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A B S T R A C T   

Afforestation is an effective measure to combat land degradation and mitigate climate change. However, 
afforestation tends to consume a tremendous amount of soil moisture while increasing vegetation biomass and 
coverage. Although convincing evidence indicates that mixed trees have higher resistance and resilience to 
climate change and natural disturbance than pure trees, it is unclear how tree mixtures affect the relationship 
between soil water storage and tree biomass. By conducting a meta-analysis of 86 observations from 27 studies, 
we showed that there was a trade-off between soil water storage and tree biomass in artificially planted trees on 
the Loess Plateau, with an average root mean square deviation (RMSD) value of 0.22. The RMSD value between 
soil water storage and tree biomass for mixed trees was significantly lower than that for pure trees, and the 
relative benefits of the trade-off were biased toward soil water storage. In dry areas (aridity index (AI) < 0.3), the 
RMSD value between soil water storage and tree biomass of artificially planted trees was the highest, and this 
value of mixed trees was significantly lower than that of pure trees. In terms of different plantation ages, the 
RMSD value between soil water storage and tree biomass for mixed trees was significantly lower than that for 
pure trees in plantations aged >20 years. Additionally, RMSD values between soil water storage and tree biomass 
under different afforestation patterns were negatively correlated with the initial water storage and soil organic 
carbon content. Our results show that tree mixtures optimize the trade-off between soil water storage and tree 
biomass in arid and semiarid areas.   

1. Introduction 

Ecosystem services (ESs) refer to the benefits which people obtain 
from the ecosystem (Costanza et al., 1997). However, people often seek 
to maximize the supply of one ES, which may lead to a decrease in the 
supply capacity of another ES, and ultimately lead to a trade-off between 
different ESs (Maes et al., 2012; Howe et al., 2014; Juerges et al., 2021). 
Afforestation is an important means to alleviate the pressure on natural 
forests, and it has great potential to provide a variety of commodities 
and ESs, such as increasing wood and fiber production, reducing soil 
erosion, alleviating climate warming, and increasing recreational and 
esthetic values (Berthrong et al., 2012; Knoke et al., 2014; Valente et al., 
2021). However, planted forests are mainly carried out as monocultures, 

which usually have many negative effects on the supply of ESs (Asner 
et al., 2008; Felton et al., 2010; Fragniere et al., 2021). Especially in arid 
and semiarid areas, due to evapotranspiration, canopy interception, and 
root water absorption, fast-growing and high-yielding single tree species 
often exhibit a trade-off between soil water and vegetation biomass 
(Kirilenko and Sedjo, 2007; Chisholm, 2010; Yu et al., 2019; Lan et al., 
2021). Determining the best method to balance vegetation biomass and 
soil water storage is a common concern in arid and semiarid environ-
ments. In contrast, mixed forests are more advantageous for improving 
soil fertility, preventing soil erosion, and enhancing carbon sequestra-
tion, biodiversity, and other ESs, making practices oriented toward 
mixed tree species a new paradigm for increasing the supply of ESs 
(Hooper et al., 2012; Felipe-Lucia et al., 2018; Ammer, 2019; Pardos 
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et al., 2021). However, the impact of species diversity on the trade-off 
between soil water storage and tree biomass remains unclear. 

Inherent differences in structural, physiological, and functional 
characteristics of tree species usually affect the interactions between 
vegetation biomass and soil water among multiple species (Bispo Pda 
et al., 2016; Forrester and Bauhus, 2016; Schnabel et al., 2019). Multi-
species structures can improve the utilization efficiency of resources (e. 
g., light, water, and nutrient resources) from increased niche comple-
mentarity, thereby reducing competition between species (Barbier et al., 
2008; Morin et al., 2011; Anderegg et al., 2018). Previous studies have 
shown that increased species diversity generally reduces water stress 
caused by climate warming and promotes a sustainable increase in 
vegetation productivity (Amazonas et al., 2018; Pardos et al., 2021). In 
contrast, vegetation with the same growth cycle or leaf phenology 
usually leads to increased competition for resources among different 
species (Drossler et al., 2018; Gong et al., 2020). For example, Borden 
et al. (2016) found that the roots of poplars and alders may overlap and 
compete for water sources, thereby reducing the productivity of vege-
tation. Similarly, de-Dios-García et al. (2018) showed that mixed forest 
stands formed only by conifers may show higher competition for re-
sources than conifer-broadleaved admixtures due to more similar plant 
characteristics. In addition, differences in the impacts of mixed forests 
on the trade-off may also be caused by plant type, forest age, topo-
graphical conditions, soil physical and chemical properties, and climatic 
conditions (Forrester, 2014; Bonal et al., 2017). Therefore, the quanti-
tative synthesis of multiple studies may help quantify the overall effects 
of tree mixtures on the trade-off between soil water storage and tree 
biomass and determine the sources of variation (Gurevitch et al., 2018). 

The highly erodible loessial soil, steep topography, frequent high- 
intensity rainstorms, and improper land use have led to severe land 
degradation in the Loess Plateau (Shi and Shao, 2000; Liu et al., 2007). 
To control soil erosion and restore the ecological environment, the 
Chinese government has launched the “Grain for Green” program (GGP) 
in the Loess Plateau, which aims to restore degraded arable land to 
woodland, shrubs, and grassland (Cao et al., 2009). Large-scale affor-
estation not only significantly reduces runoff and sediment erosion but 
also strengthens a variety of ESs, such as increasing carbon storage and 
soil fertility (Chen et al., 2015; Li et al., 2019). However, plantation 
forests are mainly composed of fast-growing, short-rotation single spe-
cies (e.g., Robinia pseudoacacia), which exacerbate soil water depletion 
and form dry soil layers (Wang et al., 2015; Jia et al., 2017). Extreme 
consumption of soil moisture further causes the degradation of ecolog-
ical functions in plantation forests, such as low biomass and loss of 
biodiversity (Cao et al., 2011; Fang et al., 2016). Mixed forests have 
become one of the afforestation patterns on the Loess Plateau due to 
their advantages in controlling water and soil loss and increasing carbon 
storage (Gao et al., 2018; Gong et al., 2020). Although previous studies 
have investigated the trade-offs between soil water and vegetation 
biomass on the Loess Plateau (Lu et al., 2014; Su et al., 2021), these 
studies mainly focused on pure trees, and there are few studies on the 
trade-offs between soil water and vegetation biomass in mixed forests. In 
addition, most studies have been focused on a single species or specific 
location, while few studies have examined the differences between soil 
water storage and tree biomass in pure trees and mixed trees on the 
entire Loess Plateau. 

To address this knowledge gap, we studied the relationship between 
soil water storage and tree biomass under different afforestation pat-
terns (pure trees and mixed trees) on the Loess Plateau. We assume that 
there is a trade-off between soil water storage and tree biomass under 
different afforestation patterns. Specifically, the objectives of this study 
were to determine (1) whether there are differences in the trade-off 
between soil water storage and tree biomass between different affores-
tation patterns; and (2) whether plantation age, climate, and soil 
properties affect the trade-offs under different afforestation patterns. 

2. Materials and methods 

2.1. Data compilation 

The Web of Science and the China National Knowledge Infrastruc-
ture (CNKI) were used to search for peer-reviewed studies published 
between January 1985 and July 2021. Our search terms included “tree 
mixture” or “mixed forest” or “mixed plantation” or “plant diversity” or 
“monoculture” and “plant biomass” or “vegetation biomass” or “tree 
biomass” or “plant production” and “soil water” or “soil moisture” and 
“Loess Plateau”. To avoid publication bias, the following criteria were 
used to screen the literature:  

(1) The experiments were conducted on the Loess Plateau;  
(2) Both tree biomass and soil moisture were reported;  
(3) The study includes only the data from field surveys and excludes 

data from laboratory control experiments; and  
(4) The study focused only on artificially planted trees, excluding 

natural forests. 

A total of 86 observations from 27 peer-reviewed journal articles 
were collected (Table S1; Fig. 1). The raw data of plant biomass and soil 
water storage for different afforestation patterns were extracted from 
tables. When the data were represented graphically, the original values 
were extracted by SigmaScanPro version 5.0 (Systat Software Inc., Point 
Richmond, CA, USA). Other information, including latitude, longitude, 
mean annual precipitation (MAP), mean annual temperature (MAT), 
potential evapotranspiration, elevation, slope angle, sample size, and 
plantation age, was also recorded for the study. For comparison pur-
poses, afforestation patterns were divided into pure trees and mixed 
trees (Gong et al., 2020). Plantation ages were divided into three cate-
gories: 0–20 years, 20–30 years, and > 30 years. The aridity index (AI) 
was calculated as the ratio of precipitation to potential evapotranspi-
ration to quantify dry conditions and divided into three levels: < 0.3, 
0.3–0.5, and > 0.5 (UNEP 1992; Wei et al., 2010). 

2.2. Data calculation 

2.2.1. Soil water storage 
We calculated soil water storage according to the following formula: 

SWSi = Si × Di × Hi (1)  

where SWSi represents the soil water storage of the i-th layer (mm) and 

Fig. 1. Distribution of study sites included in this meta-analysis. Note: DEM: 
Digital Elevation Model. The DEM data in this study were obtained from the 
Resource and Environment Data Cloud Platform (http://www.resdc.cn/Default 
.aspx). 
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Si, Di, Hi represent the soil water content (%), soil bulk density (BD) (g 
cm− 3) and soil depth (mm) of the i-th layer, respectively. The soil depth 
of 0–100 cm was chosen for this analysis, as the greater depth is most 
relevant for comparison of large-scale vegetation, as has been shown in 
comparative studies (Lu et al., 2014; Su et al., 2021). 

2.2.2. Tree biomass 
Tree biomass is an integral part of the structure and function of forest 

ecosystems (Helin et al., 2013; Yang et al., 2017). However, directly 
measuring tree biomass is usually costly and time-consuming (Brown, 
2002). In contrast, the tree biomass equation has a high degree of ac-
curacy, efficiency, and simplicity and is the most commonly used 
method for estimating tree and forest biomass on various temporal and 
spatial scales (Chave et al., 2014; Paul et al., 2016). Therefore, in this 
study, we calculated plant biomass based on the biomass equation 
formulated in previous studies on the Loess Plateau (Table 1) (Yang 
et al., 2019; Luo et al., 2020). 

2.3. Calculation of trade-offs 

Correlation analysis was applied to reveal the trade-offs and syner-
gistic relationships between each ES pair (Maes et al., 2012; Dade et al., 
2019). In addition, the root mean square deviation (RMSD) proposed by 
Bradford and D’Amato (2012) was used to quantify trade-offs between 
two or more ESs. Specifically, the RMSD value quantifies the difference 
between the standard deviation of a single ES and the standard deviation 
of the average ES (Bradford and D’Amato, 2012; Qiu et al., 2021). The 
higher the RMSD value, the higher the trade-off between a pair of ESs. In 
two-dimensional coordinates, the RMSD value represents the distance 
from the coordinates of the ES pair to the 1:1 line. The larger vertical 
distance between a point and the 1:1 line indicates a higher RMSD value, 
and the relative position of data points to the line can indicate which ES 
receives more benefit from the trade-off (Bradford and D’Amato, 2012; 
Lu et al., 2014) (Fig. 2). 

Before calculating the RMSD, the data were standardized to elimi-
nate the influence of dimensions (Bradford and D’Amato, 2012; Wang 
et al., 2022). The standardized calculation formula for ESs is as follows: 

ES = (ESobs − ESmin)/(ESmax − ESmin) (2)  

where ES is the standardized value of ESs, ESobs is the observed value of 
ESs, and ESmin and ESmax are the minimum and maximum observed 
values of ESs, respectively. 

The RMSD value was calculated as follows (Lu et al., 2014; Feng 
et al., 2017): 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
Â⋅

∑n

i=1

(
ESi − ESexp

)2

√

(3)  

where n is the number of observations; ESi is the standardized value of 
ESi; and ESexp is the expected value of n ESs. 

2.4. Data analysis 

The Shapiro–Wilk test and Levene’s test were used to test the 
normality and homogeneity of the data, respectively. We employed a 
mixed effect model with the lme4 package (Bates et al., 2015) to analyze 
the effects of afforestation patterns and their interactions with planta-
tion age and the AI on the trade-off between soil water storage and tree 
biomass. Afforestation patterns, plantation age, the AI, and their in-
teractions were taken as fixed effects, and each “study” was set as a 
random effect (Hume et al., 2018; Sun et al., 2022). We chose the 
optimal model based on the Akaike information criterion (AIC) (Ma and 
Chen, 2016; Bestion et al., 2021) (Table S2). The emmeans package was 
used for post hoc comparisons. Pearson correlation analysis was per-
formed to examine the relationship between soil water storage and tree 

biomass as well as the relationships between soil properties (soil organic 
carbon (SOC) content and initial water storage) and RMSD values Jian 
et al., 2015. Significance was assessed at P < 0.05. Unless otherwise 
stated, data are in the form of mean ± standard error. All statistical 
analyses were performed in R 4.1.1 (R Core Team, 2021). 

Table 1 
Biomass equations of different tree species involved in this study.  

Regions Species Components Biomass equations R2 

Shaanxi Robinia 
pseudoacacia L. 

Stem Ln (B) = − 2.746 +
2.448 × Ln (D)  

0.928 

Branch Ln (B) = − 3.428 +
2.346 × Ln (D)  

0.859 

Leaf Ln (B) = − 3.747 +
1.585 × Ln (D)  

0.653 

Root Ln (B) = − 2.032 +
2.084 × Ln (D)  

0.889 

Shaanxi Pinus tabuliformis 
Carrière 

Stem B = 0.02492 ×
(D2H)0.92029  

0.994 

Bark B = 0.00381 ×
(D2H)0.98766  

0.990 

Branch B = 0.00844 × D2.70902  0.981 
Leaf B = 0.01052 × D2.87777  0.986 
Root B = 0.01065 ×

(D2H)0.88818  
0.978 

Shanxi Stem B = 1.373 ×
D0.465e0.113D  

0.978 

Branch B = 0.483 ×
D0.870e0.060D  

0.944 

Leaf B = 0.320 ×
D0.810e0.058D  

0.959 

Root B = 0.340 ×
D0.839e0.082D  

0.947 

Gansu Platycladus 
orientalis (L.) Franco 

Stem B = − 1.855 + 3.379 ×
(D2H)  

0.901 

Branch B = − 0.618 + 4.080 ×
(D2H)  

0.915 

Leaf B = − 0.581 + 0.772 ×
(D2H)  

0.826 

Bark B = − 0.677 + 1.178 ×
(D2H)  

0.882 

Cone B = − 0.173 + 0.324 ×
(D2H)  

0.894 

Root B = − 0.463 + 0.251 ×
(D2H)  

0.936 

Stump B = − 0.808 + 1.237 ×
(D2H)  

0.812 

Shanxi Stem B = 11.237 ×
D− 2.412e0.602D  

0.932 

Branch B = 228.930 ×
D− 8.122e1.603D  

0.915 

Leaf B = 1533.497 ×
D− 11.713e2.250D  

0.949 

Root B = 10.331 ×
D− 2.919e0.688D  

0.932 

Shaanxi Hippophae 
rhamnoides Linn. 

Whole tree B = 0.0000098 ×
G4.7033  

0.951 

Shaanxi Caragana 
Korshinskii Kom 

Whole tree B = 0.0059 ×
(G2H)0.9686  

0.904 

Gansu Armeniaca sibirica 
(L.) Lam 

Stem Ln (B) = − 1.605 +
0.670 × Ln (D2H)  

0.849 

Branch Ln (B) = 0.003 +
0.263 × Ln (D2H)  

0.709 

Bark Ln (B) = − 1.424 +
0.287 × Ln (D2H)  

0.601 

Leaf Ln (B) = − 2.477 +
0.495 × Ln (D2H)  

0.965 

Root Ln (B) = 0.04 + 0.153 
× Ln (D2H)  

0.742 

Note: B: Biomass (kg); D: Diameter at breast height (cm); G: Basal diameter 
(cm); H: Tree height (cm). 
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3. Results 

3.1. Trade-offs between soil water storage and tree biomass under 
different afforestation patterns 

Overall, the tree biomass and soil water storage of mixed trees were 
significantly higher than those of pure trees (Table 2). There was a 
significant negative correlation between soil water storage and tree 
biomass (Table 2), implying a trade-off between them. In the compari-
son of afforestation patterns, there was a significant negative correlation 
between soil water storage and tree biomass in pure trees, while no 
significant correlation was found in mixed trees (Table 2). Additionally, 
the relative benefits of the trade-off tended to be biased toward soil 
water storage, and no significant difference was observed in this relative 
benefit between different afforestation patterns (Fig. 3a, Table 3). These 
results indicated that when tree biomass conflicted with soil water 
storage, soil water storage was more important than tree biomass. 
Through further calculations of RMSD values between soil water storage 
and tree biomass, it was found that the RMSD value of pure trees (0.25 
± 0.02) was significantly higher than that of mixed trees (0.18 ± 0.02) 
(Fig. 3b). 

3.2. Trade-offs between soil water storage and tree biomass along a 
drought gradient 

Across the areas with different levels of the AI, the relative trade-off 
benefit was mainly biased toward soil water storage across the Loess 
Plateau (Fig. 4a-c). Meanwhile, the relative benefits of soil water storage 
in mixed trees were higher than those in pure trees; however, these 
differences were not significant (Table 3). Regarding RMSD values be-
tween soil water storage and tree biomass, the RMSD value of pure trees 
was the highest (0.29 ± 0.03) in areas with AI < 0.3 and was 

significantly higher than that in areas with AI > 0.5 (0.16 ± 0.02), but 
there was no significant difference from areas with AI between 0.3 and 
0.5 (0.25 ± 0.04) (Fig. 4d). For mixed trees, there was no significant 
difference in RMSD values between soil water storage and tree biomass 
among different levels of the AI (Fig. 4d). In addition, when AI < 0.3, the 
RMSD value between soil water storage and tree biomass for mixed trees 
(0.19 ± 0.03) was significantly lower than that for pure trees (0.29 ±
0.03) (Fig. 4d). In areas with AI > 0.3, there was no significant differ-
ence in RMSD values between soil water storage and tree biomass under 
different afforestation patterns (Fig. 4d). 

3.3. Trade-offs between soil water storage and tree biomass under various 
plantation ages 

The trade-off between soil water storage and tree biomass differed 
among plantations of different ages (Fig. 5). In particular, the trade-off 
benefit under different afforestation patterns was mainly biased to-
ward tree biomass in plantations aged < 20 years, and the relative 
benefit was slightly higher for mixed trees than that for pure trees 
(Fig. 5a, Table 3). In contrast, when the plantations aged > 20 years, the 
relative benefits were biased toward soil water storage (Fig. 5b-c, 
Table 3). Furthermore, the RMSD value between soil water storage and 
tree biomass for pure trees was the highest in plantations aged from 20 
to 30 years (0.30 ± 0.03) and was significantly higher than those in 
plantations aged > 30 years (0.20 ± 0.03) (Fig. 5d). However, RMSD 
values between soil water storage and tree biomass of mixed trees 
decreased with increasing plantation age (Fig. 5d). RMSD values be-
tween soil water storage and tree biomass for mixed trees from 

Fig. 2. Illustration of the trade-off between two ecosystem services. Note: ES: 
ecosystem service. The RMSD value of point B is greater than that of point C, 
and the RMSD value is zero for point A. Point B is beneficial to ES2, and point C 
is beneficial to ES1. 

Table 2 
Tree biomass and soil water storage and their relationship under different 
afforestation patterns.  

Parameters Tree biomass 
(Mg ha− 1) 

Soil moisture storage 
(mm) 

Correlation coefficients 

Pure trees 10.65 ± 1.07b 142.04 ± 5.26b  − 0.460* 
Mixed trees 14.88 ± 1.34 a 161.42 ± 6.78 a  − 0.161 
Total 12.57 ± 0.87 150.83 ± 4.31  − 0.307* 

Note: Values are mean ± standard error. Different letters indicate significant 
differences among different afforestation patterns (P < 0.05). *, P < 0.05. 

Fig. 3. Effects of different patterns on the trade-off between soil water storage 
and tree biomass. Note: PT: pure trees; MT: mixed trees. Values are the mean ±
standard error. Different letters indicate significant differences (P < 0.05). A 
larger vertical distance between a point and the 1:1 line indicates a higher 
trade-off. The arrow indicates which ES has the higher relative benefit. 

Table 3 
The change in the relative benefits of trade-offs.  

ESs Indicators Levels Pure trees Mixed trees   

<0.3 0.26 ± 0.05 a 0.31 ± 0.07 a  
AI 0.3–0.5 0.37 ± 0.08 a 0.40 ± 0.07 a   

>0.5 0.23 ± 0.07 a 0.29 ± 0.06 a 
Tree biomass  <20 0.44 ± 0.08 a 0.46 ± 0.12 a  

Ages (year) 20–30 0.19 ± 0.05b 0.36 ± 0.06 a   
>30 0.31 ± 0.06 a 0.38 ± 0.05 a  

Total  0.28 ± 0.04b 0.39 ± 0.04 a   
<0.3 0.42 ± 0.03 a 0.50 ± 0.05 a  

AI 0.3–0.5 0.39 ± 0.07 a 0.45 ± 0.04 a   
>0.5 0.41 ± 0.06 a 0.44 ± 0.08 a 

Soil water storage  <20 0.30 ± 0.06 a 0.35 ± 0.06 a  
Ages (year) 20–30 0.45 ± 0.06 a 0.44 ± 0.04 a   

>30 0.43 ± 0.04 a 0.39 ± 0.04 a  
Total  0.42 ± 0.03 a 0.41 ± 0.03 a 

Note: AI: aridity index. Values are mean ± standard error. Different letters 
indicate significant differences among different afforestation patterns (P <
0.05). 
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plantations aged 20–30 years (0.20 ± 0.03) and > 30 years (0.11 ±
0.02) were significantly lower than those for pure trees (For 20–30 
years: 0.30 ± 0.03; For > 30 years: 0.20 ± 0.03) (Fig. 5d). In addition, 
for plantations 0–20 years old, the RMSD value between soil water 
storage and tree biomass for mixed trees (0.26 ± 0.04) was higher than 
those for pure trees (0.22 ± 0.03), but the difference was not significant 
(Fig. 5d). 

3.4. Correlations between the RMSD values and soil properties 

Correlation analysis showed that RMSD values between soil water 
storage and tree biomass under different afforestation patterns were 
negatively correlated with the initial soil water storage and SOC 
(Table 4). Specifically, regardless of whether it was the mixed or the 
pure trees, RMSD values between soil water storage and tree biomass 
were significantly negatively correlated with the initial soil water stor-
age (Table 4). It is worth noting that the SOC content had no significant 
effect on the RMSD values between soil water storage and tree biomass 
for pure trees (Table 4). In contrast, the RMSD value between soil water 
storage and tree biomass for mixed trees was significantly negatively 
correlated with SOC content (Table 4). 

4. Discussion 

4.1. Effects of afforestation patterns on the trade-off between soil water 
storage and tree biomass 

Our research demonstrated that afforestation on the Loess Plateau 
resulted in the trade-off between soil water storage and tree biomass, 
which supported our hypothesis (Fig. 3, Table 2). Similarly, previous 
studies also showed that there was a trade-off between soil water and 
vegetation biomass on the Loess Plateau (Lu et al., 2014; Su et al., 2021). 
Furthermore, this meta-analysis shed more light on the impact of 
different afforestation patterns on the trade-off between soil water 
storage and tree biomass. Specifically, we found that the RMSD value 
between soil water storage and tree biomass for mixed trees was 
significantly lower than that for pure trees (Fig. 3d). Several physio-
logical mechanisms underlie this phenomenon. First, the multispecies 
stand may use water from different soil layers and improve water use 
efficiency in a limited water environment, thereby improving the 
drought resistance and productivity of the plants (Forrester et al., 2010; 
Amazonas et al., 2018; Fichtner et al., 2020). Similarly, Wang et al. 
(2020) found that the coexisting plants in the mixed plantation exhibi-
ted water source segregation on the Loess Plateau. Tang et al. (2019) 
also indicated that water source partitioning, stomatal adjustment, and 
N facilitation promoted stable coexistence of N2-fixing species and 
neighbor species in water- and N-limited environments. Furthermore, 
complementary effects explain the increases in the water use efficiency 
and biomass yield of vegetation with increasing species richness 
(Grossiord et al., 2013; Schwendenmann et al., 2015). 

Second, multi-species plantations can increase the quantity of litter, 
decomposition rates, and root exudates (Cotrufo et al., 2013; van der 
Plas, 2019), which can increase soil nutrients (e.g., soil carbon and ni-
trogen content) and improve soil structures (e.g., aggregate stability and 
porosity), thus improving soil water retention capacity and promoting 
plant growth (Özcan et al., 2013; Metz et al., 2016). Zhang and Chen 
(2007) showed that soil physical and nutrient conditions, community 
structure, and species diversity were better in mixed forests than that in 
pure forests. In addition, on the Loess Plateau, severe soil erosion usually 
results in loss of soil moisture capacity and nutrient retention, thereby 
reducing soil water storage and plant productivity (Fu et al., 2000; Gao 
et al., 2018). Due to the diverse spatial structures and distribution pat-
terns of vegetation, multispecies forests can reduce rainfall erosion by 
reducing raindrop kinetic energy and strengthening soil stability, which 
can increase soil moisture and vegetation productivity to a certain extent 

Fig. 4. Effects of aridity on the trade-off between soil water storage and tree 
biomass. Note: PT: pure trees; MT: mixed trees; AI: aridity index. Different 
letters indicate significant differences among different AI levels (P < 0.05). 
Asterisks indicate significant differences between different afforestation pat-
terns (*, P < 0.05; **, P < 0.01). A larger vertical distance between a point and 
the 1:1 line indicates a higher trade-off. The arrow indicates which ES has the 
higher relative benefit. 

Fig. 5. Effects of plantation age on the trade-off between soil water storage and 
tree biomass. Note: PT: pure trees; MT: mixed trees. Different letters indicate 
significant differences among different plantation ages (P < 0.05). Asterisks 
indicate significant differences between different afforestation patterns (*, P <
0.05; **, P < 0.01). A larger vertical distance between a point and the 1:1 line 
indicates a higher trade-off. The arrow indicates which ES has the higher 
relative benefit. 

Table 4 
Pearson’s correlation coefficients between RMSD and soil properties.  

Soil properties Pure trees P value Mixed trees P value 

SOC  − 0.234  0.282  − 0.481*  0.032 
ISW  − 0.503**  0.009  − 0.654**  0.002 

Note: SOC: soil organic carbon content (g kg− 1); ISW: initial soil water stocks 
(Mg ha− 1). *, P < 0.05; **, P < 0.01. 
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(Zhou et al., 2002; Wang et al., 2014; Zema et al., 2021). 

4.2. Effects of aridity on the trade-off between soil water storage and tree 
biomass 

Drought affects not only the soil water content but also the growth 
and physiological characteristics of vegetation (Breda et al., 2006; 
D’Orangeville et al., 2018; Lamoureux et al., 2018). We found that with 
increasing AI, RMSD values between soil water storage and tree biomass 
under different afforestation patterns gradually decreased (Fig. 4). 
Previous studies have shown that higher precipitation not only promotes 
the growth of vegetation but also compensates for the soil water loss 
caused by the increase in evapotranspiration (Liu et al., 2018; Wang 
et al., 2019). 

In addition, this meta-analysis found that in areas with AI < 0.3, the 
RMSD value between soil water storage and tree biomass for mixed trees 
was significantly lower than that for pure trees, while there was no 
significant difference between the two afforestation patterns in the other 
regions (Fig. 4d). According to the stress gradient hypothesis (SGH), in 
resource-constrained areas, facilitative interactions and complemen-
tarities between species usually dominate (Bertness and Callaway, 1994; 
Brooker et al., 2008). Previous studies have shown that compared with 
pure stands, tree mixing can improve the resistance of forest ecosystems 
to drought by increasing the water use efficiency of different species 
(Pretzsch et al., 2013; Gazol et al., 2016). For example, Steckel et al. 
(2020) showed that mixed forests drive hydraulic power enhancement 
under drought conditions, which may increase the amount of water 
available, thereby enhancing drought resistance. Other studies have 
shown that favorable interactions between heterogeneous neighbors in 
mixed stands usually improve forest resistance to environmental dis-
turbances and fluctuations, indicating that trees can maintain growth 
even under suboptimal growth conditions (Pretzsch et al., 2013; Jactel 
et al., 2017). 

4.3. Effects of plantation ages on the trade-off between soil water storage 
and tree biomass 

Plantation age is considered the main factor driving changes in forest 
structure and function (Kerhoulas et al., 2013; Gong et al., 2021). We 
found that the RMSD value between soil water storage and tree biomass 
of pure trees was the highest in plantations aged from 20 to 30 years 
(Fig. 5). Previous studies have shown that R. pseudoacacia plantations in 
the Loess Plateau reached maturity around 30 years, and soil moisture 
content showed a consistent decrease with age at all soil depths until 
maturity of plantations (Wang et al., 2012; Kou et al., 2016; Wang et al., 
2021). We also found that the RMSD value between soil water storage 
and tree biomass of pure trees was the lowest in plantations aged > 30 
years (Fig. 5). Previous studies found that soil moisture decline driven by 
afforestation can usually be retarded upon maturity of trees (Jin et al., 
2011; Jia et al., 2017). This phenomenon may be attributed to litter and 
decaying roots of trees gradually accumulating with stand age, thereby 
increasing the infiltration and retention of soil water via enhancing the 
formation of soil aggregates and improving soil porosity (Zhang et al., 
2018; Jia et al., 2020). Furthermore, previous research reported that the 
water uptake depth of plants shifts from shallow to deeper soil layers 
increases along with plantation age (Huo et al., 2018; Nan et al., 2019; 
Huang et al., 2021). In this research, we focused on soil water storage 
only at depths of 0–100 cm, which reduced the RMSD value between soil 
water storage and tree biomass to a certain extent. 

We also found that the RMSD value of mixed trees decreased with 
increasing plantation age, and that the RMSD value between soil water 
storage and tree biomass for mixed trees was significantly lower than 
that for pure trees in > 20 years (Fig. 5d). Generally, as plantation age 
increased, the effect of mixed forest on ecological function was stronger 
(Guerrero-Ramírez et al., 2017; Chen et al., 2021). Previous studies have 
also shown that older forest stands are more resistant and resilient to 

drought, and this effect is stronger in mixed forests than in single-species 
forests (Thurm et al., 2016; Pardos et al., 2021). In addition, we found 
that the RMSD value between soil water storage and tree biomass for 
mixed trees was slightly higher than that for pure trees in < 20 years 
(Fig. 5d). Previous studies have shown that in the early stage of affor-
estation, a mixed forest stand did not exert significant effects and caused 
water deficits (Kunert et al. 2012; Grossiord et al., 2013). Sheng et al. 
(2020) found that black locust neighbors did not improve Chinese pine 
growth and exacerbated water stress in the early plantation stage. 
Similarly, the impacts of mixed forests on soil water and tree biomass 
usually manifest slowly, and the trade-off between soil water storage 
and vegetation biomass may not be apparent in the short term (Lu et al., 
2014; Su et al., 2021). Therefore, long-term research is needed to 
correctly estimate the impact of tree mixtures on the trade-off between 
soil water storage and vegetation biomass. 

4.4. Relationships between RMSD values and soil properties 

Our research showed that RMSD values between soil water storage 
and tree biomass under different afforestation patterns were signifi-
cantly negatively correlated with the initial water content (Table 4). 
Generally, the initial water content is a key factor determining vegeta-
tion biomass and soil water (Deng et al., 2016; Gong et al., 2020). 
Previous studies have shown that soil moisture and vegetation biomass 
are usually negatively correlated with initial water content (Deng et al., 
2016; Su and Shangguan, 2019). We also found that RMSD values be-
tween soil water storage and tree biomass under different afforestation 
patterns were positively correlated with SOC content (Table 4). As an 
important factor in soil structure, SOC can bind soil mineral particles 
together to form aggregates, which tends to increase soil moisture 
infiltration and water retention capacity by increasing porosity (Yang 
et al., 2014; Chaplot and Cooper, 2015). 

However, we found that the effect of SOC on RMSD was significant in 
mixed trees, but not single species trees (Table 4). An increasing number 
of studies have shown that mixed trees are more beneficial for improving 
soil nutrients than pure trees (Bardgett et al., 2014; Barry et al., 2020; 
Chen et al., 2021). For example, Gong et al. (2020) showed that tree 
mixtures in the Loess Plateau could significantly increase SOC content 
and reduce soil BD compared to monocultures. Chen et al. (2018) also 
showed that a mixed forest consisting of Robinia pseudoacacia and Pinus 
tabulaeformis significantly improved the soil physical and chemical 
properties. 

4.5. Implications for plantation management and policy-making 

Trade-off analysis has become an important tool for ecological 
management and decision-making (Ruijs et al., 2013; Gissi et al., 2016). 
By quantifying the trade-offs between ESs, managers can find more ways 
to coordinate the sustainable development of multiple ESs (Bennett 
et al., 2009; Wu et al., 2017). In the past few decades, planted forests 
have made important contributions to ESs (e.g., carbon sequestration) in 
China (Liu et al., 2008; Tong et al., 2018). However, due to inappro-
priate overexpansion, poor management, and intensified climate 
change, afforestation failures have been common in China (Jiang et al., 
2006; Cao, 2008). Therefore, methods to scientifically manage planta-
tions have become the top priority for the sustainable development of 
forest ecosystems. 

Considerable evidences show that there are positive correlations 
between plant species richness and multiple ESs (e.g., the provision of 
plant biomass, soil carbon sequestration, and the improvement of water 
and air quality) (Gamfeldt et al., 2013; Jactel et al., 2017). Similarly, our 
research indicated that the RMSD value between soil water storage and 
tree biomass for mixed trees was significantly lower than that for pure 
trees. However, this study also found that the RMSD value between soil 
water storage and tree biomass of plantations in areas with AI < 0.3 was 
higher than that in areas with AI > 0.3 (Fig. 4). Previous studies have 
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shown that afforestation is not a useful option in areas where rainfall is 
close to or below the potential evapotranspiration (Deng et al., 2016). In 
addition, as other studies have demonstrated, because of its relatively 
low water consumption, grasslands can support a higher water supply 
while helping to maintain other ESs (Wu et al., 2020; Mei et al., 2018). 
Therefore, before any afforestation plan is implemented, the adapt-
ability of tree species and the ecological significance of establishing 
plantations should be comprehensively considered (Cao, 2011; Yu et al., 
2019). On the basis of achieving a single ecological goal, future affor-
estation efforts should focus on improving the quality of forest ecosys-
tems and the performance of multiple functions. Combined with related 
research studies (Felton et al., 2016; Jactel et al., 2017), in areas suitable 
for afforestation, future ecological restoration projects should consider a 
combination of multiple species rather than the single species. 

5. Conclusion 

Afforestation has caused a trade-off between soil water storage and 
tree biomass on the Loess Plateau. For different afforestation patterns, 
the RMSD value between soil water storage and tree biomass for mixed 
trees was significantly lower than that for pure trees. In addition, 
plantation age, the AI, and soil properties also affect the response of 
RMSD values to different afforestation patterns. In particular, in areas 
with AI < 0.3, the RMSD value between soil water storage and tree 
biomass for mixed trees was significantly lower than that for pure trees. 
These results can be applied in the scientific management of plantation 
forests. In the face of an increasingly warming climate and frequent 
drought events, increasing tree species richness is an effective way to 
alleviate the trade-off between soil water storage and tree biomass. 
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