (t·km−2·yr−1);GPsum, i is the to-
tal grain yield of county i (t·yr−1); NDVIx is the NDVI of pixelx;
NDVIsum, i is the sum of the NDVI of the agricultural land in county i
on the LP.

3.2.2. The integration of different scales
Using our 1 km scale ecosystem service grid maps, we created two

types of scale: one grid-based and the other using administrative divi-
sions. For the grid, we used the Block Statistics and Resample tools in
ArcGIS 10.2. The Block Statistics tool divides the input raster into non-
overlapping blocks and calculates statistical data for each block, then as-
signs the relevant value to all cells in each block of the output. Resample
was then used to change the raster dataset by altering the cell size. The
sizes of the grid squares used here were 5 km, 10 km, 15 km and 20 km,
plus the original 1 km scale, giving a total of five different grid scales. For
the administrative division scales, we used the Zonal Statistics tool in
ArcGIS 10.2, which calculates the statistical information for the raster
values within the zones of another dataset. Here we adopted two ad-
ministrative division scales: the county level and the municipality
level. In order to reflect the average situation of “blocks” and “zones”,
the statistic used by the Block Statistics and Zonal Statistics tools was
“mean”. The results are shown in Fig. S1 (Supplementary material).

3.2.3. The relationships between ESs
We used the Pearson's correlation analysis, calculated using IBM SPSS

Statistics 22, to examine the relationships between different ESs at seven
scales in 2000 and 2015. When the correlation coefficient between two
ESs was negative and significant, they were considered to have a trade-
off relationship; when the correlation coefficient was positive and signif-
icant, the two services were considered to have a synergistic relationship.

3.2.4. Geographically weighted regression (GWR) model
The GWR model uses the relevant information for the neighboring

area to estimate local regression parameters, and finally produces coef-
ficients for the regression model in different regions that change with
the different geographic locations; this is a geographic spatial variable
coefficient regression (Fotheringham and Brunsdon, 1999). The GWR
model extends OLS for characterizing spatial non-stationarity, so that
the correlations between variables can change with changes in spatial
position (Zhang et al., 2020). Since the GWR model requires input of
spatially independent and dependent variables, we took the following
steps when conducting our study.

First, we adopted the difference comparison method (Zhang et al.,
2020) to spatialize the trade-offs and synergies between ESs. Specifically,
we assessed the relationship between two ESs by comparing the differ-
ences in these ESs between 2000 and 2015 (Supplementary material,
Fig. S1). If the product of the variation between the two ESs was greater
than 0, then we considered that there was a synergistic relationship be-
tween the two services, otherwise, we considered that there was a
trade-off between the two. Based on this, we constructed a binary data
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layer characterizing the relationships between ESs as the dependent vari-
able, that is, a value of 1 represents synergy and a value 0 represents a
trade-off.

Next, potential influencing factors were selected as independent vari-
ables in relation to three aspects: climate, vegetation restoration, and ur-
banization. Among these, the influence of climatewas represented by the
factors annual average precipitation (PRE), annual average temperature
(TEM), and annual average solar radiation (SR); vegetation restoration
was represented by vegetation cover (VEG).When selecting the influenc-
ing factors to represent urbanization, we referred to previous studies
(Peng et al., 2017), and selected population density (POP), construction
land percentage (CLP) and gross domestic product per unit area
(GDPP), representing three aspects — population urbanization, land ur-
banization and economic urbanization. Since the relationships between
ESs were calculated based on the changes in the ESs from 2000 to 2015,
we also used the changes in each potential influencing factor from 2000
to 2015 as potential independent variables.

Finally, we used the GWR model to explore the spatial non-
stationary correlations between dependent variables and independent
variables. Specifically, we explored these correlations by taking county
administrative scale as an example. The reason why we chose this
scale for the researchwas that the spatial planning of ESs often depends
on administrative divisions, and the county administrative scale is the
basic scale of ecological management decision-making in China, which
has significant implications for policy formulation and implementation.
The GWR model was constructed with ArcGIS Pro software, using the
Geographic Weighted Regression instrument with the binary option.

4. Results

4.1. Relationships between ESs

The Pearson's correlation coefficients of different ESs across different
scales are presented in Fig. 2 for 2000 and 2015. As the scale changed,
Fig. 2. Correlation coefficients between pairs of ESs and data points across the seven scales for
charts in the upper right half of the figure show Pearson correlation coefficients corresponding
smallest box are for 2000 and those on the right side of each smallest box are for 2015. The
correlation, * indicates p < 0.05; ** indicates p < 0.01).

5

with the exception of the reversal in the trade-off/synergy relationship
between GP and SC, all other pairs of ESs exhibited synergistic
relationships.

Specifically, WYwas significantly positively correlated with NPP, SC,
and GP, as well as NPP with SC, and GP across all of the seven scales in
2000 and 2015. Among these pairs of ESs, WY and NPP, WY and SC,
WY and GP, as well as NPP and SC exhibited a trend of increasing syner-
gies as the scale of observation increased, whether grid or administra-
tive division, in 2000 and 2015. The relationship between NPP and GP
exhibited different directions of change with changes in scale: the syn-
ergistic effect as the grid scale increased exhibited a “U”-shaped trend,
first decreasing and then increasing, with the weakest relationship at
the 10 km grid scale. At the administrative scale, the synergistic rela-
tionship between NPP and GP was stronger at the municipality level
than at the county scale in both 2000 and 2015. Although most pairs
of ESs showed consistent relationships across scales, different relation-
ships were found between SC and GP at the seven scales. For example,
the interaction between SC and GP showed a synergistic relationship
at the 1 km grid scale, but mainly exhibited a trade-off relationship at
other grid scales and administrative division scales during the study pe-
riod. In addition, we found that the intensity of the trade-off was grad-
ually weakened as the scale of observation increased, and there were
even signs of it developing into a synergistic relationship in the admin-
istrative division scales. It is worth noting that almost all ESs had the
strongest synergy or the weakest trade-off effect at the municipality
level scale in both 2000 and 2015.

4.2. Factors influencing the relationships between ESs

4.2.1. Model diagnosis
Before performing geographically weighted regression, we tested

the multicollinearity of the selected seven factors (i.e. PRE, TEM, SR,
VEG, POP, CLP, and GDPP). We used a variance inflation factor (VIF)
for diagnosis, which is the most commonly used measure of
2000 and 2015. Positive correlations are in black, and negative correlations are in red. Bar
to the coefficient values in the lower left half. The columns and bars on the left side of each
significance level is indicated by asterisks below each correlation coefficient (Pearson



Table 1
Results of variance inflation factor.

Variable PRE TEM SR VEG POP CLP GDPP

VIF 1.255 1.133 1.186 1.183 4.542 2.191 3.478

VIF: variance inflation factor; PRE: annual average precipitation changes from 2000 to
2015; TEM: annual average temperature changes from 2000 to 2015; SR: annual average
solar radiation changes from 2000 to 2015; VEG: vegetation cover changes from 2000 to
2015; POP: population density changes from 2000 to 2015; CLP: construction land per-
centage changes from 2000 to 2015; GDPP: gross domestic product per unit area changes
from 2000 to 2015.

M. Yang, X. Gao, X. Zhao et al. Science of the Total Environment 785 (2021) 147389
multicollinearity. The VIF value of the regression variable should not be
greater than 7.5 (VIF ≤ 7.5) to ensure that there is no multicollinearity
and there are no redundant independent variables in the regression
model (Sheng et al., 2017). Our results are shown in Table 1. The VIF
value of all seven factors was less than 7.5, indicating that there was
no multicollinearity among them.

The GWR model was used to explore the spatial correlations be-
tween the trade-offs/synergies between ESs and the seven factors. We
first analyzed the standard residual of the geographically weighted re-
gression, and the result is shown in Fig. S2 (Supplementary material).
Table 2
Parameters of the model diagnostic comparing GWR and OLS.

Relationships between
each pair of ESs

AIC Adjusted R2 Moran's I

AICO AICG R2
O R2

G MoranO MoranG

WY-NPP 281.342 241.198 0.355 0.651 0.313 0.177
WY-SC 323.237 173.500 0.270 0.816 0.593 0.282
WY-GP 342.194 333.749 0.452 0.586 0.140 0.060
NPP-SC 213.054 178.469 0.366 0.635 0.199 0.079
NPP-GP 316.114 313.017 0.263 0.482 0.039 0.022
SC-GP 309.121 303.611 0.512 0.614 0.154 0.120

WY: water yield; NPP: net primary production; SC: soil conservation; GP: grain produc-
tion; WY-NPP: relationships between WY and NPP; WY-SC: relationships between WY
and SC; WY-GP: relationships between WY and GP; NPP-SC: relationships between NPP
and SC; NPP-GP: relationships between NPP and GP; SC-GP: relationships between SC
and GP; AICO: AIC value for OLS; AICG: AIC value for GWR; R2

O: R2 value for OLS; R2
G: R2

value for GWR; MoranO: Moran's I value for OLS; MoranG: Moran's I value for GWR.

Fig. 3. Spatial variability of regression coefficients in the geographically weighted regression be
2015; WY: water yield; NPP: net primary production; SC: soil conservation; GP: grain producti
SC; WY-GP: relationships between WY and GP; NPP-SC: relationships between NPP and SC; N
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Generally speaking, in areas where the standard residual are not be-
tween −2.5 and 2.5, the credibility of the coefficient estimates in
these areas needs to be questioned, and there may be problems in
these areas (Martínez-Harms et al., 2016; Tenerelli et al., 2016; Sheng
et al., 2017; Zhang et al., 2020). We found that counties with a standard
residual value between −2.5 and 2.5 account for almost the whole of
the study area, which indicates that the relationships between each of
the seven factors and the six pairs of relationships are robust, and the re-
sults calculated by the GWR model are convincing across almost the
whole of the study area.

In addition, we also compared the performance of the GWR and OLS
in terms of predictive ability and ability to solve spatial autocorrelation
problems, as shown in Table 2. AIC and adjusted R2 have been widely
used to describe the predictive ability of models (Su et al., 2014). Higher
adjusted R2 values represent better explained variances, and a lowerAIC
value represents a situation that is closer to reality. Moran's I is calcu-
lated to quantify the spatial autocorrelation of model residuals for
GWR and OLS. If it is found that significant spatial autocorrelation exists
in the model residuals, the assumptions for using OLS are violated and
its validity is questionable. As seen in Table 2, the AIC for the GWR
was lower than for OLS, and the adjusted R2 for GWR was higher than
that for OLS. These results indicate that GWR has a stronger explanatory
ability. Moran's I for the OLS model residuals was significantly higher
than for the GWR, which also indicated that GWRwas better at solving
spatial autocorrelation problems. Therefore, in our study, the GWR
modelwas found to be stable and reliable, andwas superior to global re-
gression in explaining the correlation between the studied relationships
and influencing factors.

4.2.2. Estimates generated by the GWR model
The results of the GWR model indicated that the regression coeffi-

cients in different regions had different values. The local coefficients
for PRE, TEM, SR, VEG, POP, CLP, and GDPP varied between counties
on the LP, which fully reflected the obvious spatial heterogeneity in
the trade-off and synergy between ESs within the LP. The spatially
non-stationary response of the trade-offs/synergies to influencing fac-
tors from the GWRmodel was plotted by the regression coefficients of
each factor (Figs. 3–9). A positive regression coefficient indicates that
an increase in the influencing factors will increase the possibility of
tween PRE and ES relationships (PRE: annual average precipitation changes from 2000 to
on; WY-NPP: relationships betweenWY and NPP;WY-SC: relationships betweenWY and
PP-GP: relationships between NPP and GP; SC-GP: relationships between SC and GP).



Fig. 4. Spatial variability of regression coefficients in the geographically weighted regression between TEM and ES relationships (TEM: annual average temperature changes from 2000 to
2015).
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synergistic relationships between ESs, while a negative regression coef-
ficient indicates that an increase in the influencing factors will decrease
the possibility of synergetic relationships. As seen in Figs. 3–9, of the
seven influencing factors we selected, VEG, TRM and CLP were more
correlated than the other four influencing factors with the relationships
between ESs.

5. Discussion

5.1. Scale effect of trade-offs and synergies

Previous studies have also confirmed that the relationships between
ESs on the LPmay change with spatial scales, especially after the imple-
mentation of the GFGP (Hou et al., 2017). However, existing studies
Fig. 5. Spatial variability of regression coefficients in the geographically weighted regression b
2015).
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tend to cover particular areas of the LP, such as sub-watersheds (Su
et al., 2020), towns (Hou et al., 2017) and counties (He et al., 2020). It
is not appropriate simply to extrapolate existing knowledge of the
local-scale to larger scales, as the functioning of the whole landscape
is very unlikely to be equivalent to the sum of the small-scale function-
ing (Brandt, 2003; Mitchell et al., 2014). Therefore, we used the entire
LP region to simulate the scale effect characteristics of ESs rather than
simply considering a small watershed or a particular administrative re-
gion, allowing us to provide more accurate information on ecosystem
service management for decision-makers at different scales across
the LP.

We found that most relationships between ESs were robust at all
scales in 2000 and 2015. For example, for all grid scales and the admin-
istrative division scales, of the six pairs of relationships between the four
etween SR and ES relationships (SR: annual average solar radiation changes from 2000 to



Fig. 6. Spatial variability of regression coefficients in the geographically weighted regression between VEG and ES relationships (VEG: vegetation cover changes from 2000 to 2015).
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ESs, five pairs remained unchanged (Fig. 2). These findings are consis-
tent with the research of Xu et al. (2017), which attributed this phe-
nomenon to land use consistency, that is, a certain type of land use
can be beneficial to two or more ESs simultaneously. Although most of
the relationships betweenmultiple ESs on the LP are synergistic and sig-
nificant at all scales, there are still some differences between our results
and other studies examining the LP. For example, the research of Su and
Fu (2013) found a trade-off between WY and SC, which is the opposite
of our results. One possible reason is the influence of scale. Su and Fu
(2013) quantified the trade-off relationship between WY and SC
based on 96 sub-watersheds of the LP, rather than the scalewe counted.
In terms of other pairs of synergistic relationships between ESs, our re-
sults coincide with Jiang et al. (2016) and Liu et al. (2018). In addition,
we found that the correlations between ES synergies on the LP are en-
hanced as the scale increases, for example with the synergies between
WY and the other three ESs. This may be because the process of scale
Fig. 7. Spatial variability of regression coefficients in the geographically weighted regression b
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synthesis from small to large scale is similar to the process of peak cut-
ting and valley filling, in which high values are “cut” and low values are
“filled”, leading to a gradual tendency towards a compromise one as the
scale increases (Xu et al., 2017). Thus, the range of changes between ESs
will be more synchronized, and synergy will be more significant.
Another interesting phenomenon we found was that as the scale of ob-
servation changed, the synergy and trade-off relationships between cer-
tain ESs became inconsistent. For example, SC andGP show a synergistic
relationship at the 1 km grid scale, but this disappeared at other scales
and generally there was a trade-off relationship. This means that
decision-makers working at different scales need to adopt a multi-
scale approach whenmanaging ecosystems, based on the interrelation-
ships between ESs. This is also similar to the results of Pan et al. (2020),
who studied the arid area of northwestern China, and found that the re-
lationship between SC and GP changed from a synergy to a trade-off as
the scale increased.
etween POP and ES relationships (POP: population density changes from 2000 to 2015).



Fig. 8. Spatial variability of regression coefficients in the geographically weighted regression between CLP and ES relationships (CLP: construction land percentage changes from 2000 to
2015).
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It is also worth noting that almost all the relationships between ESs
are good for decision-makers at themunicipality scale, that is, either the
ESs had the strongest synergy or theweakest trade-off. However, this is
not always true at other scales. For example, the trade-off effect be-
tween SC and GP was greatest at the county scale, and the synergy be-
tween NPP and GP was weakest at the 10 km grid scale. This finding
indicates that the municipality scale on the LP is the most appropriate
and easiest at which to manage ESs. At the same time, it also demon-
strates the value of examining different scales to analyze the relation-
ships between ESs, illustrating that multilevel analysis is a means of
combining the advantages of both fine scale and coarse scale modeling
without losing detail, as in Cui et al.'s (2019) work.
Fig. 9. Spatial variability of regression coefficients in the geographicallyweighted regression bet
2000 to 2015).
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5.2. Implications of spatial non-stationary responses

Our research revealed that the relationships between ESswere closely
correlatedwith climate factors (PRE, TEM, and SR), vegetation restoration
factors (VEG), and urbanization factors (POP, CLP, and GDPP), and the
properties and intensity of the correlations also showed obvious spatial
heterogeneity, highlighting that decision-makers designing interventions
that could enhance synergistic effects may cause the opposite effect in
other regions. Among all the influencing factors, VEG, TEM, and CLP
were more correlated with the relationships between ESs than the
other factors,which is similar to the result of Zhang et al. (2020), although
their research did not consider the impact of vegetation.
weenGDPP and ES relationships (GDPP: gross domestic product per unit area changes from
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In our work, we selected the change in vegetation cover as a proxy
for vegetation restoration activities on the LP, and found that vegetation
cover had the greatest correlation with the relationships between ESs
(Fig. 6). The relationships between WY and NPP, WY and GP, as well
as NPP and GP were mainly positively correlated with vegetation resto-
ration, but the intensity of the correlations was different spatially
(Fig. 6). Generally speaking, vegetation restoration will increase NPP
and decrease WY and GP (Liu et al., 2018; Chen et al., 2015), but we
found that NPP has synergistic relationships with WY and GP (Fig. 2),
and these relationships are enhanced as vegetation cover increases
(Fig. 6). The possible reason for this phenomenon is that there are com-
plex interactions between the ESs, and the commondriving forces (such
as GFGP) between them (Bennett et al., 2009).We also found that an in-
crease in vegetation cover may reduce the possibility of there being a
synergistic relationship between SC and the other three ESs, which
may be due to enhanced soil retention as vegetation cover increases,
resulting in a reduction in potential soil loss and a consequent decrease
in actual soil retention (Liu et al., 2018).

Generally, different combinations of precipitation, temperature, and
solar radiation have different effects on ESs in different regions and sys-
tems (Porter and Semenov, 2005). Our results show that the response of
the relationship between ESs to each single climate factor had obvious
regional differences in direction and degree (Figs. 3–5). However, the
response of each ecosystem service to climatic factors is not a simple,
isolated, linear one, but a combined response to a comprehensive
group of conditions including multiple climatic factors, regional land
use types and vegetation types (Zhang et al., 2020). Therefore, it is diffi-
cult to explain themechanismunderlying the relationship between two
services in relation to a single climatic factor. However, through our re-
sults, decision-makers can begin to understand the spatial distribution
of each response, and then control the relevant factors in order to in-
crease the possibility of synergy between ESs. For example, among all
the climatic factors, we found that temperature has the greatest
correlationwith the relationships between ESs, and exhibited a negative
correlation in most parts of the study area (Fig. 4), suggesting that
decision-makers should attempt to reduce temperature to improve
the relationship between ESs. A previous study found that increasing
clustered vegetation can effectively regulate the surface temperature
(Estoque et al., 2016). In addition, urban design and structure (such as
the size, shape and orientation of buildings) can also affect surface tem-
perature by influencingwind flow (Rajagopalan et al., 2014). Therefore,
dense low-rise buildings could be replaced by low-density and high
open-sky view buildings (Yuan and Chen, 2011). Of course, in the re-
gions where the relationships between ESs have a positive response to
rainfall (Fig. 3) or a negative response to solar radiation (Fig. 5), plan-
ners could aim to increase forest canopy density to create shade in
order to reduce water evaporation and solar radiation.

At present, the impact of urbanization on ESs is not clear on the LP.
Our work has revealed that the effects of urbanization factors on the
relationships between different ESs are spatially heterogeneous
(Figs. 7–9), including the direction and intensity of the effect. This is
consistent with Zhang et al.'s (2020) findings in Fujian Province of
China. To some extent, this shows that the impact of urbanization on
ecosystems is not consistent in different places. We found that CLP has
a stronger correlation with the relationship between ESs than POP and
GDPP among the urbanization factors. Thismay be related to the thresh-
old of the response of ESs to POP and GDPP. Peng et al.'s (2017) research
also supports this view. They found that there is no threshold for the im-
pact of construction land expansion on ESs, but there are thresholds for
population aggregation and economic growth with respect to driving
ESs, and the impacts lag behind the impact of construction land change.
Our results showed that the various urbanization factors will increase
the likelihood of synergy betweenESs in some regions. The possible rea-
son is that, with the expansion of cities, construction land increasingly
occupies ecological land, including cultivated land, woodland, grassland
and water bodies (Peng et al., 2016), leading to the gap between the
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area of land types supporting various services to shrink, increasing the
likelihood of synergy between ESs. However, this does not mean that
urbanization is beneficial to the ecological environment. On the con-
trary, various studies have shown that the process of urbanization has
increased pressure on natural ecosystems, having a negative impact
on various ESs (Li et al., 2016; Peng et al., 2016; Peng et al., 2017). There-
fore, by understanding the regional differences in the response of ESs to
urbanization, decision-makers can consider controlling certain factors
(such as population increase or construction land expansion) in areas
with negative correlations in order to reduce trade-offs and increase
synergies, thus alleviating the pressure of urbanization on the ecosys-
tem to some extent.

5.3. Limitations

There are some limitations to our study. First, we analyzed the
trade-offs/synergies between ESs based on correlation analysis, which
assumes a linear relationship between ESs to some extent. Previous
studies have found that there is a threshold for changes in the relation-
ship between ESs (Jiang et al., 2018). Therefore, multiple regression or
constraint line methods should be used to address the possible non-
linear relationship in subsequent research. Second, when performing
GWR, we used the difference comparison method to spatialize the rela-
tionships between ESs, and the results obtained by this method are
binary. Although local regression calculation can be supported to subse-
quently determine the spatial correlation between such relationships
and the influencing factors, it cannot be determined the strength as con-
tinuous numerical results, further work is needed to determine spatial
patterns with respect to the strength of interactions between ESs.
Finally, we only determined the spatial non-stationary response rela-
tionships between trade-offs/synergies and influencing factors at the
administrative division scale. Although this is convenient for the formu-
lation and implementation of ecological management, the response re-
lationships at different scales are likely to be different (Su et al., 2020).
Therefore, we lack analysis of such response relationships at other
scales. This was mainly due to the lack of statistical data at the grid
cell scale. However, the scale effect of the response relationships could
be studied if there was more research aimed at transforming the statis-
tical data from the administrative division scale to the grid cell scale.

6. Conclusions

Most relationships between ESs were synergistic and robust across
all scales, and there was a trend that most of the correlations between
ESs were enhanced as the scale increased. We attribute this trend to
the effects of “peak cutting” and “valley filling” in the process of scale
synthesis, which led to a gradual tendency towards a compromise one
as the scale increased, making the synergy appear more significant. It
is worth mentioning that almost all the relationships between ESs had
the strongest synergies or the weakest trade-offs at the municipality
scale, demonstrating that it is most appropriate and easiest to manage
ESs at the municipality scale on the LP. The relationships between ESs
were robustly correlated to climatic factors, vegetation restoration fac-
tors, and urbanization factors, and the properties and intensity of the
correlations varied spatially. Among these influencing factors, VEG,
TEM, and CLP were most highly correlated with the relationships
between ESs.

The study contributes to extending our understanding of the way in
which interactions between ESs depend on spatial scale, and the results
also demonstrate that decision-makers must be aware of scale effect on
the relationships between ESs when managing them. Such awareness
may help minimize the uncertainty associated with decision-making
which affects trade-offs and synergies. At the same time, by determining
the spatial non-stationary correlations between ES relationships and
influencing factors, decision-makers can control the latter according to
local conditions in order to manage the local ecology. This will enhance
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the output capacity of multiple local services and improve the sustain-
ability of development.
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