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Abstract. The ‘Grain-for-Green’ program implemented on the Loess Plateau in China has dramatically changed land
use types, and subsequently enhanced the spatiotemporal variability of soil organic carbon (SOC) in the watersheds.
However, the spatiotemporal variability of SOC for different topographic and land use types within small watersheds has
not been adequately explored following the implementation of the ‘Grain-for-Green’ program. In this study, we
determined the spatiotemporal variability of SOC content using the data collected in 1993, 2002, 2005, and 2012
and measured in 2018 and identified its driving factors for different topographic (tableland, sloping land, and gully) and
land use types in the Wangdonggou watershed on the Loess Plateau. The spatial patterns of SOC content differed among
tableland, sloping land, and gully, with higher spatial variability in gully than sloping land and tableland. The SOC content
in the 0–20 cm soil layer in 2018 increased by 8.58%, 26.4%, and 22.2%, compared to 2002, for tableland, sloping land,
and gully, respectively. Woodland and grassland had a great potential to sequester and stabilise carbon. The vegetation
cover was a relatively dominant factor affecting SOC content throughout the watershed. Our results indicate a close
relationship between SOC content and topographic, vegetation, and edaphic variables. This information is critical for
understanding SOC dynamics at the watershed scale for sustainable ecological restoration.
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Introduction

Watershed soil organic carbon (SOC) dynamics are linked to
nutrient cycling (Zhao et al. 2017), sediment transport
(Haregeweyn et al. 2008; Hancock et al. 2019), land use
changes (Gelaw et al. 2014; Shi et al. 2019a), and
topography (Kunkel et al. 2019; Devine et al. 2020) and
therefore present spatial and temporal variability. A range of
studies have investigated the SOC variation in different
watersheds. For example, in two watersheds of New South
Wales, Australia, SOC concentration was spatially stable
for catchments with similar land uses, climate, and
geomorphology; and elevation was the most significant
control on SOC (Kunkel et al. 2019). In the Tiffech
watershed of north-east Algeria, the SOC content increased
northwards in the area, ranging from 0.53 to 6.9 kg m�2; land
use types were demonstrated to have a remarkable impact on
SOC distribution (Boubehziz et al. 2020). In a karst watershed
in south-western China, the mean SOC content was 25.01 g kg–1

with a coefficient of variation (CV) of 55.26%, indicating
moderate-intensity variation; parent soil material, soil type,
land use, slope position, slope direction, and rock exposure
rate had significant influences on SOC (Bai and Zhou 2020).
Therefore, SOC has a range of spatial patterns, as well as
various dominant controlling factors for different watersheds.

Some progress has been made in understanding the long-
term temporal changes in SOC at watershed scales. For
instance, Wang et al. (2011) found that SOC stocks
(0–20 cm soil layer) significantly increased from 1998 to
2006 in a small watershed of the Loess Plateau. Wang
et al. (2012) demonstrated that changes in SOC density
(0–20 cm soil layer) occurred in two main phases in
replanted cropland in the Chinese hilly Loess Plateau: SOC
density slightly increased in the first 10 or 15 years, and then
markedly increased. However, revegetation does not always
cause soil carbon (C) sequestration and accumulation, which
depend on precipitation conditions and vegetation types. If no
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obvious temporal variations in land use types occur in a
catchment, SOC might be temporally stable. Kunkel et al.
(2019) compared SOC concentrations between 2006 and
2014 in the Krui watershed on the east coast of New South
Wales, Australia, and reported that SOC concentrations did not
significantly differ over an 8-year period. Nevertheless, studies
on long-term monitoring for SOC at large scales are limited
because they are labour intensive, time consuming, and
expensive.

Both anthropogenic (e.g. land use types and field
management) and natural (e.g. climate, soil texture, and
topography) factors influence the spatiotemporal variability
of SOC in watersheds (Chen et al. 2015; Zhao et al. 2017;
Kunkel et al. 2019; Devine et al. 2020). Land use changes,
characterised as the most substantial human alteration of
ecosystems, exert a strong influence on C distribution and
stocks by altering the cover and productivity of vegetation
as well as physical and chemical characteristics of soil (Fang
et al. 2012; Deng et al. 2014; Oso and Rao 2017; Shi et al.
2019a). In general, variations in vegetation cover and biomass
are accompanied by land use changes. Furthermore, vegetation
cover and biomass can affect SOC distribution by influencing
the litter input and root distribution in the soil, which in turn
influence the soil nutrients as well as microbial community
structure and activity (Gunina and Kuzyakov 2014; Lange
et al. 2015; Deng et al. 2018; Yang et al. 2018).

Topography, one of the natural factors, is also a key
variable affecting SOC spatial distribution (Kunkel et al.
2019; Shi et al. 2019b, 2020; Devine et al. 2020).
Generally, surface SOC can migrate from the upper slopes
and deposit in depressions, especially in heavily eroded
regions (Scowcroft et al. 2000; Seibert et al. 2007). Slope
gradient and aspect can control water movement, which
contributes to variations in soil characteristics (Tsui et al.
2004). Increases in SOC content from the summit and slope to
the gully were reported in a Chinese eroded hilly watershed,
which indicated prolonged soil erosion and partial deposition
towards the gully (Zhu et al. 2014). The vegetation biomass as
well as the multiple vegetation types on various topographic
types can also affect the redistribution of SOC in watersheds
(Devine et al. 2020). However, recent works mainly focused
on the effects of land use changes on spatiotemporal variation
of SOC (Poeplau et al. 2011; Wang et al. 2011; Bae and Ryu
2015) and neglected the potential spatiotemporal differences
of SOC for different topographic types as well as the possible
redistribution of SOC among different topographic types due
to runoff, soil erosion, and deposition at the watershed scale.

The Loess Plateau is known for its deep loess and unique
landscapes, but the region has suffered severe soil erosion (Fu
1989; Tang et al. 1991;Wang et al. 2009) that negatively affects
local ecosystems and impedes economic development. A large-
scale ‘Grain-for-Green’ program (GGP) has been implemented
in this region by the Chinese Government since 1999, which
aimed to decrease soil erosion and restore the ecosystems (Deng
et al. 2014, 2018; Chen et al. 2015). This program has
dramatically changed the landscape and almost doubled
vegetation coverage from 1999 to 2013 on the Loess Plateau
(Chen et al. 2015). The fragmented Loess Plateau has various
topographic types, including tableland, sloping land, and
gullies. The GGP mainly converted farmland on steep slopes

to forests and grasslands. Consequently, the obvious land use
changes following the GGP implementation have inevitably
affected SOC dynamics and changed spatiotemporal variability
for different topographic types in watersheds of the Loess
Plateau. However, the spatiotemporal variability of SOC
content for different topographic types remains unaddressed.

The objectives of this study were to (1) determine the
spatial distribution and temporal variation in SOC content
for different topographic and land use types in a small
watershed after the implementation of GGP and (2) analyse
the primary factors impacting the spatiotemporal variability in
SOC content for different topographic and land use types. To
reach our objectives, the Wangdonggou watershed in the gully
region of the Loess Plateau was chosen for this study. The
availability of long-term data for climate, land use, and SOC
measurements of the Wangdonggou watershed provides
unique circumstances for this study.

Materials and methods

Study area
The study was conducted in the Wangdonggou watershed
(358120–358160N, 1078400–1078420E) in Changwu County,
Shaanxi Province, China (Fig. 1). This small watershed is
in a gully region of the Loess Plateau and covers an area of
8.3 km2, with elevations ranging from 937 to 1239 m. This area
is characterised by a continental monsoon climate, with a mean
annual temperature of 9.28C and annual precipitation of
579 mm (averaged from 1960 to 2016), of which more than
58% occurs from July to September (Suo and Huang 2019).
The cumulative annual precipitation and annual mean air
temperature for the study area from 1993 to 2018 are
shown in Fig. 2. The soils in this area have weak
cementing forces between the particles and a very low
erosion resistance (Li and Su 1991). According to the
USDA Soil Taxonomy system (Soil Survey Staff 2014), the
soils are classified as Loessi-Orthic Primosols, similar to
Cambisols according to the World Reference Base for Soil
Resources (IUSS Working Group WRB 2014), and are
derived from wind-deposited loess (Wang et al. 2017).

In the Wangdonggou watershed, the main topographic
types are tableland, sloping land, and gully (Fig. 3), each of
which covers approximately one-third of the total study area.
The slopes are less than 58 in the tableland, 5–258 in the sloping
land, and greater than 258 in the gully (Li and Su 1991). The
gully accumulates eroded materials from the tableland and
sloping land. The dominant land use types are cropland and
orchard on the tableland, and grassland and woodland in the
gully (Fig. 1c). Sloping land with a slope less than 158 has
generally been transformed to terraces. Cropland, apple
orchard, grassland, woodland, and abandoned land are the
dominant land use types for the sloping land. The cropland in
this area is mainly planted with winter wheat (Triticum
aestivum L.) and spring maize (Zea mays L.) (Yao et al.
2017). Generally, N (600 kg N ha�1) and P (375 kg P
ha�1) fertilisers are applied to cropland every year, with
crop residues removed for cooking or feeding cattle (Wang
et al. 2017). Fertiliser management for apple orchard (Malus
pumila Mill.) is similar to that for cropland, with no irrigation.
Soils are tilled every year to control weeds for better tree
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growth. Grassland covered by Russian wormwood (Artemisia
gmelinii), Old World bluestems (Bothriochloa ischaemum)
and alfalfa (Medicago sativa L.) and woodland covered by
black locust (Robinia pseudoacacia L.) were regenerated after
agricultural abandonment, with anthropogenic perturbation
considered less than for cropland and orchard. Abandoned land
covered by Russian wormwood and green bristlegrass (Setaria
viridis) had remained fallow for ~3–15 years, and was generally
previously cultivated with winter wheat or spring maize.

Soil sampling and analysis

Soil samples were randomly collected in July 2018 from
different topographic types based on the combinations of
land use types, slope, aspect, and vegetation cover. A total
of 218 sampling locations (~10 m � 10 m) were selected
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Fig. 1. Location of the (a) study area, (b) soil sampling locations (2018), and (c) land use types in the Wangdonggou
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Fig. 2. Cumulative annual precipitation and annual mean air temperature
for the study area from 1993 to 2018.
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across the whole watershed. The longitude, latitude, and
elevations of sampling points were identified with a GPS
device. A compass was used to determine the slope and
aspect of sampling points. The corresponding land use
types, topography, and dominant vegetation species for each
sampling point were also recorded while collecting soil
samples. The numbers of soil samples for the different
topographic types are shown in Table 1.

For each sampling plot (~10 m � 10 m), three to five soil
cores were collected using a soil corer (~4 cm in diameter)
from two soil layers (0–20 and 20–40 cm) and all replicates
were mixed to create one composite sample for each layer.
Each of the composite samples was air-dried at room
temperature and then passed through a 2-mm sieve for soil
particle size analysis and through a 0.25-mm sieve for the SOC
analysis.

A prior soil sampling campaign had been conducted in July
2002 in the Wangdonggou watershed. A total of 132 soil
samples were collected in the plough layer (0–20 cm)
according to their topographic (tableland, sloping land, and
gully) and land use (cropland, orchard, grassland, and
woodland) types. In each plot, about five soil cores were
randomly selected and mixed to form one sample. All soil
samples were air-dried and passed through a 0.25-mm sieve for
SOC analysis. The laboratory analyses for these samples were
done in 2002.

The SOC content was determined using the Walkley–Black
dichromate oxidation method (Nelson and Sommers 1982).
Soil particle sizes were analysed by laser diffraction using a
Mastersizer 2000 (Malvern Instruments, Malvern, England).
Soil samples were oven-dried to a constant weight at 1058C
and weighed to obtain the gravimetric soil water content
(SWC).

Data collection

The Normalized Difference Vegetation Index (NDVI) is
defined as a ratio of the difference between near infrared and
red reflectance to the sum of near infrared and red reflectance
(Tucker 1979). The NDVI is considered as a factor influencing
the SOC, and is closely correlated with vegetation cover,
biomass, and leaf area index (Xin et al. 2016; Zhao et al.
2017; Cheng et al. 2018). The NDVI has been widely used as a

proxy index of vegetation cover for monitoring vegetation
restoration (Xin et al. 2008, 2016). In our study, NDVI data
for the study area were used to manifest the spatial distribution
patterns of vegetation cover in the Wangdonggou watershed.

The land use and NDVI data were obtained from Landsat
Enhanced Thematic Mapper (ETM+) images in 2002 and
Operational Land Imager (OLI) images in 2018 (30-m
resolution) downloaded from the United States Geological
Survey (https://earthexplorer.usgs.gov/). The acquisition time
of the images was in July of the vegetation growth season to
help accurately compare the vegetation conditions. The land use
types were identified by support vector machine method. The
radiometric calibration and FLAASH atmospheric correction
were conducted before calculating the NDVI.

Topographic factors were obtained from a digital elevation
model with 30 m � 30 m resolution using ArcGIS 10.5
software (Environmental Systems Research Institute,
Redlands, USA). The vector boundary of the Wangdonggou
watershed was downloaded from the Loess Plateau Science
Data Centre, National Earth System Science Data Sharing
Infrastructure, National Science & Technology Infrastructure
of China (http://loess.geodata.cn).

The mean SOC contents for the 0–20 cm soil layer for
different land uses measured in 1993, 2005, and 2012 and
topographic types in 2005 and 2012 in the Wangdonggou
watershed were collected from literature to determine any
temporal variation in SOC. Relevant sampling information
is shown in Table 2. Information about cumulative annual
precipitation and annual mean air temperature from 1993 to
2018 was obtained from the meteorological station located at
the Wangdonggou watershed. The SOC content in 2002 was
only used to conduct spatiotemporal comparisons with that in
2018, and specific analysis for 2002 is not shown. To reduce
the potential influence of different sampling locations in 2002
and 2018 on the variation of SOC content, we calculated the
mean SOC content using zonal statistics data from the SOC
spatial distribution map, produced by regression kriging (RK)
interpolation method, to estimate the temporal variation of
SOC content for the tableland, sloping land, and gully in both
2002 and 2018.

RK method and its validation
The RK method is a spatial interpolation technique that
combines a multiple linear regression (MLR) model with
ordinary kriging for the prediction residuals (Hengl et al. 2004):

ẑ x0ð Þ ¼ m̂ x0ð Þ þ ê x0ð Þ ð1Þ
where ẑ is the predicted target variable at the location x0, m̂ is
the fitted drift using MLR model, and ê is the residual that
is interpolated using ordinary kriging (Hengl et al. 2004; Meng
et al. 2013).

This method allows the auxiliary variables to interpolate the
dependent variables at the un-sampled locations (Hengl et al.
2007; Bangroo et al. 2020). Given that the topographic and
land use types are critical factors influencing the SOC content
in our studied watershed, topographic factor and land use type
were converted to dummy variables in the MLR model. In
order to reduce the variables of land use type, the abandoned

Table 1. Details of soil sampling for different topographic types in the
Wangdonggou watershed in 2018

Topographic
type

Land use
type

Number of
soil samples

Sample
proportion (%)

Tableland Cropland 33 15.1
Orchard 43 19.7
Grassland 4 1.83

Sloping land Cropland 15 6.88
Grassland 26 11.9
Orchard 6 2.75
Woodland 48 22.0

Abandoned land 13 5.96
Gully Grassland 9 4.13

Woodland 21 9.63
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land was combined with grassland due to their similar
landscape. In addition, altitude, slope, aspect, NDVI, sand
content, and clay content were used as independent variables
in the MLR model to estimate SOC content.

The total measured samples (218 samples in 2018 and 132
samples in 2002) were divided into two parts: 70% of samples
for calibrating the MLR model and 30% of samples for
validating the MLR model. The mean estimation error
(MEE), mean absolute estimation error (MAEE), and root
mean square error (RMSE) were used to evaluate accuracy
of the RK method:

MEE ¼ 1
n

Pn

i¼1
ðzi � ẑiÞ ð2Þ

MAEE ¼ 1
n

Pn

i¼1
zi � ẑij j ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

i¼1
zi � ẑið Þ2

s

ð4Þ

where n represents the total number of sampling points; zi and
ẑi are observed and predicted SOC contents at the ith location,
respectively.

The s.d. and CVs between measured and predicted SOC
contents were used to assess the uncertainty of the RK method
in different topographic types.

Statistical analyses
Descriptive statistics and one-sample Kolmogorov–Smirnov
(K-S) tests were conducted for SOC content. Logarithmic
transformations were used for data that were not normally
distributed (P < 0.05) for further geostatistical analyses. The
Kruskal–Wallis ANOVA test was used to compare differences
in SOC content among different land uses and topographic
types, whereas a Dunn–Bonferroni test was used for post hoc
comparisons. Linear regression analyses were carried out to
evaluate the relationship between SOC and other edaphic
properties (sand, silt, clay, and SWC), topographic variables
(altitude, slope, and aspect), and the NDVI. All statistical
analyses were performed using SPSS 22.0 for Windows.

The semivariogram was calculated to show the spatial
dependence of RK residuals (ê) in 2002 and 2018 using GS+

version 7.0 software. We assessed parameters that can
characterise the semivariogram, including nugget variance

(C0), structural variance (C1), sill (C0 + C1), and range (the
maximum separation distance over which the spatial
dependence of samples is apparent). The coefficient of
determination (R2) and residual sum of squares (RSS) value
were used to indicate how well the model semivariogram
fitted the experimental semivariogram. Specifically, the
model with the highest R2 and smallest RSS was selected
as the best-fitted model. The degree of spatial dependence
(GD), which is the ratio of C0 to C0 + C1, was used to evaluate
the distinct classes of spatial dependence (Gwenzi et al. 2011).
The GD is strong as the ratio approaches 0, but is weak as this
value approaches 1 (Cambardella et al. 1994; Castrignanò
et al. 2011). The residuals were interpolated using ordinary
kriging in the Geostatistical module in ArcGIS 10.5 software
(Environmental Systems Research Institute) based on the
calculated semivariogram parameters.

Results

Characterisation of soil properties

The mean SOC content in the 0–40 cm soil layer of the 2018
samples varied between 4.1 and 10.5, 4.4 and 11.6, and 3.4 and
12.8 g kg�1 in the tableland, sloping land, and gully, with CVs
of 16.4%, 23.3%, and 25.4%, respectively (Table 3). For all
topographic types, soil particle size distribution showed that
silt accounted for the largest proportion of the total, followed
by clay and sand (Table 3). The CV of the sand was relatively
large compared to that for both silt and clay (Table 3). The
mean SWC for the gully (17.2%) was higher than that for
tableland (16.4%) and sloping land (15.1%) in the 0–40 cm
soil layer (Table 3). Over the whole watershed, the mean SOC
was 7.2 g kg�1 in the 0–40 cm soil layer (Table 3).

Spatial distribution of SOC content

The MLRmodels for predicting SOC content in 2002 and 2018
are shown in Table 4. The calibration and validation showed
that the RK method performed well for estimating the spatial
distribution of SOC content in the studied watershed
(Table 5). The RMSE varied from 0.63 to 1.41 g kg–1 in
the calibration and from 0.68 to 1.90 g kg–1 in the validation. It
is reasonable that the RK method had higher prediction
accuracy in the calibration than that in the validation. The
prediction accuracy of the RK method also varied in different
layers and different topographic types. The values of MAEE

Table 2. Sampling information for the Wangdonggou watershed in 1993, 2005, and 2012
NA, not available

Year Soil depth (cm) Number of soil samples References

Topographic types In total Tableland Sloping landA Gully
2005 0–20 225 NA NA NA Wei et al. (2008)
2012 0–20 259 57 129 73 Wang et al. (2017)

Land uses In total Cropland Grassland Orchard Woodland
1993 0–20 NA NA NA NA NA Wang et al. (2003)
2005 0–20 225 NA NA NA NA Wei et al. (2008)
2012 0–20 259 40 90 48 81 Wang et al. (2017)

AThe data for sloping land are the sum of terrace and sloping land in Wei et al. (2008)
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and RMSE were higher in the 0–20 cm than in the 20–40 cm
soil layer in 2018. In addition, the absolute values of MEE,
MAEE, and RMSE were higher in gully than in tableland and
sloping land in the 0–20 cm soil layer in 2002 and 2018.

The parameters of the best-fitted semivariogram models
showed that the residuals were spatially structured
(Supplementary Table S1). The optimal theoretical variogram
models for the MLR residual were exponential and spherical in
0–20 and 20–40 cm soil layers in 2018, respectively. The MLR
residual in the two soil layers in 2018 exhibited strong
spatial dependence with nuggets representing 2.0–12% of the
total variance (Supplementary Table S1). The ranges of spatial
dependence for the MLR residual in 0–20 and 20–40 cm soil
layers were 369 and 145 m, respectively. By contrast, the best-
fitted semivariogram model was spherical for MLR residual in
0–20 cm soil layer in 2002 (Supplementary Table S1). The
MLR residual in 2002 was moderately spatially dependent with
nugget representing 29% of the total variance.

The SOC prediction map illustrates the spatial variability
and distribution of SOC content in the Wangdonggou
watershed (Fig. 4). The spatial distribution of SOC content

throughout the watershed was patchy. In the 0–20 cm soil layer
in both 2002 and 2018, the highest SOC content was mainly
distributed alongside the gully, where the dominant land use
types were grassland and woodland (Fig. 4a and c). The higher
SOC content in the 20–40 cm soil layer mainly occurred in the
north-western tableland in 2018 (Fig. 4b).

The topographic and land use types strongly influenced the
SOC content (P < 0.05; Figs 5–7). The mean SOC content
decreased with increasing soil depth for all topographic and
land use types (Figs 5 and 6). The mean SOC content of the
topographic types differed between the two soil depths and
decreased in the following order: gully (9.88 g kg�1) > sloping
land (8.28 g kg�1) > tableland (7.51 g kg�1) in the 0–20 cm soil
layer; while in the 20–40 cm soil layer, the highest mean SOC
content was in the tableland and the lowest in the sloping land.
Additionally, the CVs of SOC content in the two soil layers
were the highest in the gully, followed in order by the sloping
land and tableland (Fig. 5).

For the tableland, mean SOC content was the highest in
orchard, followed by cropland and grassland for the two soil
layers (Fig. 7). In the sloping land, the highest mean SOC

Table 3. Summary statistics for soil properties for different topographic types for the 0–40 cm soil layer in the Wangdonggou watershed in 2018
(n = 218)

CV, coefficient of variation; SOC, soil organic carbon; SWC, soil water content

Topographic type Soil property Mean Min. Max. s.e.m. CV (%) Skewness Kurtosis K-S (P)

Tableland SOC (g kg–1) 6.87 4.12 10.5 0.13 16.4 0.39 0.59 0.20
Sand (%) 9.34 5.45 14.5 0.24 22.6 0.60 –0.10 0.09
Silt (%) 64.9 63.0 67.3 0.10 1.41 0.18 –0.23 0.20
Clay (%) 25.8 21.6 30.6 0.19 6.69 –0.15 0.36 0.20
SWC (%) 16.4 11.7 20.4 0.19 10.5 0.02 0.06 0.20

Sloping land SOC (g kg–1) 7.11 4.36 11.6 0.16 23.3 0.71 –0.07 0.02
Sand (%) 11.8 7.49 16.5 0.19 16.6 0.20 –0.22 0.20
Silt (%) 64.3 61.9 67.0 0.09 1.46 0.22 0.18 0.09
Clay (%) 23.9 19.6 27.8 0.17 7.48 0.06 –0.25 0.20
SWC (%) 15.1 9.43 22.6 0.25 17.0 0.42 0.30 0.20

Gully SOC (g kg–1) 8.28 3.41 12.8 0.38 25.4 –0.11 0.01 0.20
Sand (%) 11.5 5.65 16.3 0.43 20.7 –0.20 0.04 0.20
Silt (%) 63.1 56.0 65.6 0.32 2.82 –2.12 7.93 0.07
Clay (%) 25.4 20.7 38.3 0.58 12.6 2.33 8.52 0.01
SWC (%) 17.2 9.34 22.2 0.59 18.7 –0.43 –0.21 0.20

All areas SOC (g kg–1) 7.19 3.41 12.8 0.11 22.5 0.72 0.47 0.00
Sand (%) 10.9 5.45 16.5 0.16 21.8 0.08 –0.50 0.20
Silt (%) 64.3 56.0 67.3 0.08 1.88 –1.54 9.50 0.02
Clay (%) 24.8 19.6 38.3 0.15 8.90 1.02 5.55 0.20
SWC (%) 15.9 9.34 22.7 0.17 15.9 0.10 0.09 0.20

Table 4. Multiple linear regression models for predicting SOC content
NDVI, Normalized Difference Vegetation Index; x1–x5 are dummy variables; x1 and x2 represent topographic types of tableland and gully, respectively; x3, x4,
and x5 represent land use types of grassland, woodland, and cropland, respectively; R2, determination coefficient; P, significance of the regression model

Soil layer (cm) Multiple regression equation R2 P

2018 0–20 SOC = 8.05 – 0.004 � Aspect + 1.15 � NVDI + 0.20 � Sand – 0.10 � Clay + 0.68x1 + 1.59x2 – 0.22x3 + 1.21x4 0.38 <0.001
20–40 SOC = 2.24 – 0.02 � Slope + 0.14 � Sand + 0.07 � Clay + 0.49x1 – 0.16x2 – 0.53x3 – 0.11x4 – 0.49x5 0.14 <0.01

2002 0–20 SOC = –2.78 – 0.01 � Aspect + 1.72 � NVDI + 0.47 � Sand + 0.10 � Clay + 1.40x1 + 1.29x2 + 0.71x3 + 1.36x4 0.50 <0.001
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content was in woodland, followed in order by grassland,
cropland, orchard, and abandoned land in the 0–20 cm soil
layers. In the gully, the mean SOC content in woodland was 1.2
and 1.1 times higher than in grassland in the 0–20 and 20–40 cm
soil layers, respectively. In the whole watershed, the mean SOC
content was highest in woodland (9.7 g kg�1) in the 0–20 cm
soil layer, but was in orchard (5.63 g kg�1) in the 20–40 cm soil
layer (Fig. 6). The lowest mean SOC content was in abandoned
land for all soil layers among the five land uses (Fig. 6).

Temporal variation of SOC content

The mean SOC content in 2018 increased by 8.58%, 26.4%,
and 22.2% in the tableland, sloping land, and gully,
respectively, compared with 2002 (Fig. 8a). The SOC
content declined initially (from 2002 to 2005) and then
showed an increasing trend (from 2005 to 2018) in
tableland and sloping land (Fig. 8a).

In the 0–20 cm soil layer, mean SOC content in 2018
increased by 29.0–66.2% and 8.30–35.9% compared to 1993
and 2002, respectively, for cropland, orchard, grassland, and
woodland (Fig. 8b). The SOC distribution map shows that the
SOC content was significantly higher in 2018 than 2002
(Fig. 4a and c). As a whole, the SOC content in cropland
changed very little and its rate of increase (7.71%) was lower
than in orchard (13.4%) in 2018, compared to 1993 (Fig. 8b).
The SOC content generally increased faster in both woodland
and grassland from 1993 to 2012 (except from 2002 to 2005)
(Fig. 8b).

Linking SOC content to environmental factors

The slope of the linear regression shows the variations in SOC
content induced by per unit of change in environmental
variables (Table 6). Less remarkable correlations were
observed between SOC content and environmental variables
in gully versus tableland and sloping land. The sand, clay,
SWC, and NDVI were correlated with SOC in the sloping land,
but only sand and clay were correlated with SOC in the gully.
In tableland, nearly all of the environmental factors (except silt
and NDVI) were correlated with SOC content, with per unit
changes in NDVI, SWC, and clay inducing greater changes in
SOC. For the various land use types, SOC content in the
cropland was significantly correlated with altitude, slope, silt,
and SWC, with faster changes in SOC content induced by silt
and SWC. Significant correlations were noted between the
SOC content in orchard with altitude, slope, aspect, sand, clay,
and SWC, with the faster changes in SOC content induced by
sand and clay. In grassland, SOC content was also significantly
correlated with altitude, sand, and SWC. The sand, clay, and
NDVI in woodland were significantly correlated with the SOC
content. In the whole area, the SOC was significantly

(a) 0−20 cm soil layer in 2018

(c) 0−20 cm soil layer in 2002

(b) 20−40 cm soil layer in 2018

N

Legend
SOC content (g/kg)
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7.00−7.504.00−4.50

8.00−9.505.00−5.50

6.00−6.50
9.50−13.05.50−6.00
13.0−16.2

Fig. 4. SOC prediction map for the (a) 0–20 and (b) 20–40 cm soil layers
in 2018, and (c) 0–20 cm soil layer in 2002 in the Wangdonggou watershed.

Table 5. Prediction accuracy of the regression kriging for estimating the SOC content (g kg–1)
MEE, mean estimation error; MAEE, mean absolute estimation error; RMSE, root mean square error

Year Soil layer
(cm)

Topographic
types

Calibration Validation
MEE MAEE RMSE MEE MAEE RMSE

2018 0–20 Tableland 0.03 0.67 0.79 –0.05 0.81 1.03
Sloping land 0.41 0.79 1.04 0.08 0.99 1.22

Gully 0.78 1.21 1.71 –0.20 1.23 1.83
All areas 0.32 0.80 1.08 –0.02 0.95 1.27

20–40 Tableland 0.15 0.55 0.70 0.42 0.70 0.90
Sloping land 0.00 0.63 0.86 –0.39 0.59 0.68

Gully 0.05 0.45 0.63 0.13 0.68 0.89
All areas 0.06 0.57 0.78 0.01 0.65 0.81

2002 0–20 Tableland –0.19 0.47 0.66 0.03 0.63 0.77
Sloping land –0.35 0.92 1.14 –0.64 1.14 1.38

Gully 0.45 1.10 1.41 0.98 1.60 1.90
All areas –0.19 0.74 0.99 –0.12 0.96 1.22
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correlated with aspect, soil particle composition (sand, silt, and
clay), SWC, and NDVI, and increased much faster with
increasing NDVI.
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Fig. 5. SOC content for (a) tableland, (b) sloping land, and (c) gully in the Wangdonggou watershed for the 0–20 and 20–40 cm soil layers in
2018. The line in the boxes illustrates the median and the limits of the box are the 25th and 75th percentiles. Whiskers represent nonoutlier
ranges. The 5th and 95th percentiles of outliers are shown as circles. Different lowercase letters indicate significant differences in SOC contents
among different topographic types in the same soil layer (P < 0.05).
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woodland, and (e) abandoned land in the Wangdonggou watershed for
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significant differences in SOC contents among different land use types
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(P < 0.05).
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Discussion

Spatial distribution of SOC content

The SOC content in the two soil layers (0–20 and 20–40 cm) in
2018 had a high level of spatial variability (Figs 4–7), which
was similar to previous studies at the watershed scale (Zhao
et al. 2017; Cheng et al. 2018; Shi et al. 2019a). One possible
explanation could be that the complicated interaction between
topography, vegetation coverage, and environmental factors
caused the high heterogeneity of SOC in the watershed. The
mean values of SOC content in the Wangdonggou watershed
decreased from the surface to the lower soil layer, regardless of
topographic and land use types (Figs 5–7), which is consistent
with previous work (Wang et al. 2012, 2017; Deng et al.
2018). These results indicate SOC preferentially accumulates
at the soil surface. This suggests that, as a C sink, this small
watershed is vulnerable.

In general, the highest SOC content for the 0–20 cm soil
layer in 2018 mainly occurred alongside the gully of the
watershed, where the dominant land use types were
grassland and woodland (Fig. 4a). The higher SOC content
in the gully for the 0–20 cm soil layer is likely connected to
complex erosion and deposition process, better vegetation

growth, and relatively less human perturbation in the gully
of the small watershed (Scowcroft et al. 2000; Seibert et al.
2007; Zhu et al. 2014; Li et al. 2017). Specifically, the gully
accumulates eroded materials with high SOC content from
runoff and soil loss from the tableland and upper slopes
(Scowcroft et al. 2000; Seibert et al. 2007). The annual
erosion modulus in the Wangdonggou watershed ranges
between 383 and 1869 t km–2 (from 1986 to 1999) (Dong
et al. 2002). Previous work also indicated that soil erosion could
account for the changes in SOC and labile C fractions (Cilek
2017; Shi et al. 2020). Additionally, more water resources in the
gully could provide better conditions for vegetation growth,
which in turn could lead to more vegetation litter and root
biomass input to the soil (Zhu et al. 2014). Indeed, our study
observed a mean SWC in the gully (17.2%) that was higher than
in tableland (16.4%) and sloping land (15.1%). Furthermore, the
decomposition of SOC might be mitigated by the improved
water resources (Wang et al. 2009) and reduced human
disturbance in the gully.

We found that SOC distribution in the 20–40 cm soil layer
tended to differ from that observed in the 0–20 cm soil layer in
2018. To be specific, the highest SOC content was mainly in
the tableland at 20–40 cm depth, but not in the gully (Fig. 4).
The dominant land use types on tableland were cropland and
orchard, which had experienced long-term anthropogenic
disturbances (e.g. ploughing and fertiliser addition).
Therefore, the deeper soil layer in the tableland exhibited
relatively high SOC content (Fig. 5), resulting from more
organic materials being transported into deeper soil layers,
accompanied by artificial tillage and ploughing.

It should be mentioned that the higher MAEE and RMSE
values in the 0–20 cm than in the 20–40 cm soil layer indicate
that the RK method performed better in the lower soil layer in
2018. The main reason is that SOC spatial variation in the upper
soil layer was easily influenced by anthropogenic factors.
Furthermore, Table 5 indicates that the RK method had
smaller prediction accuracy for estimating SOC content in
gully in the 0–20 cm soil layer in 2002 and 2018 due to the
more complex terrain in the Wangdonggou watershed.

Topography can induce SOC redistribution, and the land
use on topographic types is a key factor affecting SOC content
in a watershed. Our study showed that SOC in woodland and
grassland was respectively 34.0% and 11.7% higher than in
cropland for the 0–20 cm soil layers (Fig. 6). This trend
indicates that the restored vegetation greatly contributed to
SOC accumulation in the eroded watershed. Similar results
were obtained in previous studies (Zhu et al. 2014; Han et al.
2018). The restored grassland and woodland have larger
amounts of aboveground biomass and more abundant roots
and, as a result, litter input may be greater and soil erosion can
be slowed compared to cropland (Wang et al. 2001). Roots and
rhizosphere resources exhibit a large and unique habitat which
affects microbial abundance and activity and can influence C
dynamics (Yang et al. 2018). Restoring vegetation can
enhance soil aggregation (Tang et al. 2010), which provides
microenvironments to absorb labile organic matter, and
improve the physical protection of SOC from loss and
erosion (Zhu et al. 2014). In contrast, intensive
anthropogenic disturbance (such as tillage management) on
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cropland accelerates soil organic matter decomposition (Dolan
et al. 2006; Cheng et al. 2018). Despite the high potential for
woodland and grassland to sequester C, SOC content in the
sloping land was generally lower than in the gully for the same
land use type of each soil layer (Fig. 7). This was due to the
severe water and soil erosion that occurred in the sloping land
and resulted in SOC loss (Li et al. 2017).

Temporal variation of SOC content

Compared with 2002, the SOC content increased in 2018 in the
tableland, sloping land, and gully in the 0–20 cm soil layer
(Fig. 8a). This suggests that vegetation restoration is an
effective way to stabilise and sequester C in eroded
watershed. The SOC and labile organic C fractions tend to
improve after conversion of cropland to grassland, forest, or
native vegetation (Smith 2008; Shi et al. 2020). Additionally,
the increase magnitude of SOC content from 2002 to 2018 in
tableland in the 0–20 cm soil layer was less than in the sloping
land and gully (Fig. 8a). This lower accumulation of SOC
content in the tableland might be the result of continuous and
intensive disturbance from tillage, ploughing, and weeding on

the tableland, regardless of the fertiliser addition to cropland
and orchard soils. In general, the increase in SOC content in
the soil surface (0–20 cm) in cropland, orchard, grassland, and
woodland in 2018, relative to the past 25 years (Fig. 8b),
suggests that improved SOC accumulation could be attributed
to implementation of GGP, a conclusion that agrees with
previous studies (Feng et al. 2013; Zhao et al. 2017). The
implementation of GGP caused substantial land use changes
and increased the SOC sequestration potential in terrestrial
ecosystems on the Loess Plateau (Deng et al. 2016). The SOC
could be increased by the increase in litter (Deng et al. 2018)
and organic matter input (Smith 2008), the mitigation of SOC
decomposition, and the enhanced SOC stabilisation following
vegetation restoration. In addition, the increasing magnitude of
SOC content from 1993 to 2018 in orchard was larger than in
cropland (Fig. 8b). One possible explanation is that, with
increasing stand age, the root depth and dry weight density
increase, which contribute to greater accumulation of SOC in
orchard compared to cropland (Li et al. 2019).

The s.d. and CVs for the SOC content were larger in sloping
land and gully than in tableland in 2002 and 2018 based on the
spatial distribution of SOC content estimated by RK method

Table 6. Relationships between SOC content and environmental factors for different topographic types and land uses for the 0–40 cm soil layer in
the Wangdonggou watershed in 2018

r, correlation coefficient. Asterisks represent significant correlations (*, P < 0.05; **, P < 0.01). Significant correlation coefficients are shown in bold. SWC,
soil water content; NDVI, Normalized Difference Vegetation Index

Parameter Altitude Slope Aspect Sand Silt Clay SWC NDVI

Topographic type
Tableland Slope 0.02 0.09 0.00 –0.16 0.17 0.19 0.25 1.37

Intercept –16.5 –0.07 7.46 8.33 –4.08 2.07 2.73 6.02
r 0.55** –0.29** –0.24* –0.29** 0.14 0.29* 0.39** 0.11

Sloping land Slope 0.00 0.02 0.00 0.43 –0.28 –0.44 0.18 6.05
Intercept 7.45 6.65 7.55 2.00 25.1 17.7 4.44 3.58

r –0.01 0.13 –0.14 0.51** –0.16 –0.48** 0.27** 0.38**
Gully Slope 0.00 –0.12 –0.01 0.30 0.01 0.17 0.14 4.60

Intercept 11.2 9.60 9.28 0.48 7.70 –0.27 5.87 5.10
r –0.09 –0.34 –0.24 0.54** 0.01 –0.41* 0.21 0.21

Land use type
Cropland Slope 0.01 –0.08 0.00 –0.02 –0.46 0.13 0.15 0.51

Intercept –1.17 7.32 6.74 6.82 36.2 3.45 0.29 6.09
r 0.35* –0.44** –0.06 –0.03 –0.32* 0.19 0.39** 0.05

Orchard Slope 0.02 –0.09 0.00 –0.39 0.24 0.34 0.31 1.49
Intercept –12.4 7.58 7.61 10.3 –8.58 –1.82 1.87 6.04

r 0.58** –0.43** –0.29* –0.47** 0.16 0.40** 0.56** 0.12
Grassland Slope –0.01 –0.07 –0.01 0.31 –0.16 –0.26 0.18 2.49

Intercept 16.6 8.15 7.79 3.59 17.2 13.5 4.30 5.27
r –0.40* –0.31 –0.27 0.34* –0.09 –0.29 0.36* 0.14

Woodland Slope 0.00 0.00 0.00 0.35 –0.22 –0.19 0.09 5.63
Intercept 8.87 8.05 8.62 3.77 22.2 12.7 6.69 4.28

r –0.02 0.02 –0.13 0.44** –0.18 –0.28* 0.13 0.26*
Abandoned land Slope –0.01 –0.05 0.00 0.15 –0.04 –0.17 0.17 1.16

Intercept 11.0 6.59 5.62 4.12 8.20 9.89 3.10 4.85
r –0.17 –0.47 0.10 0.24 –0.04 –0.24 0.39 0.08

All areas
Slope 0.00 0.00 0.00 0.21 –0.21 –0.18 0.19 3.89

Intercept 10.1 7.17 7.71 4.93 20.9 11.5 4.17 4.89
r –0.12 0.01 –0.16* 0.30** –0.16* –0.24** 0.30** 0.28**
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(Supplementary Table S2). This indicates that the sloping land
and gully had larger uncertainty than tableland when analysing
the temporal changes of SOC between 2002 and 2018. The
large uncertainty of SOC content in the sloping land and gully
may have resulted from the steep slopes and fragmented land,
as well as the complicated vegetation cover conditions.

Linking SOC content to environmental factors

The greater changing rate of SOC content was induced by
NDVI, soil particle composition, and SWC, than other
environmental variables in the Wangdonggou watershed as a
whole in 2018 (Table 6), suggesting that these variables might
have greater influence on SOC in our study.

Vegetation coverage is considered to be linked to SOC
dynamics. The amount of litter inputs in soils as well as the
density and distribution of roots varies with vegetation type.
These factors can regulate the accumulation, mineralisation,
and distribution of SOC and its labile C fractions by altering the
soil physical and chemical conditions as well as the microbial
community structure and activity (Hanson et al. 2000; Gunina
and Kuzyakov 2014; Lange et al. 2015; Shi et al. 2020).
Increasing plant coverage is an effective approach to control
soil erosion (Zhang et al. 2015), which can in turn result in a
reduction of C loss. The NDVI is known to be related to
vegetation cover, biomass, and leaf area index, and is widely
used to assess vegetation restoration (Xin et al. 2016).
Moreover, a higher NDVI generally indicates a better
vegetation cover and canopy density condition. In our study,
the NDVI was positively related to SOC content, and the
increasing rate of SOC induced by per unit change in NDVI
was the highest in the Wangdonggou watershed overall
(Tables 4 and 6). This indicates that vegetation cover plays a
dominant role in affecting SOC content in this watershed.

Topography (including altitude, slope, and aspect) is
characterised as a critical factor affecting the SOC and its
spatial distribution in watersheds (Zhu et al. 2014; Kunkel
et al. 2019). Significant correlations between SOC and
elevation were observed in large watershed catchments in
Krui and Merriwa, Australia (Kunkel et al. 2019) and north-
eastern India (Choudhury et al. 2013). Elevation influences the
rainfall distribution, which in turn affects the soil moisture (Xin
et al. 2016). Soil moisture distribution can further exert
influence on vegetation growth and the mineralisation of
SOC, which dictates the SOC distribution (Kunkel et al.
2019). We found that SOC content was significantly
correlated with aspect, but not with altitude and slope, in the
Wangdonggou watershed overall (Table 6). The lack of
correlation between SOC content and altitude in our study
might be because the scale of the altitude in our small
watershed is not as great as in other regions. Moreover,
anthropogenic activities such as land reclamation and tillage
diminish the effects of slope on SOC. The aspect can affect the
intensity of surface solar radiation, which influences the
distribution of water and heat (Xin et al. 2016; Kunkel
et al. 2019). In general, the southern slopes receive
relatively higher radiation and have greater evaporation than
the northern slopes, leading to the pronounced difference in
vegetation coverage among various aspect slopes.

The SWC is a primary limiting variable for vegetation
restoration on the Loess Plateau (Hu et al. 2009; Gao et al.
2013; Cui et al. 2020). Therefore, variations in SWC could
result in differences in vegetation growth, soil hydrology,
and biochemistry processes. Our study showed that SOC
content was significantly correlated with SWC in cropland,
orchard, and grassland, as well as the whole watershed
(Table 6). Similar interactions between soil water and
organic C storage were reported with long-term vegetation
restoration on the Loess Plateau, with this interaction
weakening with increasing soil depth and restoration stage
(Zhang and Shangguan 2016). Owing to the importance of
SWC on SOC, future analysis is necessary to fully understand
the interactions between SOC and SWC at different spatial
scales under ecological restoration.

The SOC content was significantly related to the soil
particle composition (Table 6), indicating that the relative
amounts of silt, sand, and clay can influence the distribution
of SOC content in the Wangdonggou watershed. The soil
particle composition can directly affect plant growth as well
as sequester C through absorption. In general, land use changes
can affect the distribution of soil particle composition because
artificial cultivation and perturbation can destroy the soil
structure (Han et al. 2018). For instance, the improved root
biomass after vegetation restoration could impact the bulk
density, increase soil aggregation, and eventually contribute to
the spatial distribution of SOC (Zhu et al. 2014; Deng et al.
2018).

Conclusions

Implementation of the GGP program has enhanced SOC
accumulation in the 0–20 cm soil layer in the
Wangdonggou watershed. Specifically, the SOC content in
the 0–20 cm soil layer in the tableland, sloping land, and gully
was greater in 2018 than in 2002. The SOC content showed
patchy spatial distribution in the watershed and its spatial
pattern differed between soil layers in 2018. The topographic
and land use type strongly affected the SOC content in this
small watershed. Woodland and grassland had the greatest
potential to sequester and stabilise C. The vegetation cover
was confirmed to play a dominant role in affecting SOC
content in the entire Wangdonggou watershed. In summary,
vegetation restoration has been an effective approach to create
a C sink in this small watershed. Future studies are necessary
to conduct long-term monitoring of the quality of soil and
vegetation growth after implementation of the GGP to help
inform land management strategies and land uses.
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