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Abstract

Soil microorganisms are key to uncovering the mechanisms driving variation in soil

biogeochemical processes associated with land-use change. A large number of crop-

lands have been converted to orchards on the Chinese Loess Plateau due to the

increased economic benefits which result. However, the microbial community and

their functional composition remain poorly understood. In this study, soil samples

were collected from croplands and orchards. Soil physicochemical properties and the

community (represented by 16S rRNA for bacteria and ITS for fungi) were measured,

and interactions among species and the soil organic matter (SOM) degradation via

microbial metabolism and its associated genes were analyzed. Croplands converted

to orchards affected bacterial and fungal community structure by increasing the rela-

tive abundance of Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and

Ascomycota, whereas it decreased the α-diversity of bacteria and fungi. The co-

occurrence network was larger and more complex within croplands than within

orchards, indicating more extensive interactions and higher community stability

potential. The abundance of potential genes related to cellulose and hemicellulose

metabolism in orchards was higher than that in croplands, whereas the abundance of

genes related to lignin decomposition was lower than that in croplands. In addition,

the abundance of saprotrophic and symbiotrophic fungi in orchards was significantly

lower than that in croplands (27 and 88%, respectively), whereas the abundance of

pathotrophic fungi in orchards was almost six-times that in croplands. The soil

organic carbon (SOC) and soil C:N in orchards were significantly lower than that in

croplands. Converting croplands to orchards significantly altered the microbial com-

munity composition and their functionality, as well as decreased the complexity of

interaction between microorganisms. The decreased SOC and increased soil C:N ratio

could be attributed to these variations. Improved management practices should be

implemented for the maintenance of soil biodiversity and SOC in orchards to avoid

soil degradation and ensure sustainable development.
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1 | INTRODUCTION

Soil erosion–induced land degradation is a global issue that has espe-

cially severe consequences on the Loess Plateau of China, as well as

in South Africa, subSaharan Africa, South America, and other regions

(Borrelli et al., 2017; Chang, Fu, Liu, Wang, & Yao, 2012; Witt, 2014).

Land-use transformation not only mitigates soil erosion–induced deg-

radation but also improves agronomic production and enhances local

economic growth. The “Grain-for-Green” rehabilitation Program has

worked to convert croplands to forests and grasslands in China, rep-

resenting one of the most widely applied restoration strategies initi-

ated by humans (Chang, Fu, Liu, & Liu, 2011; Shi & Han, 2014). The

ecological benefits of cropland conversion to forests and grassland

have been well documented (Cao, Li, Liu, Chen, & Wang, 2018; Deng

et al., 2019; Jin et al., 2017; Li et al., 2016), and include: increased soil

organic carbon (SOC) sequestration (Jiang et al., 2019; Shi et al., 2019;

Zhang et al., 2020) and improved microbial community diversity and

function (Guo et al., 2018). Croplands have extensively been

converted to orchards owing to their great economic value, and sub-

sequently, the orchard area has increased to 4.93 × 106 ha on the

global scale (Food and Agriculture Organization, 2017). China has the

largest apple cultivation area (2.22 × 106 ha), approximately 50% of

which is located on the Chinese Loess Plateau (National Bureau of

Statistics of China, 2017). However, variations in soil quality during

cropland conversion to apple orchards remain unclear.

Soil microorganisms are sensitive indicators of soil quality

(Griffiths & Philippot, 2013) and are critical for maintaining soil func-

tion through processes such as organic matter decomposition and

nutrient cycling (Joergensen & Wichern, 2018; Li, Zhang, Cai, Yang, &

Chang, 2020; Lupwayi, May, Kanashiro, & Petri, 2018). Environmental

characteristics often explain substantial variations in soil microbial

community composition, including plant species, soil organic matter

(SOM), and microclimate (temperature and moisture) (Chen, Niu, Hu,

Luo, & Zhang, 2020; Delgado-Baquerizo et al., 2018; Hansel, Fendorf,

Jardine, & Francis, 2008); however, the characteristics of the microbial

community and functional composition remain unclear. Previous stud-

ies have indicated that environmental characteristics were altered

after the conversion of croplands to apple orchards (Li et al., 2015;

Wang et al., 2018; Wiesmeier et al., 2019), owing to the use of vari-

ous agricultural management strategies as well as differences in plant

properties. We have previously found that apple orchard soil has a

high N content, which is a consequence of increased N fertilizer input

(Wang et al., 2018). Additionally, different soil temperatures are

induced by varied solar radiation interception, and the amount of soil

water varies with the fraction of precipitation by stemflow or

throughfall between croplands and apple orchards (Bryant, Bhat, &

Jacobs, 2005; Ritter, Dalsgaard, & Eirthorn, 2005). Low carbon input

into the apple orchards could induce a decrease in SOC (Wang

et al., 2018; Zhang et al., 2015). In addition, high frequent tillage

increases SOC decomposition, which decreases SOC in apple orchards

(Li et al., 2016; Paustian, Six, Elliott, & Hunt, 2000).

Differences in nutrient availability between croplands and apple

orchards may decrease or increase the abundance of bacteria and

fungi by microbial life strategies (copiotrophic/oligotrophic) (Fierer,

Bradford, & Jackson, 2007; Wang, Ji, Wang, Guo, & Gao, 2017). These

differences can also affect the functions of soil microorganisms,

resulting in altered metabolism and genes (Guo et al., 2019; Mendes

et al., 2015; Zheng et al., 2019). However, more systematic studies

are needed to explore how the microbial community, along with their

metabolism and SOM degradation genes, influence soil quality for sus-

tainable utilization and development.

2 | METHODS

2.1 | Study site

This study was conducted at the Changwu State Key Agro-Ecological

Experimental Station in Changwu, Shaanxi, China (35�130N, 107�400E,

1,220 m a.s.l.). The soil was collected from loess deposits and can be

described as a loam (Cumulic Haplustoll; USDA Soil Taxonomy Sys-

tem) with a clay content of 22%. The long-term average annual rainfall

is 568 mm, most of which mainly occurs from June to September. The

average annual air temperature is 9.1�C, frost-free period is 194 days,

average annual solar radiation is 5,266 MJ m−2, and potential evapo-

transpiration is 967 mm (Huang, Shao, Zhang, & Li, 2003).

2.2 | Sample collection

Soil samples (0–20 cm) were collected from five apple orchards and

five croplands in October 2018 after apples and spring maize were

harvested (35�130700–35�1403400 N, 107�4003300–107�4005200 E). The

apple orchard (Malus domestica Borkh) was converted from cropland

in the year 2000 and was approximately 2,000 m2 with a density of

625 trees ha−1. Each cropland area prior to conversion was approxi-

mately 1,000 m2, with a rotation system, where winter wheat

(Triticum aestivum L.) was grown 1 year with summer fallow and then

1 year broomcorn millet (Panicum miliaceum) was grown, followed by

1 year of spring maize. The fertilizers applied were 200 kg N ha−1 and

85 kg P ha−1 per year in the apple orchards and 120 kg N ha−1 and

39 kg P ha−1 in the croplands. For each replicate, six soil cores were

randomly collected using a soil auger (d = 3 cm) and then combined to

obtain one soil sample; in total, 10 soil samples were obtained (five

orchards and five croplands). The samples were placed in a portable

refrigerator for transport to the laboratory, after which subsamples

were either stored at −80�C to analyze the bacterial and fungal com-

position or air-dried to determine the SOC, total nitrogen (TN),

and pH.

2.3 | Soil sample analysis

The SOC was determined using the K2CrO7–H2SO4 oxidation method

(Fujii, Hartono, Funakawa, Uemura, & Kosaki, 2011; Sparks

et al., 1996). The soil TN was determined by acid digestion according
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to the Kjeldahl method (Grimshaw, Allen, & Parkinson, 1989). The soil

pH (soil:water = 1:2.5, w/w) was analyzed as described by Bao (2000).

Soil DNA was extracted using a MO BIO Power Soil™ DNA Isola-

tion Kit (MO BIO Laboratories, Carlsbad, CA) according to the manu-

facturer's instructions, and a Nanodrop ND-2000 UV-VIS

spectrophotometer (NanoDrop Technologies, Wilmington, DE) was

used for quantification and quality checks. For bacteria, the V4 region

of the 16S rRNA gene was amplified using primers 341F and 806R

(Caporaso et al., 2011). Fungal communities were assessed using the

ITS1 region of the rRNA operon with the primer pair ITS5 and ITS2

(Bellemain et al., 2010; Lu et al., 2013). Amplification was performed

using Thermo Scientific® Phusion High-Fidelity PCR Master Mix (New

England Biolabs, Hitchin, UK). After amplification, the obtained prod-

ucts were purified using a Qiagen Gel Extraction Kit (Qiagen, Hilden,

Germany). Sequencing was performed using the Illumina HiSeq 2500

platform at Novogene Bioinformatics Technology Co. Ltd., Beijing,

China.

Single-end reads were assigned to samples based on their unique

barcode and truncated by cutting off the barcode and primer

sequence. Quality filtering of the raw reads was performed under spe-

cific filtering conditions to obtain the high-quality clean reads

according to Cutadapt (Martin, 2011) (V1.9.1, http://cutadapt.

readthedocs.io/en/stable/) quality control process (−e 0.05, −q

17, −m 450, −M 550 for bacteria; −e 0.05, −q 17, −m 150, −M

350 for fungi). The sequences were compared with the relevant refer-

ence database: the Silva database for bacteria (https://www.arb-silva.

de/) and the Unite database for fungi (https://unite.ut.ee/). The

UCHIME algorithm (http://www.drive5.com/usearch/manual/

uchime_algo.html) was used to detect chimeric sequences, and then

those sequences were removed (Edgar, Haas, Clemente, Quince, &

Knight, 2011; Haas et al., 2011; Kõljalg et al., 2013; Quast

et al., 2013). The sequence data were deposited in NCBI

(PRJNA628855).

2.4 | Statistical analysis

According to the method described by Edgar (2013), UPARSE soft-

ware was used for sequence analysis. Operational taxonomic units

(OTUs) were clustered with sequences ≥97% similarity. For each sam-

ple, OTU was normalized to the same least sequences (34,186 for

bacterial and 38,902 for fungi) for α-diversity (Chao1, observed spe-

cies, and Shannon index) analyses. The potential functional traits of

bacteria and fungi were predicted using PICRUSt based on the Gre-

engene database (Langille et al., 2013) and FUNGuild (Nguyen

et al., 2016), respectively.

Co-occurrence network of bacteria and fungi was constructed by

OTU abundance (>0.1%) using the routine CoNet in Cytoscape 3.4.

To build the network, the Pearson's and Spearman's correlation coeffi-

cients and the Bray–Curtis (BC) and Kullback–Leibler (KLD) dissimilar-

ity indices were combined to estimate the correlations between

OTUs. The threshold for edge selection was set to 1,000 top and bot-

tom. During randomization, 100 iterations were calculated for edge

scores. In the following bootstrap step, 100 iterations were calculated,

and unstable edges were filtered out (p-level threshold of 0.05). The

BROWN METHOD was chosen as the p value merging method, and

the Benjamini–Hochberg procedure was selected for multiple test

correction. The network was analyzed by NetworkAnalyzer in Cyto-

scape. The Gephi platform was used to visualize the network (Bastian,

Heymann, & Jacomy, 2009; Newman, 2003, 2006). The values of

topological features were evaluated by path length, diameter, degree,

density, clustering coefficient, and modularity.

Soil properties and microbial/genes abundance data between

croplands and orchards were compared using analysis of variance

(ANOVA) followed by a least significant difference (LSD) test

(p < 0.05). All these statistical analyses were performed with STATIS-

TICAL ANALYSIS SYSTEM ver. 8.0 (SAS Institute Inc., Cary, NC)

unless otherwise indicated.

3 | RESULTS

3.1 | Soil physicochemical properties

The TN was significantly higher in orchards than in croplands, whereas

the SOC, soil microorganism biomass carbon (SMBC), and soil C:N

ratio were significantly lower in orchards than in croplands (Table 1).

The SOC was 7.3% greater, SMBC was 15% greater, and soil C:N ratio

was 30% higher in croplands than in orchards. However, the TN was

19% higher in orchards than in croplands.

3.2 | Soil microbial diversity and community
structure

Proteobacteria and Ascomycota were the dominant bacterial and fungal

phyla in both croplands and orchards, but their relative abundance was

significantly higher in orchards than in croplands (Table 2).

Alphaproteobacteria, Deltaproteobacteria, Bacteroidetes, Firmicutes,

and Actinobacteria abundances were also higher in orchards than in

croplands, while Acidobacteria, Gemmatimonadetes, Nitrospirae,

TABLE 1 Soil properties of the croplands and orchards system

Soil properties Croplands Orchards

Soil organic carbon (g kg−1) 7.90 ± 0.32a 7.36 ± 0.70b

Total nitrogen (g kg−1) 0.95 ± 0.05b 1.13 ± 0.05a

Soil microorganism biomass

carbon (mg kg−1)

156.85 ± 10.8a 136.17 ± 35.0b

Soil C:N ratios 8.32 ± 0.6a 6.51 ± 0.04b

pH 8.08 ± 0.19a 8.11 ± 0.06a

Available phosphorus (mg kg−1) 20.00 ± 1.31a 24.69 ± 1.11b

Note: All data are presented as mean ± SE, data that do not share a letter

are significantly different between cropland and orchard (p < 0.05).
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Basidiomycota, Mortierellomycota, Mucoromycota, and Glomeromycota

abundances were lower in orchards than in croplands.

Both bacterial and fungal species richness and diversity signifi-

cantly decreased after croplands were converted to orchards

(Table 2). The Chao1 estimator of richness in croplands was greater

than 11 and 20% for bacteria and fungi, respectively. The observed

species of fungi in croplands were 26% greater than in orchards,

whereas no significant changes were observed for bacteria. The

Shannon's diversity index for bacteria in croplands was significantly

higher than in orchards, whereas there was no significant difference

for fungi.

3.3 | Microorganism co-occurrence patterns in
croplands and orchards

The topological properties commonly used in network analysis were

calculated to describe the complex patterns of interrelationships

between bacteria and fungi at the applied analysis threshold

(Table S1). The network pattern of croplands contained shorter char-

acteristic path lengths, lower clustering coefficients, and a lower mod-

ularity index compared to that of the orchards. The nodes in the

network were assigned to 13 bacterial phyla and 7 fungal phyla

(Figure 1). Among these, Proteobacteria, Ascomycota, and

Acidobacteria were widely distributed in croplands and orchards,

whereas Nitrospirae and Aphelidiomycota were found only in

orchards (Figure 1). In addition, when the distribution of nodes was

modularized, all nodes were grouped into 11 modules in croplands

and 9 modules in orchards (Figure S1).

The co-occurrence network in orchards had less nodes and edges

compared with croplands. The numbers of total, positive, and negative

links in orchards were 14, 10, and 23% lower than in croplands,

respectively. The positive bacterial–bacterial taxa (B–B) and positive

fungal–fungal taxa (F–F) links in orchards were slightly higher than

those in croplands, whereas negative B–B, F–F, and bacterial–fungal

taxa (B–F) links were higher in croplands than in orchards. Network

analysis further showed that the keystone taxa belonged to the orders

Pleosporales, Gemmatimonadales, Cytophagales, Erysipelotrichales,

and Clostridiales in orchards and Chitinophagales, Caulobacterales,

Rhizobiales, and Solirubrobacterales in croplands.

3.4 | Relative abundances of genes for soil carbon
cycling

Genes were annotated according to six groups based on KEGG path-

way analysis. Of the top 10 genes related to carbon reactions, glcD,

katG, ahpC, and gpx were significantly lower in orchards than in crop-

lands, whereas malZ, bglX, and E3.2.1.22B were significantly higher in

orchards than in croplands (Figure 2). The top five trophic modes

TABLE 2 Relative abundances of soil
bacterial and fungi communities in
croplands and orchards

Index/taxonomy Croplands Orchards

Bacteria Chao1estimator of richness 3,958 ± 106a 3,562 ± 334b

Observed species 3,241 ± 87a 3,083 ± 280a

Shannon's diversity index 10.02 ± 0.05a 9.95 ± 0.18b

Proteobacteria

Alphaproteobacteria 13.62 ± 0.90b 17.01 ± 1.19a

Deltaproteobacteria 6.83 ± 0.54a 4.63 ± 0.67b

Gammaproteobacteria 9.82 ± 0.83a 10.25 ± 2.69a

Bacteroidetes 7.93 ± 0.55b 10.25 ± 2.69a

Firmicutes 1.13 ± 0.25b 2.38 ± 1.40a

Acidobacteria 19.97 ± 1.25a 15.35 ± 2.85b

Actinobacteria 17.75 ± 1.75b 20.51 ± 6.44a

Gemmatimonadetes 6.55 ± 0.41a 6.26 ± 2.31a

Nitrospirae 1.36 ± 0.12a 1.08 ± 0.10b

Fungi Chao1estimator of richness 1,936 ± 123a 1,616 ± 136b

Observed species 1,605 ± 113a 1,276 ± 114b

Shannon's diversity index 7.70 ± 0.49a 6.67 ± 0.53a

Ascomycota 24.84 ± 2.35b 38.74 ± 5.33a

Basidiomycota 11.33 ± 1.28a 10.18 ± 8.16a

Mortierellomycota 7.41 ± 1.83a 4.79 ± 2.07b

Mucoromycota 2.56 ± 0.84a 0.16 ± 0.05b

Glomeromycota 2.01 ± 0.52a 0.12 ± 0.01b

Note: All data are presented as mean ± SE, data that do not share a letter are significantly different

between cropland and orchard (p < 0.05).
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for fungi were saprotroph, pathotroph, pathotroph–saprotroph,

symbiotroph, and pathotroph–saprotroph–symbiotroph. Saprotroph

and symbiotroph soil fungi in orchards were significantly lower than in

croplands (27 and 88%), whereas pathotroph fungi in orchards

reached almost six-times the level of that in croplands (Figure 3).

4 | DISCUSSION

4.1 | Changes in the soil microbial community
structure

Microbial communities can respond rapidly to environmental changes

caused by ecosystem transformation (Barnett, Youngblut, &

Buckley, 2020; Jangid et al., 2011; Tosi et al., 2016). Microbial com-

munity composition, interaction, and function were all affected in the

conversion of croplands to orchards (Table 2, Figures 1–3). First, these

changes affect resource availability (Fierer et al., 2007). Bacterial and

fungal diversity were positively correlated with abundances of SOC

and SMBC but negatively correlated with TN and soil C:N ratio

(Figure 4). The lower SOC found in the orchard (Table 1), which was

due to the lower root C input (0.75 vs. 1.1 t ha−1 yr−1, unpublished

data), may directly decrease soil microbial diversity within the system.

Second, litter in the orchards was removed to avoid diseases, which

significantly decreased its litter C input compared to that in croplands

(Wang et al., 2018). Third, compared with the orchards (monoculture

soil), the croplands were on a rotation system, which increased plant

diversity and complexity. Previous studies have shown that a higher

plant diversity leads to a greater soil microbial diversity (Guo

et al., 2019; Jiang et al., 2016). Fourth, the frequent tillage in orchards

was another reason for the low soil microbial diversity. Just before

sowing of plants each year, tillage was undertaken five- to seven-

times in the orchards and one- to two-times in the croplands to con-

trol weeds. As less-tilled soils are cooler and moister than intensely

tilled soils (Johnson & Hoyt, 1999), the soil microbial diversity was

decreased in orchards. Similarly, Miura et al. (2016) and Li, Zhang,

et al. (2020) also suggested that the soil microbial diversity in conven-

tional tillage soils was lower than that in no-tillage soils. Additionally,

soil bacterial diversity was negatively correlated with the TN content;

this result was consistent with that of a previous study which showed

that nitrogen decreased bacterial diversity (Li, Nie, & Pendall, 2020).

However, in contrast to the study by Li, Nie, and Pendall (2020), soil

fungal diversity was also significantly negatively correlated with TN

content.

Soil microbial community composition can be affected by crop-

land conversion to orchards because of the high mineral nutrient

content in orchards (Table 2, Figure 4). The higher abundance of

Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and

F IGURE 1 Co-occurrence networks among microbial communities of croplands (a) and orchards (b). A node represents an operational
taxonomic unit (97% sequence identify threshold, OTU). Nodes were coloured according to phylum, the size of each node is proportional to the
degree of connectivity, and the connection lines present the interaction between two nodes [Colour figure can be viewed at
wileyonlinelibrary.com]
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Actinobacteria in bacteria and Ascomycota in fungi in orchards than

in croplands was primarily due to higher nitrogen content (1.13

vs. 0.93 g kg−1, Figure 4a). These results are in accordance with pre-

vious studies showing that nitrogen application in soil promoted the

abundance of copiotrophic microorganisms (r-strategists,

e.g., Actinobacteria, Bacteroidetes, and Gammaproteobacteria)

(Fierer et al., 2012), and that Ascomycota growth was closely corre-

lated with nitrogen availability (Manici & Caputo, 2010). However,

this variation between croplands and orchards was the opposite for

the copiotrophic groups, which preferred environments with high

organic C content (Banerjee et al., 2016; Fierer et al., 2007; Trivedi,

Anderson, & Singh, 2013). This may be related to the high levels of

nitrogen promoting organic C (low C:N) (Table 1). Eilers, Lauber,

Knight, & Fierer (2010) and Goldfarb et al. (2011) indicated that

copiotrophic microorganisms also prefer labile substrate supplies

and soil with high C availability. Moreover, there may be high Prote-

obacteria and Firmicutes in orchards because gram-positive

bacteria have been found to use substantial amounts of SOC

(Kramer & Gleixner, 2006; Potthast, Hamer, & Makeschin, 2012).

Olsen P was another indicator of high Alphaproteobacteria,

Gammaproteobacteria, Bacteroidetes, Actinobacteria, and

Ascomycota abundances in orchards, which was not consistent with

the results of Li, Tremblay, Bainard, Cade-Menun, and Hamel (2020)

and Pan et al. (2014). These divergent results indicated that the

effects of phosphorus on the microbial community are variable and

possibly site dependent. Overall, changes in soil edaphic nutrient

factors were the primary reason for changes in soil microbial prop-

erties after cropland conversion to orchards.

4.2 | Changes in co-occurrence network patterns
after cropland conversion to orchards

The distinct compositions of cropland and orchard networks reflect

the different roles of environmental factor assembly in bacterial and

fungal community composition in specific croplands and orchards

(Figure 1 and Figure S1). Here, a higher complex microbial co-

occurrence network was found in croplands than in orchards, which

should therefore result in higher community stability and interactions

in croplands (Mougi & Kondoh, 2012). The shorter path length in

croplands (2.986 vs. 3.29) suggested that croplands may respond rap-

idly to environmental changes through efficient pathways (Table S1).

Higher clustering coefficients and modularity values indicate that

orchards have fragmented niches for environmental adaption of soil

microorganisms (Table S1; Faust & Raes, 2012). A comprehensive

comparison of all network characteristics showed that community

F IGURE 2 Relative abundances of
bacterial groups (a) and fungal groups
(b) in croplands and orchards [Colour
figure can be viewed at
wileyonlinelibrary.com]
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stability and response to environmental disturbance decreased after

croplands were converted to orchards.

Network topology represents complex biological interactions in

an ecosystem where species are linked by positive and negative inter-

actions (Thomas et al., 2016). Cropland conversion to orchards

decreased both positive and negative links, which indicated that the

co-occurrence between synergistic and antagonistic microbial groups

was weakened by conversion (Yu, Deem, Crow, Deenik, &

Penton, 2018; Zhang, Zhang, Liu, Shi, & Wei, 2018). The proportion of

negative B–F links increased from 44% in croplands to 50% in

orchards (Table S1), possibly due to competition for higher quality

organic C and nutrients between bacteria and fungi (Chow, Kim,

Sachdeva, Caron, & Fuhrman, 2014; Fuhrman, 2009; Steele

et al., 2011). The higher proportion of negative B–F links in orchards

was also affected by the increase in Ascomycota, which is a

saprotrophic fungus (croplands vs. orchards: 24.84% vs. 38.74%). de

Boer, de Ridder-Dulne, Gunnewiek, Smant, & Van Veen (2008) stated

that saprotrophic fungi in the rhizosphere may result in an increase in

bacteria with antifungal properties.

4.3 | Changes in microorganism function involved
in SOM degradation

Cropland conversion to orchards not only influenced the soil microbial

communities but also altered the functional group abundance of

organic matter degradation (Figure 2). The relative abundance of cellu-

lose and hemicellulose in orchards was higher than in croplands,

whereas the relative abundances of lignin genes in orchards were

lower than in croplands. For the top 10 genes involved in carbon reac-

tions, the genes that encode glucosidase—which is related to cellulose

and hemicellulose—such as α-glucosidase (malZ), β-glucosidase (bglX),

and α-galactosidase (E3.2.1.22B) were higher in the orchards than in

the croplands. A previous study also found the genes related to

F IGURE 3 Relative abundances of genes related to plant polymer degradation in croplands and orchards [Colour figure can be viewed at
wileyonlinelibrary.com]
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cellulose and hemicellulose metabolism were higher in covered crop

orchards than in uncovered orchards (Zheng, Zhao, Gong, Zhai, &

Li, 2018). However, the genes that encode oxidase and peroxidase,

which degrade lignin, such as glycolate oxidase (glcD), catalase/peroxi-

dase (katG), alkyl hydroperoxide reductase subunit C (ahpC), and gluta-

thione peroxidase (gpx), were higher in the croplands than in the

orchards. This could be attributed to the higher fresh organic matter

in croplands (root C input). In addition, Proteobacteria, Acidobacteria,

Actinobacteria, Bacteroidetes, and Ascomycota were the major micro-

organisms related to SOM degradation (Fierer et al., 2007; Harreither

et al., 2011; Schmidt, Horn, Kolb, & Drake, 2015; Wongwilaiwalin

et al., 2013). The members of these taxonomic groups (except for

Acidobacteria) were higher in the orchards than in the croplands. The

significantly higher nitrogen and phosphorus contents in the orchards

due to the high amounts of nitrogen (300 kg ha−1) and phosphorus

fertilization (385 kg ha−1) may be the reason for higher plant degrada-

tion and taxonomic group abundance.

5 | CONCLUSIONS

Converting croplands to apple orchards decreased microorganism

richness and diversity and network complexity. SOM degradation

genes showed divergent variation in croplands and apple orchards,

which increased the abundance of cellulose and hemicellulose but

decreased the abundance of lignin. Cropland conversion to orchards

also decreased the proportion of saprotroph and symbiotroph fungi.

Soil nutrient factors were the primary drivers of altered soil microbial

communities. Overall, our findings showed that conversion of crop-

lands to orchards significantly altered the soil microbial community

and function and decreased the complexity of interaction between

species.
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