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Results  BNPP was increased with the increase 
of fencing years: 61.54~140.23 gC·m− 2·yr− 1. Root 
derived C in soil represented a considerable con-
tribution to BNPP varying from 57 to 81 %, and the 
proportion of root derived C to BNPP was decreased 
with the fencing years. The contribution of root 
derived C to soil organic carbon (SOC) was 3 %~5 % 
during one-year growth.
Conclusions  Our results underline the fact that fenc-
ing is an effective means to improve the BNPP and 
plant community. Root derived C rather than root 
biomass contributes to the SOC sequestration in 
grassland soils with different fencing years. Fencing 
increases the contribution of root derived C to SOC 
mainly by increasing root C content.

Keywords  Root derived C · C allocation · Livestock 
fencing · Chinses Loess Plateau · Belowground net 
primary production

Introduction

Soil has the largest reservoir of organic C in the ter-
restrial ecosystem. Increasing soil C sequestration is a 
judicious way to reduce atmospheric CO2 (Lal 2004; 
Kell 2012) and make climate change mitigation. C 
from roots retained in soils is much more efficient 
than above-ground leaves and needles (Balesdent 
and Balabane 1996). So a growing interest in below-
ground C fluxes and dynamics for storing increasing 
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amounts of C in the soil pool to promote C seques-
tration (Amelung et al. 2008; De Kauwe et al. 2014; 
Spivak et  al. 2019; Yang et  al. 2019). Belowground 
net primary productivity (BNPP) of the ecosys-
tem is a key component of global net primary pro-
ductivity (NPP). It can be defined as all C allocated 
belowground by plants and not used for autotrophic 
respiration in a broader sense (Martinez et al. 2016). 
Terrestrial plants allocate more than half fixed annu-
ally through photosynthesis belowground (Grace 
and Rayment 2000; Gao et al. 2008). So it may rep-
resents the largest sink for gross primary production 
(Janssens et  al. 2001). Studies have shown that root 
derived C is an essential component of underground 
C input (Amelung et  al. 2008; Bradford et  al. 2013; 
He et  al. 2020), accounting for more than 50 % of 
BNPP in grassland (Martinez et al. 2016).

Root derived C is an integral part of BNPP embed-
ded in the soil. However, rhizodeposition belong to 
root derived C is difficult to be determined (Jones 
et al. 2004; Pausch and Kuzyakov 2018), this would 
lead to an underestimation of BNPP (Martinez et al. 
2016). Studies have shown that the variation in 13C 
natural abundance is a sensitive approach to calcu-
late soil C changes in soil-plant systems (Scandellari 
et al. 2007; Zhu et al. 2016; He et al. 2020). The in-
growth soil core 13C technique can solve this problem 
effectively, so the calculation of BNPP could be more 
accurate. The in-growth soil core 13C method has also 
proven to be an excellent way to calculate the propor-
tion of root derived C in BNPP (Martinez et al. 2016).

Biological factors are essential for the amount of 
C that accumulates in the soil (Schmidt et al. 2011). 
Vegetation restoration as a biological factor is one 
of the effective means to increase soil C sequestra-
tion and solve the greenhouse (Yang et  al. 2019; 
Wang et  al. 2020b). Fencing to exclude grazers is 
one of the effective ways of vegetation restoration 
(Golodets et  al. 2010; Deng et  al. 2014). Fencing 
has variable effects on plant community structure 
(Guo 2007; Wu et al. 2009) showed that species rich-
ness and diversity were lower after fencing. Deng 
et  al. (2014) suggested that fencing simultaneously 
increases species richness and decreases community 
evenness. While fencing can significantly improve 
aboveground vegetation cover, vegetation biomass 
and productivity (Wu et  al. 2009; Deng et  al. 2013; 
Li et al. 2014). Therefore, more organic matter input 
to the soil leads to soil properties and SOC storage 

improved (Laganire et al. 2010; Wu et al. 2010; Shi 
et al. 2013; Gong et al. 2017). The vegetation resto-
ration period is an important index to reflect SOC 
accumulation and loss factors. Studies have shown 
that with the increase of vegetation restoration years, 
SOC increased or decreased first and then increased 
(An et al. 2009; Zhang et al. 2010, 2015; Deng et al. 
2015). And recent research shows that vegetation res-
toration can influence newly assimilated C allocation 
in grassland communities leading to more allocation 
of newly assimilated C in the plant-soil system (Bai 
et  al. 2021). Vegetation restoration has been widely 
used to improve the BNPP (Wang et  al. 2020a). At 
the same time it is still unclear how BNPP changes 
under vegetation restoration or how the proportion of 
root derived C in BNPP changes. Therefore, it is of 
great significance to study the input of belowground 
C in the process of vegetation restoration under dif-
ferent fencing years.

We hypothesized the following: (i) fencing 
could increase BNPP and root derived C contrib-
utes more to BNPP than fine root C accumulation 
(ΔCroot (fine)) in different fencing years; (ii) the pro-
portion of root derived C in BNPP could be decrease 
with the increase of fencing year due to the change 
of root C content. To investigate the hypotheses, we 
used the in-growth soil cores-13C method to do the 
experiment in a national nature reserve. The purposes 
of this study were to: (i) determine the effect of fenc-
ing on BNPP under different fencing years; (ii) evalu-
ate the contribution of root derived C in belowground 
C input with increasing fencing years.

Materials and methods

Site description

Yunwu mountain (106°24′~106°28′ E, 36°13′~36°19′ 
N) is located on the Loess Plateau in China as the 
National Nature Reserve. Since the implementation 
of the enclosure policy in 1982, it has been studied 
as a typical grassland dominant area. Stipa bungeana, 
Artemisia sacrorum, and Thymus mongolicus have 
become the dominant community types with some 
herbs (Heteropappus altaicus,  Agropyron cris-
tatum, Stipa grandis, Cleistogenes squarrosa, Poten-
tilla acaulis) and fewer shrubs. The core area in 
Yunwu mountain prioritized fencing (1982), and then 
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the fencing area was gradually expanded. Therefore, 
the sample plots in the study area showed different 
fencing years. The soils in the study area had simi-
lar initial natural conditions before fencing (Qiu et al. 
2013; Deng et al. 2014).

The grassland covers an area of about 6600 hm2, 
whose altitude is 1800 ~ 2100 m. The precipitation is 
mainly concentrated in July to September each year, 
and the average annual precipitation is about 425.42 
mm with an arid and semi-arid climate. The soil type 
is dominated by gray cinnamon soil and loess soil. 
In April 2017, the study was performed at five plots 
located in different plant communities within differ-
ent fencing years (Table 1): (1) 1 year ; (2) 5 years ; 
(3) 10 years ; (4) 25 years ; and (5) 30 years.

Sampling scheme

Peach (Amygdalus davidiana) forest soil (δ13C ≈ − 11.739 ‰) 
sampled 0–30 cm depth was dried at 40 °C, sieved to 2 mm 
well mixed to ensure homogeneity. The soil had lower nutri-
ent content (C, N, P) than the native soil at the five study plots. 
The roots of the grassland ecosystem are mainly composed 
of fine roots (≤ 2 mm in diameter). Fine roots have a higher 
turnover rate, and they are significant to belowground C in 
grassland ecosystems (Gill 2000; Freschet et  al. 2013; Xia 
et al. 2015). So in-growth cores (2 mm mesh, 30 cm long and 
5 cm in diameter) which allow fine roots to grow in were then 
filled with the Peach forest soil resulting in a bulk density of 
1.22 g·cm− 3. Cores were then inserted at the sampling plots 
described above.

There are three quadrats (1 m×1 m) in each plot 
(Fig. 1). Each quadrat has eight in-growth bags, two 

representative in-growth bags were selected at ran-
dom. So a total of six in-growth bags were selected 
from 24 in-growth bags in each plot. In-growth 
bags were augured to a depth of 30 cm. At the top 
of each bag, an extra net (3-4  cm) was stitched to 
avoid above ground biomass input (Figure S2). The 
above ground biomass that fell on the bags during 
the research process was very small and will be 
cleaned regularly. The sampling depth (30 cm) was 
considerably sufficient to capture most of fine roots 
in the grassland ecosystem (Gao et al. 2008; Zano-
telli et al. 2013).

Measurement and calculations

We extracted soil cores after one year, then trans-
ported them back to the laboratory. The cores were 
cut in half into two portions: 0–15  cm (superficial 
soil) and 15–30 cm (deep soil). Later fine roots were 
separated from the soil samples over a 1 mm sieve. 
Since each plot contained three quadrats, and two 
cores was taken out from each quadrat, hence each 
plot resulted into six samples which help us get the 
root biomass. Then all soils (two cores) in each quad-
rat were thoroughly mixed and the same with roots 
to measure the δ13C. Since each plot contains three 
quadrats, each sample plot produces three well-mixed 
samples to measure the δ13C.

Soil samples were air-dried and roots were dried at 
70℃. The total C content and δ13C of roots and soil 
samples were analyzed using an isotope ratio mass 
spectrometer (IsoPrime 100 Isotope Ratio Mass Spec-
trometer, Germany) coupled with an elemental ana-
lyzer (Elementar ario PYRO cube, Germany). The 

Table  1   Description of five study plots characteristics

Plots Community types Fencing 
years/a

Longitude and latitude Altitude(m) Average 
coverage

Major companion spe-
cies

I Cleistogenes squar-
rosa + Potentilla acaulis

1 36°10′3″N,106°24′18″E 1728 40 % Stellera chamae-
jasme, Euphorbia 
humifusa

II Thymus mongolicus + Potentilla 
acaulis

5 36°11′12″N,106°25′8″E 1747 60 % Stipa bungeana, Artemi-
sia scoparia

III Stipa bungeana + Agropyron 
cristatum

10 36°15′26″N,106°22′26″E 2042 70 % Artemisia vestita, 
grandis

IV Artemisia vestita + Stipa 
bungeana

25 36°15′8″N,106°23′25″E 2058 85 % Heteropappus altaicus

V Stipa bungeana + Stipa grandis 30 36°15′14″N,106°22′57″E 2053 90 % Artemisia vestita
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SOC was determined by dichromate oxidation (Walk-
ley and Black 1934).

C isotope values were calculated as δ13C against 
the international standard Vienna-Pee Dee Belemnite 
(V-PDB). The following equations were used:

where Rsample and Rstandard were molar fractions of 
13 C/12 C for the sample and standard, respectively.

Based on the change in δ13C values, we calculated 
the proportion of new soil C (fNEW) that comes from 
the roots and the proportion of old soil C (fOLD) that 
comes from the organic peach forest soil:

where δSOIL = δ13C of peach forest soil after 1 year; 
δOLD = δ13C of original peach forest soil prior to 
insertion (− 11.7 ± 0.09 ‰); and δROOT = δ13C of 
roots. Then combining the fNEW, soil C content  (g/
kg), soil mass (294.52 g), and the radius (r = 2.5 cm) 
of in-growth soil cores to calculate root derived 
C  (gC·m− 2·yr− 1) (Cotrufo et  al. 2011; Alberti et  al. 

δ13C
(

�
)

=
(

Rsample∕Rstandard − 1
)

∗ 1000

fNEW =
(

�SOIL − �OLD

)

∕
(

�ROOT − �OLD

)

fOLD = 1 − fNEW

Root derived C =
(

fNEW ∗ SOC content ∗ 294.52∕1000
)

∕�r2 ∗ 10, 000

2015) that was the fraction of new C derived from 
roots remaining in the soil core. The root derived 
C obtained from this calculation above contains 
rhizodeposition and root mortality, so it was more 
reliable (Martinez et al. 2016).

Using the values of root biomass which grew into the 
in-growth cores (< 2 mm) and root C content to calcu-
late the annual fine root C accumulation (ΔCroot (fine)):

Belowground net primary productivity (BNPP) 
was calculated as the sum of ΔCroot (fine) and root 
derived C (Martinez et al. 2016).

Statistical analysis

All statistical analyses were performed with SPSS 20.0 
software (SPSS Inc., Chicago, IL, USA). Root bio-
mass, SOC, total carbon(TC), root δ13C, ΔCroot(fine), 
root derived C and BNPP were shown as the means of 6 
replicates with standard deviation and subjected to one-
way ANOVA (analysis of variance) and Duncan test, 
with fencing time as the factor. Significant differences 
in treatment means were reported at the p < 0.05 level.

ΔCroot(f ine) = (root biomass ∗ root C content)∕�r2 ∗ 10, 000

BNPP = root derived C + ΔCroot(f ine)

Fig. 1   The layout of in-growth soil cores within each plot
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Results

Plant communitities and root biomass

Fencing provided natural conditions for the resto-
ration of soil and plant. Soil bulk density gradually 
decreased, and soil nutrients gradually increased. 
The plant communities succeeded from the com-
munity dominated by one or two annual plants (Het-
eropappus altaicus, Potentilla acaulis) to peren-
nial plants (Heteropappus altaicus, Stipa grandis, 
Aneurolepidium dasystachys) communities with the 
increase of fencing years. Furthermore, the above-
ground and underground biomass also increased 
gradually (Table S1, Table 1). It can be seen that the 
root biomass of the superficial layer (0-15  cm) was 
significantly higher than the deep layer (15-30  cm) 
at different fencing years (Fig.  2). At first, the root 
biomass showed an increasing trend, then tended to 
be stable with the increase of fencing years, reach-
ing a high level (223.92 g·m− 2·yr− 1) around 25 years. 
Since there were few roots in the deep soil layer to 
measure some dates, we just focused on the changes 
in superficial layer root productivity and soil nutri-
ents in the next contents. During the experiment 
of this study, the fine roots entered in the growth 
bag were ordered as:1, 2 and 3 (Figure  S1). The 
median annual fine root C accumulation [ΔCroot(fine)] 

(0–15 cm) was highest (60.56 ± 27 g·m− 2) at the 25 
years plot while lowest  (11.78 ± 2  g·m− 2) at the 5 
years plot, with a statistically significant difference 
between the values. Both the 30 years plot and 25 
years plot had a higher root density in the superficial 
soil layer, whereas the 10 years plot and 5 years plot 
had a similar distribution in the two layers (Fig. 2).

Belowground carbon partitioning

SOC, TC, root δ13C, ΔCroot(fine) and the fraction of 
new C (fNEW) to soil showed a trend of increased first 
then tended to be stable with the increase of fencing 
years, reaching a high level around 25 years (Fig. 3). 
SOC content in the cores was higher than the ini-
tial SOC content (8.45  g/kg) after one year experi-
ment, but TC was lower than the initial TC content 
(27.94 g/kg). The changing trend of SOC and TC was 
similar. At the end of twelve-month experiment, SOC 
content in the in-growth cores was highest (12.21 g/
kg) in the 25 years plot and lowest (9.66 g/kg) in the 
1 year plot. The statistically significant differences 
(multiple comparisons p values) were found between 
the 1 year plot and other plots, 25 years plot and other 
plots(p < 0.05).

The statistically significant differences  (p < 0.05) 
were found for root δ13C value among plots instead 
no differences was observed for soil δ13C (accord-
ing to the median values to a depth of 15 cm; Fig. 3). 
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Fig. 2   Root biomass and C content of plant community in five study plots. Different letters indicate a significant difference among 
plots  (p < 0.05; Kruskal–Wallis ANOVA)
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The soil δ13C was found to be changed in the direc-
tion close to the root δ13C (i.e., the final soil δ13C 
were lower than the initial soil δ13C -11.739 ‰) 
during roots growth. The fraction of new C (fNEW) 
ranged between − 0.062 ± 0.003 at 1year plot and 
0.054 ± 0.02 at the 30 years plot, and the significant 
differences were observed between all plots (Fig. 3). 
Accordingly, root derived C (0–15 cm) ranged from 
− 89.62 ± 4 gC·m− 2·yr− 1 (1-year plot) up to 90.76 ± 4 
gC·m− 2·yr− 1 (30 years plot) in the soil.

Belowground net primary production

The BNPP in different fencing years was ranged 
between: 61.54 ~ 140.23 gC·m− 2·yr− 1 (it was just 
negative in the 1 year plot:-71.15 gC·m− 2·yr− 1), and 
BNPP had an increasing trend with the increase of the 
fencing years. The fraction of C in BNPP apportioned 
to fine root biomass (i.e., ΔCroot (fine)/BNPP) was simi-
lar at the 10 years (33 %) and 30 years (32 %) plots, 
while relatively lower ΔCroot (fine)/BNPP was found at 
the 5 years (19 %) plot, the highest ΔCroot (fine)/BNPP 
was recorded for the 25 years (43 %) plot (Fig.  4). 
As a result, a much higher proportion of BNPP was 
invested into root derived C (i.e. root derived C/
BNPP) at the plots. The ratio of root derived C/
BNPP was 81 % at the 5 years plot, while in the other 
plots the ratio was relatively lower: 56 %(25years 
plot),  67 %(10 years plot) and 68 %(30 years plot) 
(Fig.  4). Overall, the C transferred belowground as 

root derived C showed an increasing trend, but the 
proportion of root derived C had a decreasing trend 
with the increase of fencing years.

Discussion

The impact of fencing on plant communities and root 
biomass

Since the implementation of the vegetation restora-
tion policy, grazing in Yunwu Mountain was signifi-
cantly reduced, and grazing was utterly prohibited 
in the fencing area. Studies have shown that fencing 
can prevent animals from eating and trampling, pro-
mote plant growth, loosen soil structure, reduce bulk 
density and increase nutrients (Cheng et  al. 2014; 
Vandandorj et  al. 2017; Tang et  al. 2019; Bai et  al. 
2020). The results are consistent with our research 
(Table  S1). Moreover, fencing is beneficial to seed 
accumulation and rainfall infiltration in the soil, thus 
promoting the change of community species. Cheng 
et al. (2014) showed that during the 30 years of fenc-
ing in Yunwu Mountain, the degraded natural grasses 
succeeded mainly from the community dominated by 
one or two annual plants to perennial plants commu-
nities. The biomass, species richness, and coverage 
increased first and then kept stable with the extension 
of fencing time. The results are consistent with our 

Fig. 4   The amount of BNPP and ratio of root derived C and ΔCroot (fine) to BNPP in five study plots. Different letters indicate a sig-
nificant difference among plots (p < 0.05; Kruskal–Wallis ANOVA)
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research (Table  S1, Table  1). The species diversity 
(Shannon-Wiener index) varied from 0.3 to 2.9, the 
number of species varied from 6 to 29 species /m2, 
coverage varied from 22 to 90 %, the density ranged 
between 32 and 165 plants /m2 at Yunwu Mountain 
(Cheng et al. 2014).

This study found that root biomass decreased 
with the deepening of the soil layer and concen-
trated on the superficial soil, this was consistent with 
many research results (Jackson et al. 1996; Ma et al. 
2008). The phenomenon was beneficial to the effec-
tive use of limited precipitation and mineral nutrient 
resources for vegetation in semi-arid areas (Jackson 
et al. 1996; Fransen et al. 1998). With the increase of 
soil depth, the decrease of soil temperature and struc-
ture will adversely affect root growth, so the decrease 
of root biomass shows the adaptability of plants to the 
environment.

This study found that the root biomass increased 
gradually and reached the maximum value around 
the 25 years of fencing. Because fencing measures 
effectively controlled the grazing and trampling of 
livestock on grassland vegetation, it provided nat-
ural restoration time for vegetation (Novara et  al. 
2013; Yunbin et al. 2014). In the early stage of fenc-
ing, the biomass increased rapidly due to the com-
petition among species. Some studies revealed that 
increased plant diversity is usually accompanied 
by increased belowground plant biomass produc-
tion (Fornara and Tilman 2010; Cong et  al. 2014; 
Ravenek et  al. 2014; Prommer et  al. 2020). While 
in the later stage of fencing, the competition among 
species caused some species to withdraw from the 
community and dominant species tended to be in 
a state of minority and concentration. At the same 
time, soil resources can improve the survival rate of 
late-stage species in succession and thus change the 
succession of vegetation (Paterno et al. 2016; Song 
et al. 2019).

The impact of fencing on belowground carbon 
partitioning

SOC content in the cores was higher than the ini-
tial SOC content after one year experiment, but TC 
content was lower than the initial TC content. Soil 
C pool can be divided into organic C and inorganic 
C, many studies have proved that there is a negative 
correlation between SOC and inorganic C (Chang 

et  al. 2012; Shi et  al. 2012; Li et  al. 2016a; Zhao 
et al. 2016). Chang et al. (2012) found that afforesta-
tion within 20 cm of profile could increase SOC and 
reduce soil inorganic C in the Loess Plateau. Organic 
acids and other compounds secreted by the root sys-
tem can also form an acidic environment in the soil, 
easily causing the dissolution of soil inorganic C (Li 
et al. 2016b). In our study, the root released a large 
amount of organic carbon into the soil, which result 
in the increase of SOC content. At the same time, the 
loss of soil inorganic C was much more due to the 
vital leaching characteristics and chemical reaction. 
Thus resulting in a decrease in TC content. Despite 
this, the trend of SOC and soil TC was consistent, 
and both of them showed a trend of increased first 
then tended to be stable with the increase of fencing 
years, reaching a larger value around 25 years. The 
reason for this phenomenon was that as the increase 
of fencing years, the C input into the soil by the roots 
also increased, however, the SOC decomposition rate 
was decreased (Deng 2016) as well as the TC con-
tent of the soil leaching. For the soil δ13C, above-
ground plants were found to be the main influenc-
ing factors (Derrien and Amelung 2011; Pausch and 
Kuzyakov 2018), because soil C mainly comes from 
aboveground plants. In this study, the average value 
of plant root δ13C was − 26.1 ‰ which was lower 
than the average value of soil δ13C (-12.2 ‰). Under 
the growth of plant roots, soil δ13C showed a declin-
ing trend and the lowest value was appeared in the 
30-years plot. That suggest, the longer fencing time, 
the more C input to the soil by plant roots. At the 
beginning of fencing, due to the long-term shortage 
of soil moisture, the  soil respiration was relatively 
increased. For one year plot, the δ13C of the soil was 
higher than the δ13C of the initial soil, it was because 
the roots had less input to the SOC and the soil was 
more vigorously breathing, resulting in an increase 
of soil δ13C. Soil δ13C was not only affected by plant 
δ13C but also by the metabolism process of SOC: this 
was mainly due to these reasons (1) plant litter is the 
main source of soil organic matter and soil δ13C can 
record the information of plant δ13C (Kuzyakov and 
Domanski 2000; Ge et al. 2012);(2) isotope fraction-
ation occurs in the decomposition process of SOC. If 
the decomposition rate of SOC is faster, more 12CO2 
would be released from the soil system, eventu-
ally the remaining soil would be enriched with 13 C 
(Wynn 2007; Wynn and Bird 2008).
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Influencing factors of root derived C

With the increase of the fencing years, BNPP had an 
increasing trend. This was because C released by the 
roots into the soil (root derived C) became higher fol-
lowing the fencing years. Our study found that root 
derived C had a highly significant positive correlation 
with ΔCroot (fine). While there was a significant posi-
tive correlation between root derived C and root C 
content, there was no significant correlation between 
root derived C and root biomass (Table 2). This was 
because there was no significant difference in root 
biomass under different fencing years, but there was 
an extremely significant difference in the root C con-
tent during the 1-year growth. Lower order roots are 
the main part of microbial interaction with fine roots 
(King et al. 2021). Previous studies have shown that 
low order roots, which are responsible for nutrient 
and water uptake, have high turnover (Chen et  al. 
2017; Adamczyk et al. 2019). The high root turnover 
implies more significant C inputs into the soils (Solly 
et al. 2018). In this study, fine roots were composed 
of lower order roots. Therefore, the C content of the 
fine roots became an important factor affecting the 
belowground C input. The higher root C content was 
the more C released into the soil, so the root C con-
tent became the decisive factor for root derived C. 
Our study also found that the root growth process had 
more contribution to soil C than root decomposition 
from root derived C > ΔCroot (fine). Because ΔCroot (fine) 
represented the total amount of C retained in roots, 
root derived C represented the C released into the soil 
during the root growth. When considering C allo-
cation belowground pools, some interesting trends 
emerged: root derived C at the five plots gradually 

increased, but the proportion of root derived C in 
BNPP decreased with the increase of fencing years. 
We believed the increase of root derived C was the 
result of rapid increase of root C content with the 
change in fencing years. At the same time, the rate of 
root C release was less than that of root C increase, 
leading to the gradual decrease proportion of root 
derived C in BNPP.

Pearson correlation analysis showed that BNPP 
had a positive correlation with the indexes (Table  2): 
Fencing years > Root derived C > Root C con-
tent > ΔCroot (fine) > SOC > Root Biomass. This was 
because fencing enhanced the vegetation species, quan-
tity and biomass, all of these together can achieve an 
explanation rate of 94.7 % for BNPP. Comparing the 
five fencing years, only BNPP was negative in the plot 
of 1 year (Fig. 3). lt was because the vegetation cover-
age, root biomass and increase of SOC were the lowest. 
While the loss of TC was the highest in one year plot 
(Table 3), indicating that the C released by root into the 
soil was less than the loss of soil C. More 12CO2 was 
released from the soil system, and the remaining soil 
was enriched with 13C, that was, soil δ13C was increased 
(Wynn 2007; Wynn and Bird 2008), thus resulting in 
a negative value of root derived C. At the same time, 
the absolute value of root derived C was greater than 
ΔCroot (fine), so the value of BNPP was negative.

Under light limitation plants tend to allocate a higher 
proportion of assimilated C to above-ground organs, 
whereas the pattern is reversed as light is no longer 
limiting (Litton et  al. 2007). Our study showed that 
with the increase of vegetation coverage, the BNPP 
increased as well, it was because the increase of veg-
etation coverage can enhance photosynthetic process, 
which ultimately lead the boost in released C by root.

Table  2   Correlation between roots and soil indexes

**P < 0.01(two-tailed), *P < 0.05 (two-tailed)

0-15 cm SOC Root Biomass Root C content BNPP Root derived C ΔCroot (fine) Fencing years

SOC 1 0.229 0.268 0.535** 0.613** 0.184 0.419*
Root Biomass 1 0.558** 0.382* 0.171 0.146 0.466**
Root C content 1 0.771** 0.444* 0.872** 0.709**
BNPP 1 0.866** 0.719** 0.947**
Root derived C 1 0.473** 0.743**
ΔC root (fine) 1 0.589**
Fencing years 1



170	 Plant Soil (2021) 469:161–172

1 3
Vol:. (1234567890)

Conclusions

Fencing supported the improvement in the plant 
community and BNPP value. BNPP reached a larger 
value (140.23 gC·m− 2·yr− 1) when the plant commu-
nity is stable around 30 years. The proportion of root 
derived C (57 %~81 %) to BNPP was greater than ΔC 
root (fine) (19 %~43 %), and it showed a decreasing trend 
with the increase of fencing years. We found that 
fencing which increased roots C content was a key 
factor affecting belowground C input.
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