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A B S T R A C T

In the context of global climate change, the preservation of soil productivity and the estimation of carbon
budgets and cycles, the quantification of changes in carbon has important significance. In this study, we in-
vestigated the dynamics of soil aggregate associated organic carbon (OC) following temperate natural forest
development in China. The objectives of this study were to examine the variation of soil aggregate associated OC
decomposition rates, quantify the changes in the proportion of new and old soil aggregate OC, and explore the
effects of controlling factors on SOC stocks, rate of total SOC increase and decomposition rate constants. The
results showed that soil aggregate associated OC sequestration increased in 0−10 cm soil depth, while decreased
in 10−30 cm soil depth. However, rate of aggregate associated OC increase, decomposition rate constants, and
proportion of new OC increased at the early stage and then decreased along with the natural vegetation re-
storation. In addition, land use change had an important effect on soil aggregate associated OC dynamics, and
soil particles, BD, MWD, C: N, plant diversity also played an important role. Moreover, SOC stocks had a negative
relationship with clay and silt, while had a positive relationship with MWD and sandy soils. decomposition rate
constants had a negative relationship with plant diversity, silt, and sand, while had a positive relationship with
C: N and MWD. The proportions of new SOC had significant positive relationships with C: N, and it had a
negative relationship with clay and silt. Therefore, it is necessary to clarify the formation mechanism of soil
particles and aggregates, improve plant biodiversity, regulate the soil C: N ratio, and improve soil particle
structure to increase soil carbon sequestration.

1. Introduction

In the context of global climate change and for the preservation of
soil productivity the quantification of changes in carbon has important
significance (Herbst et al., 2018). Conversely, land use change and
climate conditions also had great effects on soil carbon pool, decom-
position rate, soil aggregate stability (Deng et al., 2016; Haghighi et al.,
2010), and their variation determines whether this is a carbon source or
a sink. Duo to the land use change is the main driving force of global
environment change, the research of soil carbon dynamics, including
fixed carbon and decomposed carbon in water-stable aggregates have
become an important scientific debate.

Land use strongly affects soil surface microbes, soil aggregate and
soil carbon changes (van Leeuwen et al., 2017v; Zhu et al., 2018).

Microbes on the outer surface of aggregates can connect neighboring
aggregates through access carbon substrates (Blankinship et al., 2016).
Soil aggregation affects SOC decomposition by creating complex soil
structure and limiting accessibility of soil microbes to SOC (Liang et al.,
2019), moreover, carbon outputs also determined by decomposition
rates and turnover, influenced by climate, soil texture and plant attri-
butes (e.g., tissue quality) (Eclesia et al., 2016). The balance of plant
input and rate of SOC loss have controlled the soil carbon dynamics
(Zhang et al., 2015). Generally, compared with the transformation from
natural vegetation to cultivated vegetation, converting cropland into
perennial vegetation had spent greater periods of time to lock up SOC
due to the decrease of turnover rate related to natural vegetation (Deng
et al., 2013). Thus, understanding the change in new soil aggregate
associated SOC caused by new vegetation after land use change, and old
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soil aggregate associated SOC (i.e. initial soil aggregate associated SOC
previous to conversation) could described more information about the
dynamic responses of SOC in water-stable aggregates to land use
change.

The stable carbon isotope technique can be used to quantify the SOC
dynamics (Mendez-Millan et al., 2014). Conversion of vegetation reg-
ulates 13C in SOC because of the different isotopic signature in as-
similated CO2 as a result of photosynthetic 13C discrimination (Wang
et al., 2015). Thus, the 13C value in SOC provides a means to explore the
mechanisms of new and old SOC changes after land use changes
(Guillaume et al., 2015; Zhang et al., 2015). Because laboratory de-
composition experiments are usually combined with nutrient addition,
drought, and warming, the difference in setting gradients and other
experimental conditions will make the study incomparable. In-situ es-
timation of SOM decomposition rate makes the data obtained in various
individual studies and from different regions comparable (Marin-
Spiotta et al., 2009; Zhang et al., 2015). However, few researches using
the stable carbon isotope technique to describe soil aggregate asso-
ciated new and old SOC dynamics along a long-term vegetation re-
storation Chrono sequence.

Soil physic and chemical properties, land control measures, tree
species planted, vegetation types and environmental factors determine
the change degree of SOC stocks and the timing of the switch between
increase and decrease of stocks (Arai and Tokuchi, 2010; Don et al.,
2011). In addition, it is also affected by the following factors, such as
interactions between geochemistry and climate (i.e., precipitation and
temperature) (Doetterl et al., 2015), previous land use type (England
et al., 2016; van Straaten et al., 2015v), erosion processes (Croft et al.,
2012), and whether the study design is based on a chrono sequence or
time series (Fujisaki et al., 2015). However, different criteria of the
research blocks, such as study design and scale, stock calculation
method, and land management measures, which caused the consider-
able uncertainties in the SOC stock dynamics (Grinand et al., 2017). For
example, for forest converted into cultivated vegetation, Guo and
Gifford (2002b); Don et al. (2011); Powers et al. (2011) and Fujisaki
et al. (2015) given the decrease in SOC stocks ranges from 42 %, 25 %,
15.4%–8.5%, respectively. Therefore, choose to appropriately reflect
the impact of overall change in soil OC stocks, and explore which fac-
tors control SOC stock dynamics is crucial to evaluate SOC change rate
and its time-space distribution following land use change.

In China, the “Grain to Green” program considered as one of the
most important and effective methods for the improvement of eco-
system services in the Loess Plateau (Chen et al., 2015). However, the
period of these programs is too short to understand the process of on-
going vegetation restoration in Western China. Ziwuling, located in the
Loess Plateau, was the only place where forest vegetation has been
preserved throughout history. Thus, this area can help understand the
carbon sequestration dynamics of ecosystems when converting crop-
land to natural restoration grassland or forest. This research used stable
carbon isotope technique to investigate soil aggregate associated SOC
dynamics of natural vegetation after cropland was abandoned. The
vegetation had been converted from adjacent farmland for about 10,
100, 130, 150 years previously. The objective of this study were to
examine the variation of soil aggregate associated SOC decomposition
rates, quantify the changes in the proportion of new and old soil ag-
gregate SOC, and explore the effects of controlling factors on SOC
stocks, rate of total SOC increase and decomposition rate constant.

2. Materials and methods

2.1. Study sites

The study was conducted on the Lianjiabian Forest Farm of Ziwuling
forest region of Gansu (35°03′-36°37′N, 108°10′-109°18′E, 1211−1453
m a. s. l.), located in a total area of 23,000 km2 in the hinter land of the
Loess Plateau. The elevations of the hilly and gully landforms in the

area are 1211–1453 m.a.s.l., and their relative altitude difference is
about 200 m. The area has an average annual temperature of 10 °C, an
average annual rainfall of 587 mm, the accumulative temperature of
2761 °C, and the annual frost-free period is 112–140 days (Zhu et al.,
2017). Most of the soil in this region is lossial, which is developed from
primitive or secondary loess materials. They are evenly distributed on
the red earth, with a thickness of 50−130 m, and are composed of
calcareous cinnamon soil. In addition, the site is covered by a uniform

Table 1
Basic information about the site.

S1 (CK) S2 S3 S4

Location 36°05′ N,
108°31′ E

36°02′ N,
108°31′ E

36°03′ N,
108°32′ E

36°02′ N,
108°32′ E

Slope (°) 14 13 10 18
Altitude (m) 1348 1450 1437 1449
Coverage (%) 85 90 90 95
Shannon-Wiener

index
1.86 2.34 2.86 2.59

Note: S1, Lespedeza bicolor; S2, P. davidiana; S3, P. davidiana, Q. liaotungensis;
S4, Q. liaotungensis.

Table 2
Summary of features of soil and plant in different successional stages in the
study areas.

S1 (CK) S2 S3 S4

Pδ13C (‰) −24.94±
0.6

−25.56±
0.9

−25.53±
1.2

−25.86± 0.8

pH-a 7.57±0.5 7.2±0.3 7.2± 0.4 7.13±0.6
pH-b 7.9± 0.4 7.57± 0.35 7.6± 0.2 7.57±0.25
pH-c 7.67±0.35 7.4±0.2 7.03± 0.35 7.37±0.65
Clay (%)-a 13.23± 0.91 9.85± 0.07 9.6± 0.28 9.21±0.17
Clay (%)-b 14.32± 0.26 12.11± 0.8 12.43±0.34 12.91± 0.51
Clay (%)-c 14.25± 1.16 13.31± 0.4 13.72±0.14 13.63± 0.24
BD (g cm−3)-a 1.26±0.02 0.93± 0.02 1.03± 0.03 1.03±0.04
BD (g cm−3)-b 1.24±0.04 0.99± 0.02 1.04± 0.02 1.08±0.06
BD (g cm−3)-c 1.34±0.03 1.11± 0.06 1.25± 0.04 1.28±0.06
Silt (%)-a 32.88± 2.6 27.17± 0.27 26.91±0.14 26.86± 0.48
Silt (%)-b 33.69± 1.12 30.94± 0.64 32.83±0.4 33.72± 0.73
Silt (%)-c 33.44± 0.08 31.38± 0.46 33.18±0.6 35.09± 0.66
Sand (%)-a 53.89± 3.27 62.98± 0.33 63.49±0.32 63.92± 0.62
Sand (%)-b 51.99± 1.35 56.95± 1.31 54.74±0.12 53.38± 1.24
Sand (%)-c 52.31± 1.16 55.31± 0.84 53.1± 0.47 51.28± 0.86
MWD-a 3.39±0.05 3.08± 0.09 3.25± 0.09 3.09±0.13
MWD-b 1.52±0.07 3.59± 0.08 3.56± 0.18 3.6± 0.08
MWD-c 0.86±0.04 3.13± 0.15 3.34± 0.2 3.07±0.2
TN-a 1.22±0.04 2.88± 0.32 3.17± 0.22 4.29±0.92
TN-b 0.62±0.03 1.62± 0.17 0.99± 0.13 1.64±0.11
TN-c 0.51±0.04 1.19± 0.1 0.61± 0.21 0.88±0.13
C: N-a 8.5± 0.21 12.25± 0.07 11.23±1.21 11.06± 0.38
C: N-b 10.79± 0.31 10.24± 1.11 9.47± 1.05 9.55±1
C: N-c 7.97±0.36 10.35± 2.35 9.19± 1.26 8.03±1.92
PN (g kg−1)-a 1.5± 0.48 1.44± 0.27 1.54± 0.22 1.33±0.29
PN (g kg−1)-b 0.66±0.00 0.91± 0.12 0.96± 0.13 0.96±0.07
PN (g kg−1)-c 1.48±0.00 0.99± 0.09 0.89± 0.17 0.8± 0.11
PC (g kg−1)-a 337.97±

34.47
314.34±
1.72

154.43±
28.21

379.54±
43.84

PC (g kg−1)-b 325.43±
59.78

367.76±
26.34

155.54±
32.15

398.93±
15.79

PC (g kg−1)-c 351.65±
13.09

359.35±
24.73

145.41±
10.18

386.71±
29.52

PC: PN-a 245.15±
93.75

229.24±
13.72

103.26±
31.21

299.58±
99.85

PC: PN-b 490.11±
90.08

405.36±
24.9

162.73±
25.52

416.53±
44.41

PC: PN-c 237.69±
8.85

362.43±9.1 165.5±
23.83

487.62±
41.78

Note: S1, Lespedeza bicolor; S2, P. davidiana; S3, P. davidiana, Q. liaotungensis;
S4, Q. liaotungensis; Pδ13C, plant δ13C; BD, soil bulk density; PC, plant carbon;
PN, plant nitrogen; TN, soil total nitrogen; a, 0−10 cm; b, 10−20 cm; c,
20−30 cm soil depth.
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forests with abundant species, and the forest canopy density is between
80 % and 95 % (Deng et al., 2016).

2.2. Field investigation and sampling

Lianjiabian Forest Farm is the only remaining area of complete
natural vegetation succession sequence after cultivated land (Zhang
et al., 2016b). This region had been observed natural vegetation with
different restoration ages, and the basic information about the site are
shown in Table 1. Meanwhile, the four plots are S1 (Lespedeza bicolor),
S2 (P. davidiana), S3 (P. davidiana, Q. liaotungensis), and S4 (Q. liao-
tungensis). In addition, summary of features of soil and plant in different
successional stages in the study areas are shown in Table 2, and the
detail forest information were described in prior studies (Deng et al.,
2014b).

This study randomly set up 20 m × 20 m plots in each forest
community and 2 m × 2 m plots in the herbaceous community to take
soil samples in these five sites. The distance between two plots in a
community does not exceed 50 m, and the distance between two
communities in each sample area is less than 1 km. Meanwhile, this
study selected consistent site conditions and land use background.

At the four corners and center of each plot in the four restoration
stages, soil samples were collected at a depth of 30 cm at an interval of
10 cm with a drill bit. All soil samples of 2 mm sieved by air-dried for
total OC and δ13C analysis. Soil bulk density is determined by three
samples with a diameter of 5 cm and a height 5 cm in each plot. The
original volume of each soil core and its dry mass after oven-drying at
105 °C for 48 h were measured. Meanwhile, take 3 undisturbed soil
samples in the 0−10, 10−20, 20−30 cm soil layers of each plot for
aggregate stability analysis, seal them in a lunch boxes and transport

them to the laboratory for air drying at room temperature.

2.3. Sample analysis

Soil aggregates were separated by the method of first dry sieve and
then wet sieve, and finally the aggregates with 6 particle sizes of> 5
mm, 2–5 mm, 1–2 mm, 0.5–1 mm, 0.25–0.5 mm and<0.25 mm were
obtained (Zhu et al., 2017). All fractions were dried at 70 °C prior to
weighing. The data were analyzed to compute mean weight diameter
(MWD) (Youker and McGuinness, 1957). A laser particle analyzer that
operates over a range of 0.02–2000 μm (Mastersizer 2000 particle size
analyzer, Malvern Instruments, Ltd., UK) and based on the laser dif-
fraction technique was used to measure particle size. Soil pH was de-
termined using the method of acidity agent (soil-water ration of 1:5)
(PHS-3C pH acidometer, China). Soil organic carbon (SOC) content was
determined by the K2Cr2O7–H2SO4 oxidation method (Nelson and
Sommers, 1996). Soil total nitrogen (TN) content was assayed using the
Kjeldahl method (Bremner and Mulvaney, 1982). Fig. 1 showed the
distribution of SOC in water stable aggregate.

Except δ13C (in‰ of Vienna PDB) analysis of 0.05 mm soil samples,
the rest of all were at 2 mm. The natural abundance of δ13C was ana-
lyzed with an Elemental Analyzer coupled to an isotope ratio mass
spectrometer at the Huake Jingxin Stable Isotope Laboratory. Two
acetanilide standards were measured every 12 samples. Variations in
the 13C/12C ratios are reported relative to the Vienna PDB standard. The
formula is expressed as:

= ×−R Rδ (‰) ( ) 100sample standard 1 (1)

Where R is the molar ratio of 13C to 12C of the sample or the interna-
tional PDB reference, respectively. The δ13C content data are show in

Fig. 1. Soil aggregate associated organic carbon (a, b, c and d) and MWD (e and f) for four land use types accompanying vegetation restoration. Note: The values are
mean± SE (error bar), n = 3. MWD, mean weight diameter; S1, Lespedeza bicolor grassland; S2, P. Davidiana forest; S3, P. davidiana and Q. liaotungensis mixed forest;
S4, Q. liaotungensis forest.
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Fig. 2.

2.4. Data calculation

The proportions of new soil OC (fnew) and old soil OC (fold) were
estimated based on the mass balance formulas (Deng et al., 2016):

= − × −f (δ δ ) 100%/(δ δ )new new old veg old (2)

= −f f100old new (3)

where δnew is the δ13C value of the soil sample from current land use,
δold is the δ13C values of the soil sample previous to land-use change (or
soil samples from the paired ‘control’ sites) and dveg is the δ13C value of

the mixed litter of current vegetation. Decomposition rate constants (k)
of soil OC were estimated using the following equations (Marin-Spiotta
et al., 2009):

= − C C tk ln( / )/t 0 (4)

where C0 is the initial soil OC stock (soil OC stock in the reference sites),
Ct is initial soil OC stock remaining (old C stock) at time t (year) since
land use change.

Although the increase rate of new soil C and total SOC may not be
change with time since land use change, the average increase rate can
be calculated using the following equation (Li et al., 2012):

=
− −g m yr tRate of increase in new soil C (or total SOC) ( ) ΔX/Δ2 1 (5)

where Δ X is the change of new soil OC (or total SOC) stocks following
land use change, and Δ t represents years since conversion (year). By
multiplying the current total SOC stocks by the corresponding propor-
tion of new soil OC, new soil OC stocks at deforestation and refor-
estation sites can be calculated.

Soil OC stocks were calculated using SOC concentration (g kg−1),
soil thickness (D, cm) and bulk density (BD, g cm-3) at each site (Guo
and Gifford, 2002a):

= × ×C SOC BD D/10s (6)

The SOC sequestration was estimated using the following equation
(Deng et al., 2014a):

= −
−ha C C CCarbon sequestration (Mg ): Δ s LUn LU

1
0 (7)

where CLUn is represent soil OC stocks at each vegetation restoration
stage (g m−2), and CLU0 is soil OC stocks at the stage of grassland.

2.5. Statistical analysis

One-way analysis of variance (ANOVA) was used to test the differ-
ence between the average values. Before performing the ANOVA pro-
cedure, all data were premised on the normality and homogeneity of
variance. Correlation analysis was used to study the relationships
among the different soil and plant properties. A redundancy analysis
(RDA) were conducted using R program to assess the effects of soil and
plant properties on soil OC stocks, the rates of total soil OC stocks in-
crease and k increase with restoration age after farmland abandonment.

3. Results

3.1. Changes in SOC stocks and SOC sequestrations

Overall, SOC stocks and SOC sequestrations in the 0−30 cm soil
depths in S2, S3, S4 were significantly higher than in S1 (Fig. 3, d and
h). Except for soil aggregate (> 2 mm) associated carbon stocks and
sequestrations showed significantly decreased compared to S1 in 0−10
cm soil depths (Fig. 3, c and g). SOC stocks and SOC sequestrations of
S2 and S3 were the highest in the 10−30 cm soil depths, but S4 was the
greatest in the 0−10 cm soil depths (Fig. 3).

In total, the rates of soil organic carbon sequestrations increased in
S2, S3, and S4, however, the rates of> 2 mm soil aggregate associated
carbon sequestrations decreased in 0−10 cm and 20−30 cm soil
depths (Fig. 4). The rates of S3 showed the highest in 0−10 cm soil
depths (), and S2 was the highest in 20−30 cm soil depths (Fig. 4).

3.2. Changes in new and old SOC

The proportion of old SOC increased, while the proportions of new
SOC decreased with different restoration stage since land use change
(Fig. 5, d). The gain of new SOC accounted for 30 %, 16 %, 33 % of the
total SOC stocks in the S4 stage in 0−10 cm, 10−20 cm, 20−30 cm
soil depths, respectively, however, the proportions of new SOC in S2
and S3 exceeded the proportions of old SOC (Fig. 5, a and b). In

Fig. 2. Soil aggregate associated 13C for four land use types accompanying
vegetation restoration. Note: The values are mean± SE (error bar), n = 3. S1,
Lespedeza bicolor grassland; S2, P. Davidiana forest; S3, P. davidiana and Q.
liaotungensis mixed forest; S4, Q. liaotungensis forest.
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addition, the proportions of new or old SOC had different distribution
trends in different soil aggregate particle size and soil depths (Fig. 5,
a–c).

SOC decomposition rate decreased after S1 stages in all soil depths
and soil aggregate particle size (Fig. 6). S2 had the highest SOC de-
composition rate in the 10−30 cm soil depths and all soil aggregate
particle size, meanwhile, S2 and S3 showed no significant difference

and higher than S4 in 0−10 cm soil depths. S4 and S3 had the lowest
SOC decomposition rate in 10−20 cm soil depths and 20−30 cm soil
depths, respectively.

Fig. 3. Soil aggregate associated organic carbon stocks (a, b, c and d) and sequestrations (e, f, g and h) for four land use types accompanying vegetation restoration.
Note: The values are mean±SE (error bar), n = 3. S1, Lespedeza bicolor grassland; S2, P. Davidiana forest; S3, P. davidiana and Q. liaotungensis mixed forest; S4, Q.
liaotungensis forest.
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3.3. Factors effects on SOC stocks, rate of total SOC increase and
decomposition rate constant

The results from RDA indicating how SOC stocks, rate of total SOC
increase and decomposition rate constant relate to soil and plant
properties (Fig. 7). In detail, clay, silt, TN, PN, C: N, and PC:PN played
an important role in the dispersion of the sites along the first axis
(Fig. 7, a). Soil aggregate associated organic carbon had a positive re-
lationship with PN, MWD, TN, C: N, while had a negative relationship
with clay, silt, BD, and PC: PN (Fig. 7, a); Plant diversity, BD, pH, PC,
PC: PN, MWD, C: N and slope played an important role in the dispersion

of the sites along the first axis (Fig. 7, b).< 0.25 mm soil aggregation
decomposition rate constant had a positive relationship with clay, PC:
PN, PC and pH, while had a negative relationship with plant diversity,
BD, slope and N. The rest of decomposition rate constant had a positive
relationship with C: N, MWD, pH, PC and PC: PN, and had a negative
relationship with plant diversity, BD, slope, N, and clay (Fig. 7, b); PN,
clay, silt, PN, TN, C: N, PC: PN, MWD and BD played an important role
in the dispersion of the sites along the first axis (Fig. 7, c). Rate
of> 0.25 mm soil aggregates associated SOC increase had a positive
relationship with N, C: N, plant diversity, BD and slope, while had a
negative relationship with clay, silt, PC: PN, MWD and PC. The rest of
rate of SOC increase had a positive relationship with N, C: N and plant
diversity.

Stepwise regression analysis showed that the rate of new SOC was
mainly determined by clay, decomposition rate content was mainly
determined by BD, and SOC stocks were mainly determined by silt,
sand, coverage and PN in the 0−10 cm soil depths (Table 3). In the
20−30 cm soil depths, the rate of new SOC was mainly determined by
plant diversity and C: N, decomposition rate content and SOC stocks
were mainly determined by sand (Table 3). In total, the rate of new SOC
was mainly determined by Clay, plant diversity and C: N, decomposi-
tion rate content was mainly determined by BD, and SOC stocks were
mainly determined by sand. PN and TC (Table2).

4. Discussion

4.1. Dynamic distribution of SOC stock changes

Land use change and soil depth had an effect on SOC stocks
(Table 4), which was in consistent with Kirsten et al. (2018) and Qin
et al. (2016). Mainly because surface soil contains most of residues and
roots, and the majority of SOC change was occurred in this zone. In the
process of land use change, carbon stocks of ecosystem services can be
explored by plant-soil feedbacks (van der Putten et al., 2013v). Ecolo-
gical succession lead to changes of in plant biomass, soil microbial
community composition and other plant-soil properties (Wang et al.,
2009; Zhang et al., 2016c). Therefore, the ecological successions trig-
gered either by afforestation or by disturbances caused SOC increase
(Muñoz-Rojas et al., 2015; Zhao et al., 2015), SOC decrease followed by
accumulation (Menichetti et al., 2017), and limited SOC change (Bonet,
2004). In this study, soil carbon stocks and sequestrations in the 0−10
cm soil depths firstly increased and then decreased along with the
natural succession (Fig. 3), but in the 10−20 cm and 20−30 cm soil
depths were continuously decreased (Fig. 3). These results were in-
consistent with previous studies (Deng et al., 2013, 2016) in the surface
soil. This is probably because: (1) higher biodiversity and functional
traits increased the uptake of carbon into soil system and thus lead to
higher soil carbon stocks and sequestrations (Lange et al., 2015;
Steinbeiss et al., 2008); (2) stable aggregate facilitated physical pro-
tection of SOC (Six et al., 2004); (3) PC:PN had a negative relationship
with soil carbon stocks (Fig. 7, a). In this study, S3 had the highest
Shannon-Wiener index and the highest MWD (Tables 1 and 2), all this
caused soil carbon stocks and sequestrations firstly increased and then
decreased. In addition, the presence of more chemically recalcitrant
compounds such as lignin and phenolics in Quercus wutaishansea than in
Populus davidiana caused the rate of decomposition and carbon input
were continuously decreased along with the natural succession (Wang
et al., 2016; Zhong et al., 2017).

An et al. (2009); Jangid et al. (2011) and Zhang et al. (2015) found
that SOC sequestration rate, soil nutrients, soil microorganisms and
microbial properties all were greatest in earlier stages of restoration.
These results were consistent with the rates of total SOC increase de-
creased in 10−20 cm and 20−30 cm soil depths in this study, but
inconsistent with 0−10 cm soil depths along with the natural succes-
sion (Fig. 4). The possible mechanism was because litter biomass in S3
is the highest, so the input of new carbon increased significantly in the

Fig. 4. Rate of total soil aggregate associated organic carbon increase for four
land use types accompanying vegetation restoration. Note: The values are
mean± SE (error bar), n = 3. S1, Lespedeza bicolor grassland; S2, P. Davidiana
forest; S3, P. davidiana and Q. liaotungensis mixed forest; S4, Q. liaotungensis
forest.
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surface soil. Moreover, compared with S3 and S4, the low crown den-
sity and plant biodiversity of S2, was easier to cause surface carbon
leaching to the deeper layer, especially in the>2 mm soil aggregate
(Fig. 4). Additionally, as vegetation succession advances, soil organic
matter input and output reached a balance, so all these caused the
distribution of SOC sequestration rate had a difference in the surface
and deep soil.

4.2. Changes in proportions of new and old SOC following land use change

The ratio of old and new SOC can indicate the dynamics of the
source of SOC in soils, and can provide important information about the
dynamics of SOC after land use change (Zhang et al., 2015). In this
study, the proportion of old SOC increased, while new SOC showed an
opposite trend following land use change (Fig. 5). Zhang et al. (2015)
and Marin-Spiotta et al. (2009) also indicated land use change was an
important influencing factor to determine the proportions of new and
old SOC in soils. The changes in litter quality, soil nutrient availability,
and soil enzyme activity caused litter decomposition rate (Fig. 6) and
new carbon input decreased following long-term vegetation recovery
(Zhong et al., 2017), which produced soil organic matter with different
13C/12C ratio (Marin-Spiotta et al., 2009).

The SOC decomposition rate decreased significantly as the years of
vegetation restoration increased (Fig. 6). The rate of new SOC increase
was low in the early stage also because the high decomposition rate
cannot contribute carbon sequestration (Marian et al., 2017). Mean-
while, the increases in old SOC in the S4 could be because the protec-
tion of soil organic matter had been restored or completely reestab-
lished (Paul et al., 2002; Zhang et al., 2015). In addition, the rapid and
bulk flow of the distribution of proportions of old SOC may bypass< 2

mm soil aggregate (Kavdır and Smucker, 2005), resulting in greater
leaching to>2 mm soil aggregate (Fig. 5).

Therefore, from the perspective of community succession, it is ne-
cessary to artificially interfere with vegetation succession to the climax
community to increase carbon sequestration potential. However, from
the perspective of climax community management, soil erosion should
be controlled by increasing soil aggregate stability and> 2 mm soil
aggregate, and thus maintaining SOC sequestration.

4.3. Factors controls over SOC stocks, rate of total SOC increase and
decomposition rate constant

SOC stocks were affected by direct or indirect human induced
(Smith, 2005), land use change (Don et al., 2011), soil erosion
(Martinez-Mena et al., 2008), climate (Crowther et al., 2016), microbial
community and activity (Huang et al., 2017), and physicochemical
properties (Eze et al., 2018; Paz et al., 2016). In this study, soil particles
and plant nutrients had important effects on SOC stocks, canopy also
showed an influence on SOC stocks in the surface soil (Table 3 and 4).
Consistent with our results (Fig. 7), Ungaro et al. (2010) and Parras-
Alcántara et al. (2015) also demonstrated negative relationship be-
tween clay, silt and SOC stocks, but Kucuker et al. (2015) and Deng
et al. (2016) found the opposite conclusion. The main reason is that the
restoration of vegetation and proper management can increase clay, slit
and SOC stocks, but the difference in sampling time, rainfall intensity or
vegetation degradation lead to the reduction of clay, silt and SOC
stocks. In addition, many studies have reported clay and silt content
had a significant positive relationship with aggregate stability (Carter,
1992; Kemper and Koch, 1966), and<0.25 mm aggregate associated
carbon level also can influence aggregate stability (Denef et al., 2004).

Fig. 5. Proportion of new and old soil aggregate associated organic carbon for four land use types accompanying vegetation restoration (N = 3). Note: S2, P.
Davidiana forest; S3, P. davidiana and Q. liaotungensis mixed forest; S4, Q. liaotungensis forest.
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In this study, land use change had an important effect on MWD
(Table 4), and<0.25 mm aggregate associated carbon stocks (cs1) had
a positive relationship with MWD and SOC stocks (cs) (Fig. 7, a and b).
Moreover, aggregate stability is one of the key parameters defining soil
transportability via soil erosion (Doetterl et al., 2016), and it also had
significant relationship with SOC dynamics (Bremenfeld et al., 2013).
Therefore, < 0.25 mm aggregate associated carbon may cause the dif-
ference of relationships between clay content and soil carbon stocks.

This research had a relatively low<0.25 mm aggregate associated
carbon, which caused the negative correlation between SOC stocks and
clay and silt content (Fig. 7). This study also showed PN and C: N played
an important role in SOC stocks (Table 3). Nitrogen availability influ-
ences the decomposition of soil organic matter, and the interaction of
nitrogen and carbon offers a plethora of mechanisms to alter ecosystem
carbon dynamics (Heimann and Reichstein, 2008). The C: N stoichio-
metry of soils also determined increases in SOC stocks (Finn et al.,
2015). Therefore, the SOC stocks had positive relationship with plant
and soil nitrogen and C: N ratio (Fig. 7).

Land use change, litter quality, soil properties and environmental

Fig. 6. Soil aggregate associated organic carbon decomposition rate constants
for four land use types accompanying vegetation restoration. Note: The values
are mean± SE (error bar), n = 3. S1, Lespedeza bicolor grassland; S2, P.
Davidiana forest; S3, P. davidiana and Q. liaotungensis mixed forest; S4, Q.
liaotungensis forest.

Fig. 7. Redundancy analysis (RDA) of soil aggregate associated OC stocks (a),
decomposition rate constants (b) and rate of new SOC increase (c), using plant
and soil properties as environment variables. Note: BD, soil bulk density; Div,
Shannon-Wiener index; PC, plant carbon; PN, plant nitrogen; TN, soil total
nitrogen; Cs, Soil total carbon stocks; Cs1,< 0.25 mm soil aggregate associated
OC stocks; Cs2, 0.25-2 mm soil aggregate associated OC stocks; Cs3,> 2 mm
soil aggregate associated OC stocks; ks, Soil total carbon decomposition rate
constants; ks1,< 0.25 mm soil aggregate associated OC decomposition rate
constants; ks2, 0.25-2 mm soil aggregate associated OC decomposition rate
constants; ks3,> 2 mm soil aggregate associated OC decomposition rate con-
stants; rc, rate of new SOC increase; rc1, rate of new<0.25 mm soil aggregate
associated OC increase; rc2, rate of new 0.25-2 mm soil aggregate associated OC
increase; rc3, rate of new>2 mm soil aggregate associated OC increase.
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factors control the decomposition rate (Bronick and Lal, 2005; Knops
et al., 2002). In this study, land use change had an important effect on
the decomposition rate (Table 4), and it were mainly determined by soil
particle size fractions and BD (Table 3). In addition, Table 4 also
showed soil depth had no significant influence on soil aggregate asso-
ciated OC decomposition rate, mainly because too much biomass cov-
erage on the surface leads to consistent 0−30 cm soil temperature and
humidity (Gill and Burke, 2002). Compaction can decrease porosity
while increasing soil BD (Bronick and Lal, 2005), thus result in de-
stroyed soil aggregates and then stimulate SOC decomposition rate
constant as well as increasing accessibility to soil erosion (Zhou et al.,
2017). Soil particles were related with diffusion of enzymes and other
solutes, and diffusion is an important mechanism limiting the decom-
position rate by microbial activity (Frøseth and Bleken, 2015). Based on
“nitrogen mining” theory, when nitrogen is readily available in mineral
form, lignin degraders have little incentive to invest resources to pro-
duce lignolytic enzymes (Zhang et al., 2016a). So even if a significant
effect of tree diversity to indirectly support decomposition rate

constants by supporting the diversities of understorey herbaceous
plants and soil fungi (Fujii et al., 2017), plant diversity and nitrogen
also had negative relationship with decomposition rate constants
(Fig. 7, b). Additionally, C: N ratio can be controlled by nitrogen ad-
dition to reduce decomposition rate constants (Zhang et al., 2016a).
Meanwhile, C: N, plant diversity and clay determined the proportions of
new SOC (Table 3), land use change and soil depth also influenced it
(Table 4). In contrast, due to the higher rate of new SOC input into soils
than new nitrogen input, the proportions of new SOC had significant
positive relationships with nitrogen and C: N ratio (Fig. 7, c). The ef-
fectiveness of SOC in forming stable aggregates is also determined de-
composition rate, which in turn is influenced by its physical and che-
mical protection from microbial action (Bronick and Lal, 2005). Thus
caused C: N ratio and MWD had a positive relationship with decom-
position rate constant (Fig. 7). Wang et al. (2013) showed that under
similar environmental conditions, organic matter in sandy soils de-
composes faster than fine-textured soils, however, the study indicated
the decomposition rate constant was significantly negatively correlated
with silt and sand content (Fig. 7, b). The main reason is the serious soil
erosion in the study area, and SOC in the sandy soils is more likely to be
lost and unstable than fine-textured soils.

In addition, consistent with results of SOC stocks (Cs), decomposi-
tion rate constants (ks) and Deng et al. (2016), land use change and soil
depth influenced rate of increase of new SOC, and clay content, C: N,
and plant diversity also played an important role (Tables 3 and 4). All
results showed that we should improve plant biodiversity, regulate the
soil C: N ratio, increase aggregate stability, and improve soil particle
structure to increase soil carbon sequestration.

Table 3
Summary of stepwise regression models of measured soil variables with de-
termining factors following vegetation restoration (N = 3).

Models P R2

0−10 cm
rc = 0.806−0.819 Clay < 0.05 0.655
rc1 = 0.293−0.835 Clay < 0.01 0.683
rc2 = 0.313−0.805 Clay < 0.01 0.632
rc3=-0.052−0.442 Clay+0.372 C:N+0.312 Div < 0.01 0.798
ks = 0.188−0.915 BD + 0.503 Clay < 0.01 0.383
ks1=-0.01−0.731 BD + 0.461 pH <0.01 0.302
ks2 = 0.155−0.868 BD-0.417 Cov < 0.05 0.403
ks3 = 0.257−1.05 BD-0.648 Div < 0.01 0.599
Cs=-5.151 + 0.663 Sand-0.385 PC:PN <0.01 0.799
Cs1 = 12.737 + 0.458 PN-0.614 Silt-0.327 Cov < 0.01 0.787
Cs2 = 12.336 + 0.546 PN-0.487 Silt-0.377 Cov < 0.01 0.757
Cs3 = 9.532 + 0.636 PN-0.545 Cov < 0.01 0.626
10−30 cm
rc=-0.277 + 0.936 Div+0.173 C:N <0.001 0.865
rc1=-0.162 + 0.951 Div+0.286 C:N <0.001 0.834
rc2=-0.163 + 0.987 Div+0.259 C:N <0.001 0.918
rc3=-0.225 + 1.095 Div+0.217 BD <0.001 0.876
ks=-0.667 + 0.814 Sand <0.05 0.674
ks1 = 0.352−0.52 Silt < 0.05 0.237
ks2=−0.192 + 0.85 Sand+0.255 PC:PN <0.05 0.699
ks3=−0.234 + 0.852 Sand <0.01 0.714
Cs=-6.277 + 0.552 Sand-0.448 PC + 0.376 TC <0.001 0.773
Cs1=−5.672 + 0.757 Sand <0.01 0.553
Cs2=−5.543 + 0.795 Sand <0.01 0.616
Cs3=−6.1 + 0.432 C:N <0.05 0.15
0−30 cm
rc = 0.458−0.692 Clay+0.257 Div < 0.05 0.682
rc1=-0.09−0.336 Clay+0.423 Div+0.331 C:N+0.230 PN <0.01 0.808
rc2=−0.011−0.429 Clay+0.372 Div+0.301 C:N <0.01 0.734
rc3=−0.027−0.397 Clay+0.474 Div+ 0.237 C:N <0.01 0.741
ks = 0.223−0.832 BD-0.422 TC <0.01 0.415
ks1 = 0.069−0.729 BD + 0.533 Clay < 0.05 0.234
ks2 = 0.044−0.615 BD <0.01 0.378
ks3 = 0.085−0.608 BD <0.01 0.37
Cs = 2.776 + 0.845 TC+0.403 Sand+0.132 PN <0.001 0.903
Cs1=−5.074 + 0.628 Sand+0.332 PN <0.001 0.678
Cs2 = 7.007 + 0.243 PN+0.38 Sand+0.745 TC <0.001 0.708

Note: BD, soil bulk density; PC, plant carbon; PN, plant nitrogen; TN, soil total
nitrogen; Cov, Covreage; Div, Shannon-Wiener index; Cs, Soil total carbon
stocks; Cs1,< 0.25 mm soil aggregate associated OC stocks; Cs2, 0.25−2 mm
soil aggregate associated OC stocks; Cs3,> 2 mm soil aggregate associated OC
stocks; ks, Soil total carbon decomposition rate constants; ks1,< 0.25 mm soil
aggregate associated OC decomposition rate constants; ks2, 0.25−2 mm soil
aggregate associated OC decomposition rate constants; ks3,> 2 mm soil ag-
gregate associated OC decomposition rate constants; rc, rate of new SOC in-
crease; rc1, rate of new<0.25 mm soil aggregate associated OC increase; rc2,
rate of new 0.25−2 mm soil aggregate associated OC increase; rc3, rate of
new>2 mm soil aggregate associated OC increase.

Table 4
Two-way ANOVA results of the effects of land use type (LUC), soil depths (Dep)
and their interaction (LUC × Dep) on plant and soil properties (N = 3).

Properties LUC (F) LUC (P) Dep (F) Dep (P) LUC ×
Dep (F)

LUC × Dep
(P)

Clay 32.282 <0.0001 114.968 <0.0001 6.597 <0.0001
Silt 22.732 <0.0001 96.996 <0.0001 10.539 <0.0001
Sand 33.1 <0.0001 140.434 <0.0001 11.857 <0.0001
BD 68.193 <0.0001 69.518 <0.0001 3.037 0.024
MWD 1.003 0.041 1.001 0.038 1 0.045
pH 2.006 0.14 2.939 0.072 0.211 0.97
TC 24.318 <0.0001 124.072 <0.0001 8.415 <0.0001
TN 38. 11 <0.0001 154.353 <0.0001 11.911 <0.0001
C:N 4.243 0.015 7.994 0.002 2.618 0.043
PC 51.464 <0.0001 – – – –
PN 1.192 0.334 – – – –
PC:PN 29.478 <0.0001 – – – –
rc 84.229 <0.0001 116.439 <0.0001 24.078 <0.0001
rc1 143.973 <0.0001 186.924 <0.0001 40.275 <0.0001
rc2 26.507 <0.0001 25.335 <0.0001 4.833 0.002
rc3 58.573 <0.0001 43.197 <0.0001 8.475 <0.0001
ks 391.097 <0.0001 83.896 <0.0001 82.203 <0.0001
ks1 8.239 0.001 1.245 0.306 1.54 0.208
ks2 510.57 <0.0001 54.871 0.434 82.57 0.132
ks3 20.637 <0.0001 2.828 0.079 2.135 0.086
Cs 20.255 <0.0001 115.287 <0.0001 5.332 0.001
Cs1 12.002 <0.0001 188.758 <0.0001 5.653 0.001
Cs2 12.561 <0.0001 275.157 <0.0001 9.656 <0.0001
Cs3 1.003 0.408 0.985 0.388 1 0.448

Note: The bold data indicates significant differences in Two-way ANOVA re-
sults. BD, soil bulk density; PC, plant carbon; PN, plant nitrogen; TN, soil total
nitrogen; Cs, Soil total carbon stocks; Cs1,< 0.25 mm soil aggregate associated
OC stocks; Cs2, 0.25-2 mm soil aggregate associated OC stocks; Cs3,> 2 mm
soil aggregate associated OC stocks; ks, Soil total carbon decomposition rate
constants; ks1,< 0.25 mm soil aggregate associated OC decomposition rate
constants; ks2, 0.25-2 mm soil aggregate associated OC decomposition rate
constants; ks3,> 2 mm soil aggregate associated OC decomposition rate con-
stants; rc, rate of new SOC increase; rc1, rate of new<0.25 mm soil aggregate
associated OC increase; rc2, rate of new 0.25-2 mm soil aggregate associated OC
increase; rc3, rate of new>2 mm soil aggregate associated OC increase.
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5. Conclusions

Land use change had a significant influence on soil aggregate as-
sociated organic carbon dynamics, and soil particles, C: N, MWD, BD
and plant diversity also played an important role. Moreover, SOC stocks
had a negative relationship with clay and silt, while had a positive
relationship with MWD and sandy soils. decomposition rate constants
had a negative relationship with plant diversity, silt, and sand, while
had a positive relationship with C: N and MWD. The proportions of new
SOC had significant positive relationships with C: N, and it had a ne-
gative relationship with clay and silt. Therefore, we should clarify the
formation mechanism of soil particles and aggregates, improve plant
biodiversity, regulate the soil C: N ratio, and improve soil particle
structure to increase soil carbon sequestration. Meanwhile, based on the
results of soil aggregate associated organic carbon dynamics, we also
believed that it is necessary to artificially interfere with vegetation
succession to the climax community to maintain high biodiversity and
carbon sequestration potential.
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