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Abstract

Soil respiration (RS), the soil-to-atmosphere CO2 flux that is a major compo-

nent of the global carbon cycle, is strongly influenced by local soil temperature

(Tsoil) and water content (SWC). Regional to global-scale RS modelling thus

requires this information at local scales, but few high-quality, wall-to-wall

(global) Tsoil and SWC data exist. As a result, such modelling efforts commonly

use air temperature (Tair) and monthly precipitation (Pm) as surrogate predic-

tors, but their site-scale accuracy and potential bias are unknown. Here, we

used monthly data from 880 sites across a wide variety of different environ-

mental conditions (i.e., climate, ecosystem type, elevation, vegetation leaf habit

and drainage conditions) to determine the suitability of Tair as a surrogate for

Tsoil, and data from 507 sites to examine the suitability of Pm as a surrogate for

SWC. Site-specific linear and second-order exponential non-linear models were

compared using model evaluation metrics (i.e., slope, p-value of slope, root

mean square error [RMSE], index of agreement and model efficiency). We

found that Tsoil and Tair are highly correlated and explain similar RS variability.

In contrast, Pm is not a good surrogate for SWC, even though Pm explains a

similar amount of RS variability to SWC. The wide variability in the site-

specific relationships between RS and SWC means that no single relationship

can be used for large-scale modelling. The results from this study support the

use of Tair in continental-to-global scale RS models, and highlight the urgent

need for continental-to-global scale SWC datasets for the modelling and evalu-

ation of future soil carbon dynamics under global climate change.

Highlights

• The accuracy of air temperature and precipitation as surrogates in global

soil respiration modelling is unknown.
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• Monthly air temperature and soil temperature are strongly correlated and

explained similar amounts of variability in soil respiration.

• Relationships between precipitation and soil water content are extremely

variable by region, thus precipitation is a poor surrogate in global

modelling.

• There is a need for accurate multiscale soil moisture datasets to evaluate

future soil carbon dynamics.
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1 | INTRODUCTION

The soil-to-atmosphere CO2 flux, also known as soil respira-
tion (RS), is a major component of the global carbon cycle
and it is typically driven by many biotic (e.g., microbial bio-
mass, plant root biomass and plant coverage) and abiotic
(e.g., temperature, soil organic carbon and soil moisture)
factors (Bond-Lamberty & Thomson, 2010; Jensen
et al., 1996; Kursar, 1989; Luo & Zhou, 2006; Raich &
Schlesinger, 1992; Reichstein et al., 2003). It is difficult to
directly measure RS at scales larger than �1 m2, but statisti-
cal upscaling from site-scale RS measurements can be per-
formed based on the relationship between RS and its
driving factors (Bond-Lamberty & Thomson, 2010; Jian,
Steele, Day, & Thomas, 2018; Jian, Steele, Thomas, Day, &
Hodges, 2018; Raich & Schlesinger, 1992). The two most
widely used factors in statistical upscaling are temperature
and moisture.

Temperature is one of the most important environ-
mental factors in continental-to-global scale RS fluxes and
modelling (Hashimoto et al., 2015; Reichstein et al., 2003;
Rodeghiero & Cescatti, 2005) because it influences critical
biological, physical and chemical processes mediating RS

rates. For example, soil temperature (Tsoil) influences soil
microbial activities (Awe, Reichert, & Wendroth, 2015;
Gehrig-Fasel, Guisan, & Zimmermann, 2008; Mackiewicz,
2012; Yazaki et al., 2013), the rates of chemical reactions
(Davidson, Belk, & Boone, 1998; Fang, Moncrieff, Gholz, &
Clark, 1998; Jensen et al., 1996; Luo & Zhou, 2006) and
the formation of dew (Li & Dong, 2003). It is believed that
Tsoil, where soil microbes and roots act, is the controlling
temperature Hamdi et al., (2013); however, there are few
long-term, high-frequency and high quality Tsoil ‘wall to
wall’ (i.e., across the entire terrestrial domain) data avail-
able to support robust RS modelling.

Existing global RS statistical models thus typically use
site- to grid-cell-scale air temperature (Tair) as a surrogate
for Tsoil (Bond-Lamberty & Thomson, 2010; Chen et al., 2010;
Raich & Potter, 1995; Raich, Potter, & Bhagawati, 2002;

Raich & Schlesinger, 1992; Wang, Chen, & Wang, 2010;
Wang & Fang, 2009). Site-scale studies show that Tsoil is
closely related to Tair, suggesting that Tair may be a good
surrogate for Tsoil in RS modelling at daily to monthly
timescales (Kang, Kim, & Lee, 2000; Mariko et al., 2000;
Thunholm, 1990; Zhang, Chen, & Cihlar, 2003; Zheng,
Hunt, & Running, 1993). Using data from six climates
(seven sites) across the United States, Zheng et al. (1993)
found that 11-day running average Tair and precipitation
explained 85 to 96% of the daily Tsoil variation. In Swit-
zerland, daily Tsoil at the treeline can be accurately esti-
mated by Tair using a time series regression model
(Gehrig-Fasel et al., 2008). But the error introduced by
this practice is uncertain, as the relationship between
Tsoil and Tair weakens at regional, continental or global
scales (Kang et al., 2000; Liang, Riveros-Iregui, Emanuel, &
McGlynn, 2014). Additional environmental factors may
alter the relationship, including surface global radiation,
surface albedo and water content, and soil texture, eleva-
tion, slope and aspect, leaf area index and ground litter are
related to Tsoil variation (Kang et al., 2000; Liang
et al., 2014). Other factors, such as the presence of snow-
pack, can also significantly affect the relationship between
Tsoil and Tair (Brooks, McKnight, & Elder, 2005; Mariko
et al., 2000; Rango & Martinec, 1995; Tatariw, Patel, Mac-
Rae, & Fernandez, 2017; Wang, Yang, & Zhang, 2006).

Soil water content (SWC) is another key factor that
controls belowground ecological and biogeochemical pro-
cesses and affects RS (Jensen et al., 1996; Kursar, 1989;
Luo & Zhou, 2006; Patel et al., 2021; Reichstein et al.,
2005; Tang & Baldocchi, 2005; Wang et al., 2010). SWC at
regional scales is strongly coupled with precipitation and
Tair (Hohenegger, Brockhaus, Bretherton, & Schär, 2009;
Holsten, Vetter, Vohland, & Krysanova, 2009; Koster
et al., 2004). Even though global soil moisture data
derived from remote sensing images now exist (Guevara,
Taufer, & Vargas, 2019), high-resolution and long-term
global field-measured SWC data are still lacking (Scipal,
Wagner, Trommler, & Naumann, 2002), and RS studies
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have heavily relied on SWC simulations from indirect
measurements such as precipitation.

The relationship between SWC and precipitation is
highly variable, however. Soil physical characteristics exer-
cise strong controls on SWC, and the soil moisture–
respiration relationship is soil texture/structure dependent
(Thomsen, Schjonning, Jensen, Kristensen, & Christensen,
1999). Based on 90 soils from 42 sites covering a wide range
of soil properties, Moyano et al. (2012) showed that the rela-
tionship between soil heterotrophic respiration and soil
moisture is consistently affected by soil texture and other
properties (e.g., soil bulk density and soil organic carbon).
The relationship between SWC and RS is also strongly
related to soil texture. Many studies have shown that no sin-
gle factor can fully explain SWC variation (Gaur &
Mohanty, 2013; Holsten et al., 2009; Wohl et al., 2012). For
instance, Sterling, Ducharne, and Polcher (2012) and Yang,
Wei, Chen, and Mo (2012) found that land cover is the most
important factor influencing SWC. Other studies reported
that the relationship between SWC and precipitation varies
with land cover conditions (Haddeland et al., 2014; Li, Liu,
Zhang, & Zheng, 2009). A study in the Poyang Lake Basin,
China, demonstrated that SWC responds positively to pre-
cipitation, but negatively to Tair change, and that Tair
explained more SWC variation than did precipitation
(Feng & Liu, 2015).

Therefore, the use of Tair as a surrogate for Tsoil, and
precipitation for SWC, has to be evaluated carefully. In this
study, we used monthly RS, Tsoil, Tair, SWC and monthly
precipitation (Pm) data from almost 900 sites across the
globe to: (a) evaluate whether Tair and Pm are good surro-
gates of Tsoil and SWC in RS modelling; (b) compare the
relationship between RS and Tsoil, RS and Tair, Tsoil and Tair,
RS and SWC, RS and Pm, and SWC and Pm from multiple
sites across the globe, and compare the strength and bias of
those relationships; and (c) determine what environmental
factors cause heterogeneity in these relationships. We chose
monthly data as our temporal focus, as it offers a good
trade-off between capturing seasonal dynamics important
in, for example, Mediterranean ecosystems, while not being
overly burdensome in terms of data volume. RS modelling
can also be substantially improved by using monthly data
rather than annual means (Jian, Steele, Thomas, et al.,
2018). We evaluated the usage of Tair and Pm in site-to-
continental-to-global scale RS models, and provide insights
for evaluating soil carbon dynamics under global tempera-
ture and precipitation change in the future.

2 | METHODS AND MATERIALS

We used site-specific linear regression (LR) and second-
order exponential non-linear regressions (NLR) between

RS and Tair, precipitation, soil temperature (Tsoil) and
SWC to test whether Tsoil and Pm could serve as robust
surrogates for Tair and SWC in modelling RS. A variety of
model metrics were evaluated over hundreds of separate
observational sites for factors such as bias, skew and vari-
ability to assess whether using global air and precipita-
tion data affect estimates of monthly to annual RS.

2.1 | Data sources and processing

We used data from a daily global soil respiration database
(DGRSD), aggregated to a monthly timescale (Jian, Steele,
Day, & Thomas, 2018; Steele & Jian, 2018), to compare
relationships between driving factors (Tsoil and SWC) and
potential surrogates for these factors (Tair and Pm) and RS.
As noted above, monthly details offer a good trade-off in
temporal resolution, capturing seasonal variability while
remaining reasonable in terms of data volume and inter-
annual variability (Jian, Steele, Thomas, et al., 2018).
DGRSD records detailed daily time series of RS, Tsoil and
SWC from the original publication, and also metadata
such as latitude, longitude, day, month and year of mea-
surements, etc. Detailed information about DGRSD can be
found in Jian, Steele, Day, & Thomas (2018) and Jian,
Steele, Thomas, et al., (2018) and the dataset itself is avail-
able at http://doi.org/10.5281/zenodo.4745953. We made
the following updates to DGRSD to support analyses in
this study. (a) Whereas the previous DGRsD included only
publications before 2011, new papers after 2011 were iden-
tified from SRDB_V4 (downloaded from https://github.
com/bpbond/srdb; also available at the Oak Ridge
National Laboratory DAAC, https://daac.ornl.gov/cgi-bin/
dsviewer.pl?ds_id=1578), and the corresponding data digi-
tized and compiled with the DGRsD, resulting in an
increase in the total number of RS samples from 13,482 to
28,178. (b) We searched publications to obtain background
information on the Tsoil and SWC-measure metrics: Tsoil
measurement depth, SWC measurement depth and SWC
type (e.g., whether SWC was measured as gravimetric
SWC, volumetric SWC or water filled porosity). (c) For the
temperature surrogates, only sites with RS, Tsoil, latitude,
longitude, and day and year of measurements all available
were used. (d) For the soil moisture surrogates, only sites
with RS, SWC, latitude, longitude, and day and year of
measurements all available were used. (e) RS, Tsoil, Tair,
SWC and Pm data in this study are all standardized to a
monthly timescale; only those sites with more than
6 months of data were used. With these criteria, 880 sites
for temperature surrogates and 507 sites for soil moisture
surrogates were used in this study. The sites we used have
a good temperature coverage compared to the global tem-
perature, although we lacked sites from high-precipitation
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regions compared with the global distribution (Figure 1).
Monthly Tair and precipitation were obtained from the
Centre for Climate Research at the University of Delaware
(Willmott, Matsuura, & Legates, 2001), and climate-type
information from the Köppen climate classification
(Kottek, Grieser, Beck, Rudolf, & Rubel, 2006), RS and
SWC data were grouped into four climate groups
according to the first level of climate classification
(i.e., Tropic, Arid, Temperate and Snow).

We plotted the LR (Equation (1)) and NLR
(Equation (2)) trends (Supplemental information) to iden-
tify any potential data input errors. Specifically, we checked
those sites with negative slope of LR (i.e., β1 < 0 in LR). In
general, we found that those negative LR trends were
due to either outlier effects or higher temperature

(or SWC) rather than data input error. Therefore, regres-
sion models from all sites were used in this study.

2.2 | RS response to temperature, soil
water content and precipitation

We analysed the relationship between RS and Tsoil, Tair,
SWC and Pm in each site. Different SWC metrics are not
comparable to each other, and as soil bulk density was
not reported in most studies, only gravimetric and volu-
metric SWC data were used in this study. Even for the
same SWC metrics (e.g., volumetric SWC), data from dif-
ferent studies may not be comparable to each other due
to the effects of pedological factors such as soil texture

FIGURE 1 Sites’ monthly air temperature and precipitation coverage in this study (coloured dots) compared with global measurements

(grey plot background). Sites with information on soil temperature reported (points in panel a, coloured by climate type) and sites with

information on soil water content reported (points in panel b, coloured by climate type). The sites used in this study have a similar

temperature range to the global temperature (panel a), but we lack sites from high-precipitation regions (panel b). SWC, soil water content;

Tsoil, soil temperature
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and pore structure. As a result, the analysis of Tair and
Pm as surrogates for Tsoil and SWC was conducted within
each site, and not across sites. For each site, we used an
LR (Equation (1)) and an NLR (Equation (2)) to charac-
terize the nature of the Tsoil, Tair, SWC and Pm relation-
ships with RS (Supplemental information):

y¼ β0þβ1xþ ε, ð1Þ

y¼ β0� e β1x�β2x
2ð Þ þ ε, ð2Þ

where y is the response value (RS, g C m�2 day�1),
x is the predictor (Tsoil, (�C), Tair, (�C), SWC (%) or Pm
(mm)), β0 is the intercept, β1 in Equation (1) is the
regression slope, and ε represents residual error. For the
NLR, β1 and β2 determine the shape of the regression
curve, with β2 > 0 an accelerating curve, but β2 < 0 a
decelerating curve with a threshold that can be detected
(i.e., below this threshold, RS increases as temperature or
SWC increases, but RS decreases as temperature or SWC
increases when over this threshold). A significance level
(α-level) of 0.05 was used as a threshold to determine sta-
tistical significance of the linear regression. All analysis
were performed in R (version 3.5.2, R Core Team, 2019).

Previous studies have used a variety of model types
to describe the relationship between RS and tempera-
ture (e.g., linear, polynomial, exponential and Arrhe-
nius) and the relationship between RS and SWC/Pm
(linear, polynomial and exponential). We chose to use
the LR and NLR models because they are commonly
used at a wide range of sites and at global scales
(Hashimoto et al., 2015; Jian, Steele, Thomas,
et al., 2018; Lloyd & Taylor, 1994; McCarron, Knapp, &
Blair, 2003; Schwendenmann, Veldkamp, Brenes,
Brie, & Mackensen, 2003; Wang et al., 2010; Wang &
Fang, 2009), and their flexibility means that they are
relatively robust across all sites (Supplemental infor-
mation). We acknowledge they are purely empirical
formulations, but site-specific mechanistic insight was
not a goal of the current study.

For sites with a significant relationship between tem-
perature or SWC and RS (p < 0.05) we compared a vari-
ety of model metrics (e.g., slope, RMSE) for LR/NLR(RS-
vs.-Tsoil) (simple linear/or non-linear regression between
RS and Tsoil) with the metrics for LR/NLR (RS-vs.-Tair)
(simple linear/non-linear regression between Rs and
Tair). The same process was used to test the Pm surrogate.
If the model evaluation metrics (i.e., slope, RMSE, index
of agreement (d) and model efficiency (EF)) of LR/NLR
(RS-vs.-Tair) models show a clear linear relationship with
the model evaluation metrics of LR/NLR(RS-vs.-Tsoil)
models and the slope is close to 1, Tair should be a good

surrogate for Tsoil in RS modelling and vice versa
(Figure S1). The index of agreement d was calculated as:

d¼ 1�
Pn

i¼1 Si�Mið Þ2
Pn

i¼1 Si�M
�� ��þ Mi�M

�� ��� �2 , ð3Þ

where n is the number of observations, Si is the ith
predicted RS and Mi is ith measured RS, and M represents
the average of all measured RS. For interpretation of d,
≥ 0.90 means excellent agreement between measured and
predicted values, 0.8≤ d< 0.9 is good agreement,
0.7≤ d< 0.8 denotes moderate agreement and d< 0.7
means poor agreement (Yang, Yang, Liu, & Hoogenboom,
2014). Model efficiency EF was defined as:

EF¼ 1�
Pn

i¼1
Si�Mið Þ2

Pn

i¼1
Mi�M
� �2

, ð4Þ

where Si, Mi and M are the same as Equation (3). For
interpretation of EF, <0 means the model predicted
values are worse than simply using the observed mean to
replace the predicted values, whereas EF> 0 is a critical
condition to conclude ‘goodness of match’ between the
predicted and the observed values (Yang et al., 2014).

We used LR of Tsoil versus RS and Tair versus RS to
quantify the proportion of sites where Tair can be used as
a surrogate for Tsoil in RS modelling. For each of the LR
relationships, we grouped the results into three groups:
positive correlation (+), negative correlation (�) or no
correlation (na). Thus, combining the two LRs, we
grouped the sites into 3 � 3 = 9 classes (Table 1). Where
both Tsoil and Tair are strongly positively (or negatively)
correlated with RS (i.e., combinations +/+ and �/� in
Table 1), this suggests that Tair was an acceptable surro-
gate for Tsoil in RS calculations. The same process can be
used to quantify the proportion of sites where Pm is a
good surrogate for SWC.

All codes and data to reproduce our results are avail-
able in Jian (2021, May 10): jinshijian/Surrogates: Surro-
gates version 2.0 (Version v2.0.0). Zenodo. http://doi.org/
10.5281/zenodo.4745953.

3 | RESULTS

3.1 | Air temperature as a surrogate for
soil temperature

For most of the 880 sites, Tair and Tsoil were significantly
correlated with RS and explained similar amounts of
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variation in RS. More than 80% of sites exhibited a signifi-
cant first-order linear regression between RS and Tsoil or
Tair (p value of x < 0.05; Figure S2b,c), whereas �45%
had NLR relationships between RS and Tsoil or Tair

(p value of β1; Figure S2e,f), and approximately 14% of
the sites had no significant relationship between RS and
temperature (Table 1). In the LR, Tair explained a similar
amount of variability as Tsoil for approximately 57% of
sites (R2 difference within 0.10; Figure S2a), whereas for
30% of sites Tsoil explained more RS variability (R2 differ-
ence≥ 0.1; Figure S2a). For the remaining 13% of the
sites, Tair actually explained more RS variability than Tsoil

(R2 difference≤�0.1) (Figure S2a).
We compared a set of model evaluation metrics

(i.e., slope, d, EF and RMSE), excluding the 14% of sites
with overall model p-value ≥0.05. At first, we tested
whether the model evaluation metric comparisons were
affected by outliers (whenever Cookʼs distance >0.1 or
standardized residual >2); we found that the model slope
comparison was affected by outliers, but other model
evaluation comparisons were not (Figure S3). We then
removed all the outliers, and found that all four model
evaluation metrics from the LR and NLR for RS-vs.-Tair

were highly correlated with the model evaluation metrics
from the LR and NLR for RS-vs.-Tsoil models, and the
slopes were all close to 1:1 line (Figure 2). This evidence
supports the use of Tair as a surrogate for Tsoil in RS

modelling.

3.2 | Precipitation as a surrogate for soil
water content

RS was not well correlated with SWC or Pm, and Pm was
not a good surrogate for SWC in RS modelling. Across

507 sites, less than half of the sitesʼ RS exhibited a simple
linear relationship with SWC and Pm (37% and 45%,
respectively; Figure S4b,c), whereas only 15% and 24%
sitesʼ RS showed NLR with SWC and precipitation,
respectively (Figure S4e,f). For 26% of sites, SWC
explained similar amount of RS variability to precipita-
tion using linear regression (Figure S4a, 14% if using
non-linear regression, Figure S4d). For the rest, either
SWC explained 10% more RS variability than Pm, or vice
versa (Figure S4a,d).

For sites at which RS was significantly correlated with
SWC or Pm (p < 0.05 of x or x2 for LR/NLR), we com-
pared a set of model evaluation metrics (i.e., d, EF, RMSE
and slope). The comparison showed that all four model
evaluation metrics from the LR/NLR(RS-vs.-Pm) (simple
linear/non-linear regression between RS and Pm) models
are weakly correlated with the evaluation metrics from
the LR/NLR(RS-vs.-SWC) (simple linear/non-linear
regression between RS and SWC) models. The slopes are
all far away from the 1:1 line (except RMSE), indicating
that the Pm is not a good surrogate for SWC in RS model-
ling (Figure 3). The weak correlation between model
evaluation metrics was unlikely to be caused by outlier
effects, as we found similar results whether outliers were
excluded or not (Figure 3 and Figure S5).

All sites in this study can be grouped into one of nine
groups according to LR(RS-vs.-Tair) and LR(RS-vs.-Tsoil),
and we found that for �79% of sites, Tair is a good surro-
gate for Tsoil in RS modelling (Table 1a). However, Pm is a
good surrogate for SWC for only �15% of sites (Table 1b).

The relationship between Tair and Tsoil, SWC and Pm
(Figure 4) further confirmed that Tair is a good surrogate
for Tsoil, whereas Pm was not a good surrogate for SWC in
RS modelling. Generally, Tair was highly correlated with
Tsoil in all climate regions (Figure 4, left panels), although

TABLE 1 Summary of sites in

different groups when using air

temperature (Tair) or precipitation (Pm)

as surrogate for soil temperature (Tsoil)

and soil water content (SWC) in soil

respiration (RS) modelling

LR(RS-vs.-Tair)

LR(RS-vs.-Tsoil) + � na

+ 682 (77.50%)* 2 (0.23%) 40 (4.55%)

� 0 (0%) 11 (1.25%)* 4 (0.45%)

na 16 (1.82%) 5 (0.57%) 120 (13.64%)

LR(RS-vs.-Pm)

LR(RS-vs.-SWC) + � na

+ 66 (13.02%)* 35 (6.90%) 0 (0%)

� 30 (5.92%) 9 (1.78%)* 50 (9.86%)

na 118 (23.27%) 4 (0.79%) 195 (38.46%)

Note: Explaining distribution of sites where RS is strongly correlated (positive or negative) with (a) Tsoil
and/or Tair, and (b) SWC and/or Pm. * Denotes sites where Tair or Pm can be considered strong surrogates in
RS modelling, and ‘na’ means sites where RS does not show significant relationship with Tsoil, Tair, SWC or

Pm. LR, linear regression. Bold values means Tair or Pm are good surrogates for Tsoil and SWC in these
scenarios
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in tropical regions Tair explained only 25% of Tsoil vari-
ability (R2 = 0.25; Figure 4). This is likely to be because
the range of Tair (20 to 30 �C) in tropical regions was
much narrower than in other climate regions, and the
small amount of temperature variation led to the lower
Tsoil to Tair correlation. SWC and precipitation were sig-
nificantly correlated in only one out of four climate
regions (Figure 4, right panels).

4 | DISCUSSION

We found Tair was able to explain as much variability in
RS as the factor it was substituted for, Tsoil at the site
scale. Tair data have been well recorded for decades or
centuries across the globe (Willmott et al., 2001),
supporting robust ecological and biogeochemical
reanalysis in the global Rs (Bond-Lamberty & Thom-
son, 2010; Raich & Potter, 1995). Furthermore, earth sys-
tem models can now reasonably predict Tair over a long

period in the future under different greenhouse gas emis-
sion scenarios (Stocker et al., 2013). Because temperature
is such a strong determinant of RS across so many ecosys-
tems and biomes (Bond-Lamberty & Thomson, 2010),
this study, by quantifying the robustness of local-scale
Tair in the service of large-scale modelling, provides
important support for analyses of how soil carbon will
respond to global warming in the future.

Unlike temperature, Pm was not a good surrogate for
SWC (Figure 4) at the site scale. In general, SWC is
influenced by not only precipitation but also other fac-
tors, including soil properties such as texture, snow cover,
pore size distribution, and their interactions (Gaur &
Mohanty, 2013; Holsten et al., 2009; Wohl et al., 2012).
Soils with different textures, but the same volumetric
SWC, could have very different amounts of available soil
water (Wu, Huang, & Gallichand, 2011). Fine-textured
soil has more micropores than coarse-textured soil, for
example, and thus holds water more tightly. We conclude
that soil texture should be considered when analysing the

FIGURE 2 Relationship between model evaluation metrics (i.e., index of agreement [d], model efficiency [EF], root mean square error

[RMSE] and slope) of regression between soil respiration and air temperature (LR/NLR(RS-vs.-Tair)), and between linear regression of soil

respiration and soil temperature (LR/NLR(RS-vs.-Tsoil)), with outliers (whenever Cooks distance <0.1 or standardized residual >2) excluded.

The relationships showed a clear linear trend, with trend lines close to the dashed 1:1 line, indicating Tair is a good surrogate for Tsoil when

predicting RS. The top panels are simple linear regression (LR) and the bottom panels non-linear regression (NLR); each dot represents a

model result from a site. The red dashed lines are the 1:1 line and the solid blue lines are the regression trend
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relationship between RS and SWC, and thus in future
large-scale RS modelling efforts precipitation should not
be used by itself as an RS predictor. This would be consis-
tent with laboratory-based RS studies, which have consis-
tently found that factors such as gravimetric moisture,
volumetric moisture, fraction of water saturation and
water potential are affected by soil organic carbon, soil
clay content and soil bulk density (Moyano et al., 2012;
Yan et al., 2018).

The patterns and thus presumably mechanisms
underlying the observed effects of SWC on RS were quite
site and soil specific. In this study, the sites could be split
into four groups, according to the relationship of RS to
SWC (or Pm), with different mechanisms explaining the
response of RS to SWC/Pm in each (Figure 5). Theoreti-
cally, group A was characterized by water-limited sys-
tems in which RS is controlled by both SWC and Pm.
Sites in group B are soil moisture-limited systems, but
not limited by precipitation; these sites may have plants
with a large canopy evaporation ratio and/or large Bowen

ratio (the ratio of sensible to latent heat), and thus
large amounts of water from precipitation would be lost
due to canopy evaporation or soil surface evaporation
(Figure 5). Group C is an interesting case because the RS

at these sites exhibits strong relationships with Pm, but
not with SWC. This may perhaps occur due to large SWC
spatial variability, SWC measurement error, heterogene-
ity between different SWC measurement methods (Vaz,
Jones, Meding, & Tuller, 2013), or roots in those sites get-
ting water primarily from bedrock cracks rather than
SWC, and then respiring (Barbeta & Peñuelas, 2017).
Sites in the group D system are not water limited, as nei-
ther SWC nor Pm showed a significant relationship with
RS (Figure 5). This classification of sites underscores the
complexity of the relationship between RS and soil mois-
ture (Hawkes, Waring, Rocca, & Kivlin, 2017), and that a
common mechanism to explain the relationship between
RS and SWC may not exist (Jung et al., 2017; Moyano,
Manzoni, & Chenu, 2013). Therefore, more SWC mea-
surements covering a variety of conditions, and the

FIGURE 3 Relationship between model evaluation metrics (i.e., index of agreement [d], model efficiency [EF], root mean square error

[RMSE] and slope) of regression between soil respiration and monthly precipitation (LR/NLR(RS-vs.-Pm)), and linear regression between

soil respiration and soil water content (LR/NLR(RS-vs.-SWC)), with outliers (whenever Cooks distance <0.1 or standardized residual >2)

excluded. The relationships showed precipitation is not a good surrogate for soil water content in predicting soil respiration when using

simple linear regression (LR, above panels), but it is better if using non-linear regression (NLR, bottom panels). Each dot represents a model

result from a site. The red dashed lines are the 1:1 line the and solid blue lines are the regression trend
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development of high-quality and spatial resolution global
soil moisture data, are important for future soil carbon
studies under global climate change.

The close correlation between RS and SWC or precipi-
tation drastically decreased when data from different sites
were integrated at larger scales (e.g., four climate regions;
Figure S6), further supporting the conclusion that mecha-
nisms underlying the relationship between RS and SWC
are site and soil specific. When data were integrated into
four climate types, only in the ‘snow’ region did precipi-
tation explain more than 10% (R2 = 0.12; Figure S6) of RS

variability. In other regions, SWC and precipitation
explained very limited (<5%) RS variability. One

possibility is that the response of microbes and plant
roots to SWC does not follow a universal pattern, but
may diverge under different conditions.

Such a divergence of relationships between respira-
tion and SWC has been demonstrated by many studies.
For instance, an incubation of soil samples from a gradi-
ent of �460 mm to �860 mm mean annual precipitation
(MAP) across the Edwards Plateau in central Texas by
Hawkes et al. (2017) found that climate legacies (MAP
gradient and SWC variation) control RS response to cur-
rent SWC. Similarly, Averill, Waring, and Hawkes (2016)
found that historically drier sites' microbial respiration
was more sensitive to moisture change. In Para State,

FIGURE 4 The relationship between soil temperature and air temperature for different climate types (left panels), and the relationship

between soil water content and monthly precipitation for different climate types (right panels). Air temperature is generally highly

correlated with soil temperature, but soil water content is usually poorly correlated with precipitation. SWC, soil water content
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Brazil, Davidson, Verchot, Cattanio, Ackerman, and
Carvalho (2000) found RS negatively correlated with
SWC in both forest sites and pasture sites. However,
soils from a tropical forest in Thailand showed a linear
relationship between RS and SWC (Adachi, Ishida,
Bunyavejchewin, Okuda, & Koizumi, 2009). It is thus
possible that because soils of this study did not cover
wide ranges of soil textures, SWC could explain site-
scale RS variation, but not RS variation at the global
scale; similar scale dependencies have been observed in
other analyses of water effects on the global C cycle
(Jung et al., 2017).

More SWC measurements from sites covering a vari-
ety of environmental conditions are thus important for
improving the simulation of the moisture–respiration
relationship. Ecosystem models generally use a uniform
function to describe the average response of respiration
to soil moisture (Parton & Rasmussen, 1994; Sierra,
Trumbore, Davidson, Vicca, & Janssens, 2015). Compar-
ing functions currently used in different biogeochemical
models, Moyano et al. (2012) found that including data
from sites with different soils can reconcile differences
and correct biases within and among those models.

Continental- to global-scale high spatial resolution SWC
products are critical for future research and synthesis in the
simulation of RS responses to SWC. Given our results, sig-
nificant regression relationships might only be possible at
relatively small spatial scales, where soil properties are
more consistent; this is the approach taken by most modern
studies estimating global RS (e.g., the 1 km2 product of
Warner, Bond-Lamberty, Jian, Stell, & Vargas, 2019).
Designing a common data framework and compiling pub-
licly available SWC into a global database is important in
building continental- to global-scale SWC products. Efforts

have been made to achieve continental- to global-scale
SWC products. For instance, global soil respiration data-
bases (i.e., SRDB and DGRsD) provide a common frame-
work for sharing and using field RS measurements under
different SWC conditions (Bond-Lamberty et al., 2020;
Bond-Lamberty & Thomson, 2018; Jian et al., 2021; Jian,
Steele, Day, & Thomas, 2018). Currently, carbon flux (CO2

or CH4) responses to abiotic drivers (e.g., Tsoil, SWC, pH) in
laboratory incubations have been compiled into a new,
publicly available database (Soil Incubation Database, SIDb,
version 1.0) (Schädel et al., 2019). The SIDb provides a
common framework for carbon flux incubation data. Based
on the historical satellite data, a global soil moisture dataset
with 15-km resolution has been developed (Guevara
et al., 2019). Those datasets will finally connect the site-level
SWC measurements with global satellite-based data
(e.g., https://smap.jpl.nasa.gov/data/), supporting future
research such as continental- to global-scale carbon decom-
position and carbon turnover.

Even though precipitation was not a good surrogate for
SWC in RS modelling, precipitation explained a similar
(slightly higher, results not shown) amount of RS variability
to SWC. The possible reason for Pm explaining slightly
higher RS variability is that SWC data used in this study
were from hundreds of different publications and collected
by different scientists, and different methods and equip-
ment were used for measuring SWC, which adds heteroge-
neity to SWC variance. For instance, data in this study
showed that more and more SWC data after 1990 were
measured using TDR, but earlier SWC data were from the
oven-dry method (Figure S7). To minimize the effects of
SWC heterogeneity caused by the measuring method, we
built the regression models in each site and the comparison
was conducted at the site level. As precipitation data have

FIGURE 5 Diagram shows the

control of soil water content or

precipitation (Pm) over soil respiration

(RS), with different scenarios and the

possible mechanisms to explain the

relationship. Group A: RS significantly

correlated with soil water content (SWC)

and Pm; Group B: RS was significantly

correlated with SWC but showed no

correlation with Pm; Group C: RS was

significantly correlated with Pm but

showed no relationship with SWC;

Group D: RS showed no relationship

with SWC or Pm

10 of 14 JIAN ET AL.

https://smap.jpl.nasa.gov/data/


been well recorded for decades or centuries across the globe
(Willmott et al., 2001) and Pm explained a certain amount
of RS variability, this study provides support for analyses of
how change in precipitation under global warming may
affect soil carbon decomposition in the future.

5 | CONCLUSIONS

This study compiled Tsoil, Tair and corresponding RS data
from almost 900 sites across the globe and showed that
Tair is a good surrogate for Tsoil. Given the numerous
robust temperature records available for the past decades,
our results are encouraging for future research on RS

modelling, soil carbon dynamics and soil carbon response
to temperature change in the future. We emphasize, how-
ever, that a good surrogate variable is not the same thing
as an interchangeable one; Tsoil will always, inherently,
contain more information about conditions at the physi-
cal site of RS generation, and thus be of greater use for
mechanistic modelling. Meanwhile, SWC, precipitation
and corresponding RS data from 507 sites across the globe
showed that precipitation was not a good surrogate for
SWC, but explained similar RS variability. This highlights
the urgent need for SWC measurements and data prod-
ucts at continental to global scales and across different
environmental conditions, for the modelling and evalua-
tion of future soil carbon dynamics under global climate
change.
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